CN108878590A - 一种用硝酸盐制备铜铁硫光电薄膜的方法 - Google Patents
一种用硝酸盐制备铜铁硫光电薄膜的方法 Download PDFInfo
- Publication number
- CN108878590A CN108878590A CN201810705114.4A CN201810705114A CN108878590A CN 108878590 A CN108878590 A CN 108878590A CN 201810705114 A CN201810705114 A CN 201810705114A CN 108878590 A CN108878590 A CN 108878590A
- Authority
- CN
- China
- Prior art keywords
- film
- copper
- iron sulphur
- precursor thin
- sulphur optoelectronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010949 copper Substances 0.000 title claims abstract description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 22
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 19
- 229910002651 NO3 Inorganic materials 0.000 title claims abstract description 13
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 239000010408 film Substances 0.000 claims abstract description 31
- 239000010409 thin film Substances 0.000 claims abstract description 23
- 239000002243 precursor Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 10
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000004140 cleaning Methods 0.000 claims abstract description 8
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000004528 spin coating Methods 0.000 claims abstract description 5
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000005357 flat glass Substances 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000008236 heating water Substances 0.000 claims description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 abstract description 6
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 abstract description 4
- 230000035484 reaction time Effects 0.000 abstract description 2
- 229910052951 chalcopyrite Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 208000033962 Fontaine progeroid syndrome Diseases 0.000 description 1
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 description 1
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- YNBADRVTZLEFNH-UHFFFAOYSA-N methyl nicotinate Chemical compound COC(=O)C1=CC=CN=C1 YNBADRVTZLEFNH-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02568—Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Chemically Coating (AREA)
Abstract
一种用硝酸盐制备铜铁硫光电薄膜的方法,属于光电薄膜制备技术领域,本发明通过如下步骤得到,首先清洗玻璃基片,然后将Cu(NO3)2、Fe(NO3)3和Na2S2O3.5H2O依次放入溶剂水中,配制澄清透明溶液,用旋涂法在玻璃片上得到前驱体薄膜,自然晾干,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨直接接触,将装有前驱体薄膜样品的密闭容器进行加热后取出样品进行干燥,可通过增加反应次数和热处理工艺改善薄膜质量,得到铜铁硫光电薄膜。本发明不需要高温高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铁硫光电薄膜有较好的连续性和均匀性,这种新工艺为制备高性能的铜铁硫光电薄膜提供了一种成本低、可实现工业化的生产方法。
Description
技术领域
本发明属于太阳能电池用光电薄膜制备技术领域,尤其涉及一种用硝酸盐制备铜铁硫光电薄膜材料的方法。
背景技术
铜铁硫作为光电材料,是一种三元Ⅰ–Ⅲ–Ⅵ2族化合物半导体,具有黄铜矿和闪锌矿的晶体结构,同时具有高的光吸收系数、为直接能隙半导体、热稳定性好、无光致衰退效应等优点,又因铜铁硫材料的价格低廉、储量丰富且无毒等优势受到了科学家的广泛关注。
目前铜铁硫薄膜的制备方法有很多,主要有电化学沉积法、溅射法、热蒸发法、热喷涂法等。由于原料在地球上的储量丰富、价格低廉且无毒,因此是一种非常有发展前途的光电薄膜材料,但现有工艺路线复杂、制备成本高,因而需要探索低成本的制备工艺。
如前面所述方法一样,其它方法也有不同的缺陷。与本发明相关的还有如下文献:
[1] Xiankuan Meng, Hongmei Deng, Investigate the growth mechanism ofCu2FeSnS4 thin films by sulfurization of metallic precursor. MaterialsLetters, 2017.
主要研究了通过金属前驱体硫化法制备Cu2FeSnS4薄膜,并分析了Cu2FeSnS4薄膜的生长机制。
[2] Erika Dutková, Zdenka Bujnáková , Mechanochemical synthesis,structural, magnetic, optical and electrooptical properties of CuFeS2nanoparticles. Advanced Powder Technology, 2018.
