CN109529944B - 一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法 - Google Patents

一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法 Download PDF

Info

Publication number
CN109529944B
CN109529944B CN201811298709.9A CN201811298709A CN109529944B CN 109529944 B CN109529944 B CN 109529944B CN 201811298709 A CN201811298709 A CN 201811298709A CN 109529944 B CN109529944 B CN 109529944B
Authority
CN
China
Prior art keywords
solution
chitosan
cellulose composite
composite nano
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811298709.9A
Other languages
English (en)
Other versions
CN109529944A (zh
Inventor
何亮
陈佳静
关清卿
宁平
胡柠檬
杨成寰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201811298709.9A priority Critical patent/CN109529944B/zh
Publication of CN109529944A publication Critical patent/CN109529944A/zh
Application granted granted Critical
Publication of CN109529944B publication Critical patent/CN109529944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of the platinum group metals, iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法,将壳聚糖与无水乙醇混合,得到溶液A;将羧甲基纤维素与碱性溶液混合,得到溶液B;将溶液A滴加到溶液B中,常温下搅拌反应,过滤后无水乙醇洗涤,得到壳聚糖与羧甲基纤维素复合纳米微球;将纳米微球加入无水乙醇中,再加入钯盐溶液,混合液在常温下磁力搅拌反应,用无水乙醇过滤、洗涤,真空干燥后得到壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂;本发明的催化剂具有催化效果好,制备过程简单,催化效率高,分离方便,成本低的优点,具有良好的应用前景。

Description

一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制 备方法
技术领域
本发明属于催化技术领域,具体涉及一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法。
背景技术
乙烯是石油化工中最重要的基础原料,被称为“石化工业之母”。乙炔选择加氢是当前的关注热点,国内外的报道也比较多,但其研究内容主要应用于除去石油烃裂解制备乙烯工艺过程中微量的乙炔,而对于专门以高浓度乙炔为原料的选择加氢制乙烯的工艺及催化剂则少有探索,相应的工业化大规模应用更是未见报道。聚合物负载金属催化剂由于具有较高的催化活性和立体选择性,较好的稳定性和重复使用性而成为人们研究的热点。
近年来,具有功能性基团的天然高分子是金属催化剂的良好载体。纤维素和壳聚糖在自然界分布泛,天然可再生,价格低廉,易于降解,是环境友好型的有机化工材料。纤维素结构和成分丰富,具有多种官能团,易于醚化、酯化、氧化等,纤维素作为一种功能衍生物,在家庭卫生、食品、造纸、纺织、重金属离子去除、医药和油漆油墨等方面具有重要的应用。
催化选择加氢是一种最有效地去除乙炔的方法,该方法不但可以去除原料气中少量的乙炔杂质,同时转化为可用的乙烯原料。目前工业上所采用的Pd基催化剂,在乙炔低转化率时具有良好的活性、选择性和稳定性。然而,在乙炔高转化时,生成的乙烯及乙烯原料气通常会过度加氢,从而造成选择性的急剧下降。这主要是由于该反应为连串反应(即C2H2→C2H4→C2H6),因此,如何避免中间产物乙烯及原料气中乙烯的过度加氢成为催化剂制备和应用的关键问题。
发明内容
本发明提供一种廉价无毒、环境友好壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,具体步骤如下:
(1)按照质量体积比g:mL为1-3:100的比例,将壳聚糖与无水乙醇混合,磁力搅拌20-30min,搅拌转速为450-500r/min,得到溶液A;按照质量体积比g:mL为1-3:100的比例,将羧甲基纤维素与碱性溶液混合,磁力搅拌1-2h,搅拌转速为450-500r/min,得到溶液B;
(2)按照体积比1:1-2的比例,将步骤(1)的溶液A滴加到溶液B中,常温下搅拌反应2-4h,磁力搅拌器转速450-500r/min,过滤后无水乙醇洗涤2-3次,得到壳聚糖与羧甲基纤维素复合纳米微球;
(3)将步骤(2)的纳米微球按照质量体积比g:mL为1-3:100的比例,加入无水乙醇中,再加入钯盐溶液,混合液在常温下磁力搅拌反应8-12h,磁力搅拌器转速450-500r/min,用无水乙醇过滤、洗涤,真空干燥后得到壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂。
步骤(1)碱性溶液为KOH溶液、NaOH溶液、氨水,碱性溶液的pH值大于10
步骤(2)滴加速度为0.1-0.5mL/s。
步骤(3)钯盐溶液中钯的浓度为1-5g/L,钯盐为硝酸钯、氯化钯或醋酸钯。
步骤(3)混合液中纳米微球与钯的质量比为100:0.1-2。
步骤(3)真空干燥的温度为50-80℃,干燥时间为1-3h。
本发明与现有技术相比,其显著优点:
(1)本发明壳聚糖与纤维素是一种天然高分子产物,价廉易得、制备过程简单,热稳定性能好,且负载方法简单。
(2)本发明利制备壳聚糖与纤维素复合纳米微球负载钯催化剂并将其应用于乙炔的选择加氢反应,在乙炔的选择性加氢反应中表现出优越的催化性能,具有很好的活性和选择性。
(3)本发明制得的催化剂具有催化效率高、操作简便、反应条件温和、反应时间短,后处理简单方便(只需过滤,洗涤)、易回收(过滤后的得到的催化剂可回收)和重复使用(过滤后的得到的催化剂洗涤后可重复使用)等优点,可在化工以及有机合成等领域获得应用。
附图说明
图1是实施例1制备得到的壳聚糖与纤维素复合纳米微球负载钯催化剂的HRTEM图;
图2是实施例1制备得到的壳聚糖与纤维素复合纳米微球负载钯催化剂的XPS图。
具体实施方式
下面结合附图对本发明做进一步详细描述,但应注意本发明的范围并不受这些实施例的限制。
实施例1
一种壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,具体步骤如下:
(1)按照质量体积比g:mL为1:100的比例,将壳聚糖与无水乙醇混合,磁力搅拌20min,搅拌转速为500r/min,得到溶液A;按照质量体积比g:mL为1:100的比例,将羧甲基纤维素与碱性溶液混合,碱性溶液为pH值为11的KOH溶液,磁力搅拌2h,搅拌转速为500r/min,得到溶液B;
(2)按照体积比1:1的比例,将步骤(1)的溶液A滴加到溶液B中,滴加速度为0.1mL/s,常温下搅拌反应4h,磁力搅拌器转速为500r/min,过滤后无水乙醇洗涤3次,得到壳聚糖与羧甲基纤维素复合纳米微球;
(3)将步骤(2)的纳米微球按照质量体积比g:mL为1:100的比例,加入无水乙醇中,再加入钯盐溶液得到混合液,钯盐为硝酸钯,硝酸钯溶液中钯的浓度为1g/L,混合液中纳米微球与钯的质量比为100:0.25,混合液在常温下磁力搅拌反应12h,磁力搅拌器转速为500r/min,用无水乙醇过滤、洗涤,温度为60℃,真空干燥为2h,得到壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂。
图1是实施例1制备得到的壳聚糖与纤维素复合纳米微球负载钯催化剂的HRTEM图,从图中可知钯高度分散在纳米微球上;图2是实施例1制备得到的壳聚糖与纤维素复合纳米微球负载钯催化剂的XPS图,从图中可知,对应于碳,氧,氮和钯的峰是可以清楚的观测到的,而且钯以二价态存在。
实施例2
一种壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,具体步骤如下:
(1)按照质量体积比g:mL为2:100的比例,将壳聚糖与无水乙醇混合,磁力搅拌25min,搅拌转速为480r/min,得到溶液A;按照质量体积比g:mL为2:100的比例,将羧甲基纤维素与碱性溶液混合,碱性溶液为pH值为12的NaOH溶液,磁力搅拌1.5h,搅拌转速为480r/min,得到溶液B;
(2)按照体积比1:1.5的比例,将步骤(1)的溶液A滴加到溶液B中,滴加速度为0.2mL/s,常温下搅拌反应3h,磁力搅拌器转速为480r/min,过滤后无水乙醇洗涤2次,得到壳聚糖与羧甲基纤维素复合纳米微球;
(3)将步骤(2)的纳米微球按照质量体积比g:mL为2:100的比例,加入无水乙醇中,再加入钯盐溶液得到混合液,钯盐为氯化钯,氯化钯溶液中钯的浓度为2g/L,混合液中纳米微球与钯的质量比为100:0.1,混合液在常温下磁力搅拌反应8h,磁力搅拌器转速为480r/min,用无水乙醇过滤、洗涤,温度为50℃,真空干燥为3h,得到壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂。
实施例3
一种壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,具体步骤如下:
(1)按照质量体积比g:mL为3:100的比例,将壳聚糖与无水乙醇混合,磁力搅拌30min,搅拌转速为450r/min,得到溶液A;按照质量体积比g:mL为3:100的比例,将羧甲基纤维素与碱性溶液混合,碱性溶液为pH值为11的氨水液,磁力搅拌1h,搅拌转速为450r/min,得到溶液B;
(2)按照体积比1:2的比例,将步骤(1)的溶液A滴加到溶液B中,滴加速度为0.5mL/s,常温下搅拌反应4h,磁力搅拌器转速为450r/min,过滤后无水乙醇洗涤3次,得到壳聚糖与羧甲基纤维素复合纳米微球;
(3)将步骤(2)的纳米微球按照质量体积比g:mL为3:100的比例,加入无水乙醇中,再加入钯盐溶液得到混合液,钯盐为醋酸钯,醋酸钯溶液中钯的浓度为5g/L,混合液中纳米微球与钯的质量比为100:2,混合液在常温下磁力搅拌反应10h,磁力搅拌器转速为450r/min,用无水乙醇过滤、洗涤,温度为80℃,真空干燥为1h,得到壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂。
对比例1
一种壳聚糖负载钯催化剂的制备方法,具体步骤如下:
(1)按照质量体积比g:mL的比例为1:100的比例,将壳聚糖与无水乙醇混合,磁力搅拌20min,搅拌转速为500r/min,得到溶液A;
(2)在步骤(1)的溶液A中加入钯盐溶液得到混合液,钯盐为硝酸钯,硝酸钯溶液中钯的浓度为1g/L,混合液中壳聚糖与钯的质量比为100:0.25,混合液在常温下磁力搅拌反应12h,磁力搅拌器转速为500r/min,用无水乙醇过滤、洗涤,温度为60℃,真空干燥为2h,得到壳聚糖负载钯催化剂。
实施例1和对比例1的催化性能如表1所示,从表中可知,实施例1的催化剂在进行C2H2催化加氢过程中,在空速为60000 m/g.h的条件下,50-100℃,不同的反应温度下,C2H2转化率随着温度的升高而提高,90℃时,转化率达到100%,C2H4选择性随着温度的升温先提高,最高值在90℃的时候达到86.2%,在100℃出现了降低,C2H6选择性在90℃之前均没有出现,到90℃后,出现了0.2%,在100℃达到了1.7%,选取90℃与对比例1制备的催化剂的催化效果进行对比,在空速为60000 m/g.h的条件下,对比例1的催化剂的C2H2转化率为89.3%,C2H4选择性为61.4%,C2H6选择性为10.1%,通过对比,说明本发明制备的催化剂具有好的催化效果和好的选择性。
表1
Figure DEST_PATH_IMAGE002