主要研究了通过机械研磨法制备CuFeS2纳米粒子,研究了CuFeS2纳米粒子的结构、磁性、光学和电学性质。
[3] Sugathan A, B Bhattacharyya, et al. Why Does CuFeS2 ResembleGold. Journal of Physical Chemistary Letters, 2018.
主要研究了CuFeS2量子点的物理性质。采用结构和光学表征方法相结合,研究了在类似于500 nm的量子点的光谱中观察到的碰撞现象。
[4] Aliyev YI, TM Ilyasli, et al. The structural and vibrationalproperties of Ni-doped chalcopyrite CuFeS2. Journal of Ovonic Research, 2018.
主要研究了镍掺杂黄铜矿CuFeS2的结构和振动性质,并分析了掺杂镍CuFe0.99Ni0.01S2对CuFeS2晶体结构的影响。
[5] Rouchdi M, E Salmani, et al. Spray pyrolysis synthesis of CuxFe1- xS2 and their structural, electronic and optical properties: Experimental andfirst-principles study. Materials Science and Engineering B-advancedFunctional Solid-state Materials, 2018.
主要采用化学喷雾热解(CSP)技术合成黄铁矿、FeS2(FS)和黄铜矿铜铁硫化物CuxFe1- xS2(CFS)薄膜,主要研究了Cu浓度对薄膜生长的影响。
[6] Xiong X, X Hua, et al. Oxidation mechanism of chalcopyriterevealed by X-ray photoelectron spectroscopy and first principles studies.Appled Surface Science, 2018.
主要研究了黄铜矿(CuFeS2)表面的氧化机理和第一性原理计算。
发明内容
本发明为了解决现有制备技术的不足,发明了一种与现有制备方法完全不同的铜铁硫薄膜材料的制备工艺。
本发明采用旋涂-化学共还原法制备铜铁硫薄膜材料,采用玻璃片或硅片为基片,以Cu(NO3)2、Fe(NO3)3、Na2S2O3.5H2O为原料,以水为溶剂,依次加入Cu(NO3)2、Fe(NO3)3、Na2S2O3.5H2O,使其充分反应。先以旋涂法制备一定厚度的铜铁硫前驱体薄膜,以水合联氨为还原剂,在密闭容器内在较低温度下加热,使前驱体薄膜还原并发生合成反应,可通过增加反应次数和反应后热处理改善所制备薄膜质量,得到目标产物。
本发明的具体制备方法包括如下顺序的步骤:
a. 进行基片的清洗,本实验选择玻璃片或硅片作为基片,首先将玻璃片或硅片切至20mm×20mm×2mm大小作为薄膜基片,然后用去离子水清洗2~3次,随后经过稀硫酸煮沸30~40min、水浴加热40~50min、去离子水超声清洗20min,这三个重要清洗步骤后,用双氧水浸泡保存备用即可。
b. 将Cu(NO3)2、Fe(NO3)3和Na2S2O3.5H2O依次放入溶剂中,使溶液中的物质均匀混合。具体地说,将0.188g的Cu(NO3)2在玻璃瓶中加入1mL的水使其充分溶解,再依次往玻璃瓶内加入0.242g的Fe(NO3)3和0.2481g的Na2S2O3.5H2O使其充分均匀混合溶解,其中加入的Cu(NO3)2、Fe(NO3)3、Na2S2O3.5H2O和溶剂水的量可根据涂膜的多少成比例变化。
c. 制作外部均匀如步骤b所述溶液的基片,并烘干,得到前驱体薄膜样品。可以将上述溶液滴到放置在匀胶机上的基片上,再启动匀胶机以200~3500转/分旋转一定时间,使滴上的溶液涂布均匀后,并对基片进行自然晾干后,再次重复滴上前述溶液和旋涂后再自然晾干,如此重复2~8次,于是在基片上得到了一定厚度的前驱体薄膜样品。
d. 将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触。水合联氨放入量为0.5mL。将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间2~40小时,然后冷却到室温取出。
e. 取出自然干燥后,重复b、c和d步骤2~6次,以增加所制备薄膜的厚度,减少薄膜缺陷。
f. 将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至200~400℃,保温5~15小时,即得到铜铁硫光电薄膜。
本发明不需要高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铁硫光电薄膜有较好的连续性和均匀性,主相为CuFeS2相,可以实现低成本大规模的工业化生产。
具体实施方式
实施例1
a. 玻璃基片或硅基片的清洗:如前所述进行清洗基片,大小为20mm×20mm×2mm。
b. 可以先将0.188g的Cu(NO3)2在玻璃瓶中加入1mL的水使其充分溶解,再依次往玻璃瓶内加入0.242g的Fe(NO3)3和0.2481g的Na2S2O3.5H2O使其充分均匀混合溶解。
c. 将上述溶液滴到放置在匀胶机上的玻璃基片上,再启动匀胶机,匀胶机以200转/分转动5秒,以3000转/分旋转15秒,使滴上的溶液涂布均匀后,对基片进行烘干后,再次重复滴上前述溶液和旋涂后再烘干,如此重复6次,于是在基片上得到了一定厚度的前驱体薄膜样品。
d. 将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触。水合联氨放入量为0.5mL。将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至200℃,保温时间10小时,然后冷却到室温取出。
e. 取出自然干燥后,重复b、c和d步骤4次,以增加所制备薄膜的厚度,减少薄膜缺陷。
f. 将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至300℃,保温10小时,即得到铜铁硫光电薄膜。
Claims (5)
1.一种用硝酸盐制备铜铁硫光电薄膜的方法,包括如下顺序的步骤:
a.玻璃基片或硅基片的清洗;
b.将0.188g的Cu(NO3)2在玻璃瓶中加入1mL的水使其充分溶解,再依次往玻璃瓶内加入0.242g的Fe(NO3)3和0.2481g的Na2S2O3.5H2O使其充分均匀混合溶解;
c.制作表面均匀涂布步骤b所述溶液的基片,自然晾干,得到前驱体薄膜样品;
d.将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与水合联氨接触;水合联氨放入量为0.5mL;将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间2~40小时,然后冷却到室温取出;
e.取出自然干燥后,重复上述步骤2~6次,以增加所制备薄膜的厚度;
f.将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至200~400℃,保温5~15小时,即得到铜铁硫光电薄膜。
2.如权利要求1所述的一种用硝酸盐制备铜铁硫光电薄膜的方法,其特征在于,步骤a所述清洗,将玻璃片或硅片切至20mm×20mm×2mm大小作为薄膜基片,然后用去离子水清洗2~3次,随后经过稀硫酸煮沸30~40min、水浴加热40~50min、去离子水超声清洗20min,这三个重要清洗步骤后,用双氧水浸泡保存备用即可。
3.如权利要求1所述的一种用硝酸盐制备铜铁硫光电薄膜材料的方法,其特征在于,步骤b所述溶剂为水溶液,且其中加入的Cu(NO3)2、Fe(NO3)3、Na2S2O3.5H2O和溶剂水的量可根据涂膜的多少成比例变化。
4.如权利要求1所述的一种用硝酸盐制备铜铁硫光电薄膜的方法,其特征在于,步骤c所述均匀涂抹的基片,是通过匀胶机旋涂,匀胶机以200~3500转/分旋转,然后对基片进行烘干后,再次如此重复2~8次,得到了一定厚度的前驱体薄膜样品。
5.如权利要求1所述的一种用硝酸盐制备铜铁硫光电薄膜的方法,其特征在于,步骤d所述密闭容器内放入0.5mL水合联氨。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810705114.4A CN108878590A (zh) | 2018-07-01 | 2018-07-01 | 一种用硝酸盐制备铜铁硫光电薄膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810705114.4A CN108878590A (zh) | 2018-07-01 | 2018-07-01 | 一种用硝酸盐制备铜铁硫光电薄膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108878590A true CN108878590A (zh) | 2018-11-23 |
Family
ID=64297675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810705114.4A Withdrawn CN108878590A (zh) | 2018-07-01 | 2018-07-01 | 一种用硝酸盐制备铜铁硫光电薄膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108878590A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103396009A (zh) * | 2013-07-09 | 2013-11-20 | 山东建筑大学 | 一种制备铜铝碲薄膜的方法 |
WO2015004666A1 (en) * | 2013-07-11 | 2015-01-15 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Thermal doping by vacancy formation in nanocrystals |
CN105551936A (zh) * | 2015-12-17 | 2016-05-04 | 山东建筑大学 | 一种硝酸盐体系两步法制备铜铟硫光电薄膜的方法 |
CN106796962A (zh) * | 2014-11-05 | 2017-05-31 | 株式会社Lg化学 | 用于制备太阳能电池的光吸收层的前体及其制备方法 |
-
2018
- 2018-07-01 CN CN201810705114.4A patent/CN108878590A/zh not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103396009A (zh) * | 2013-07-09 | 2013-11-20 | 山东建筑大学 | 一种制备铜铝碲薄膜的方法 |