Claims (5)

1.一种壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,其特征在于,具体步骤如下:
(1)按照质量体积比g:mL为1-3:100的比例,将壳聚糖与无水乙醇混合,磁力搅拌20-30min,搅拌转速为450-500r/min,得到溶液A;按照质量体积比g:mL为1-3:100的比例,将羧甲基纤维素与碱性溶液混合,磁力搅拌1-2h,搅拌转速为450-500r/min,得到溶液B;碱性溶液为KOH溶液、NaOH溶液或氨水,碱性溶液的pH值大于10;
(2)按照体积比1:1-2的比例,将步骤(1)的溶液A滴加到溶液B中,常温下搅拌反应2-4h,磁力搅拌转速为450-500r/min,过滤后无水乙醇洗涤2-3次,得到壳聚糖与羧甲基纤维素复合纳米微球;
(3)将步骤(2)的纳米微球按照质量体积比g:mL为1-3:100的比例,加入无水乙醇中,再加入钯盐溶液,混合液在常温下磁力搅拌反应8-12h,磁力搅拌转速为450-500r/min,用无水乙醇过滤、洗涤,真空干燥后得到壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂。
2.根据权利要求1所述壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,其特征在于,步骤(2)滴加速度为0.1-0.5mL/s。
3.根据权利要求1所述壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,其特征在于,步骤(3)钯盐溶液中钯的浓度为1-5g/L,钯盐为硝酸钯、氯化钯或醋酸钯。
4.根据权利要求1所述壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,其特征在于,步骤(3)混合液中纳米微球与钯的质量比为100:0.1-2。
5.根据权利要求1所述壳聚糖与纤维素复合纳米微球负载钯催化剂的制备方法,其特征在于,步骤(3)真空干燥的温度为50-80℃,干燥时间为1-3h。
CN201811298709.9A 2018-11-02 2018-11-02 一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法 Active CN109529944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811298709.9A CN109529944B (zh) 2018-11-02 2018-11-02 一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811298709.9A CN109529944B (zh) 2018-11-02 2018-11-02 一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN109529944A CN109529944A (zh) 2019-03-29
CN109529944B true CN109529944B (zh) 2021-07-16