WO2015004666A1 (en) * | 2013-07-11 | 2015-01-15 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Thermal doping by vacancy formation in nanocrystals |
CN106796962A (zh) * | 2014-11-05 | 2017-05-31 | 株式会社Lg化学 | 用于制备太阳能电池的光吸收层的前体及其制备方法 |
CN105551936A (zh) * | 2015-12-17 | 2016-05-04 | 山东建筑大学 | 一种硝酸盐体系两步法制备铜铟硫光电薄膜的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reddy et al. | Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance | |
CN107887511B (zh) | 一种基于二维材料石墨烯相氮化碳制备钙钛矿太阳能电池的方法 | |
CN102603201A (zh) | 一种硒化亚铜薄膜的制备方法 | |
Niu et al. | 11.5% efficient Cu 2 ZnSn (S, Se) 4 solar cell fabricated from DMF molecular solution | |
BRPI0821501B1 (pt) | Método para preparação de uma camada de absorção leve de célula solar de filme fino de cobre-índio-gálio-enxofre-selênio. | |
CN102094191B (zh) | 一种制备择优取向铜锡硫薄膜的方法 | |
CN102603202A (zh) | 一种制备硒化锡光电薄膜的方法 | |
Long et al. | Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells | |
Dong et al. | Low‐Cost Antimony Selenosulfide with Tunable Bandgap for Highly Efficient Solar Cells | |
Chen et al. | Study on the synthesis and formation mechanism of flower-like Cu3SbS4 particles via microwave irradiation | |
Gozalzadeh et al. | Dimethylformamide-free synthesis and fabrication of lead halide perovskite solar cells from electrodeposited PbS precursor films | |
CN102709351A (zh) | 一种择优取向生长的硫化二铜薄膜 | |
Fong et al. | The challenge of ambient air–processed organometallic halide perovskite: technology transfer from spin coating to meniscus blade coating of perovskite thin films | |
CN103833416B (zh) | 一种镍酸镧导电薄膜的化学溶液沉积制备方法 | |
Chen et al. | Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells | |
CN102153288A (zh) | 一种择尤取向硫化二铜薄膜的制备方法 | |
Liang et al. | Paradigm ink with a temporally controllable processing-window for perovskite modules | |
CN108878590A (zh) | 一种用硝酸盐制备铜铁硫光电薄膜的方法 | |
CN108807560A (zh) | 一种用硫粉辅助制备铜铁硫光电薄膜的方法 | |
CN108831964A (zh) | 一种用硫酸盐制备铜铁硫光电薄膜的方法 | |
TW201300322A (zh) | 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法 | |
CN108807561A (zh) | 一种用氯化物制备铜铁硫光电薄膜的方法 | |
Majidzade et al. | THE LATEST PROGRESS ON SYNTHESIS AND INVESTIGATION OF SB2S3-BASED THIN FILMS | |
CN103390692A (zh) | 一种制备铜铟碲薄膜的方法 | |
CN103864027B (zh) | 一种制备碲化亚铜薄膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20181123 |