Family

ID=65845864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811298709.9A Active CN109529944B (zh) 2018-11-02 2018-11-02 一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109529944B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560162B (zh) * 2019-08-26 2021-07-16 昆明理工大学 一种蔗髓基改性多糖负载钯纳米粒子催化剂的制备方法
CN113262823A (zh) * 2021-05-20 2021-08-17 湖北工程学院 壳聚糖/纤维素复合微球固载铜纳米催化材料的制备及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431836A (en) * 1981-02-23 1984-02-14 Uop Inc. Hydrogenation using chitin and chitosan based immobilized metal catalysts
CN101279293B (zh) * 2008-05-26 2011-07-06 昆明理工大学 硅胶固载咪唑类配体金属催化剂及其合成方法
CN102688783A (zh) * 2011-03-25 2012-09-26 中国石油化工股份有限公司 炔烃选择加氢催化剂载体及其制备方法和催化剂
KR20130054008A (ko) * 2011-11-16 2013-05-24 삼성전자주식회사 연료전지용 전극, 그의 제조방법, 촉매 슬러리, 및 상기 전극을 구비하는 연료전지
CN104741115A (zh) * 2013-12-31 2015-07-01 西北大学 一种钯碳催化剂的制备方法
CN103933949B (zh) * 2014-04-18 2016-03-09 梁吉 一种碳纳米管/壳聚糖介孔球形复合材料及其制备方法
CN104722251B (zh) * 2015-04-23 2017-01-25 福建师范大学 一种壳聚糖基多孔微球的制备方法
CN105597821B (zh) * 2015-10-19 2018-05-15 华南理工大学 一种半纤维素-壳聚糖-钯催化剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"用改性纤维素制备高分散贵金属催化剂及其加氢性能研究";张火利;《中国博士学位论文全文数据库工程科技Ⅰ辑》;20131215(第12期);全文 *
Huoli Zhang等."Highly Dispersed PdNPs/ -Al2O3 Catalyst for the Selective Hydrogenation of Acetylene Prepared with Monodispersed Pd Nanoparticles".《catalysts》.2017,第7卷(第5期), *

Also Published As

Publication number Publication date
CN109529944A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN110743544B (zh) 一种苯乙酮选择加氢制备α-苯乙醇用钯炭催化剂及其制备方法与应用
CN109529944B (zh) 一种壳聚糖与羧甲基纤维素复合纳米微球负载钯催化剂的制备方法
CN111153768B (zh) 一种异己二醇的合成方法
CN108325551B (zh) 一种氮掺杂碳基过渡金属催化剂及其制备方法
CN101204664A (zh) 一种用于环己烷催化氧化制取环己酮和环己醇的多相催化剂及其制备方法
CN112742482B (zh) 一种催化加氢的催化剂及其制备方法与应用
CN104415715A (zh) 一种催化加氢的方法
CN113976131B (zh) 一种多相催化剂以及由5-羟甲基糠醛制备2,5-呋喃二甲胺的方法
CN101367709B (zh) 超细a1ooh固载金属卟啉催化空气氧化环己烷的方法
CN109603852B (zh) 钌钴磁性催化剂的制备方法及其在选择加氢中的应用
CN114085136A (zh) 一种催化糠醛制备环戊酮的方法
CN102001931B (zh) 一种制备己二酸的方法
CN106316763B (zh) 内酯类化合物芳构化生产芳烃的方法
CN108276261B (zh) 一种水相中催化分子氧氧化制备2-溴芴酮的方法
CN110372516A (zh) 一种制备环己胺的方法
CN111389453B (zh) 一种液相转化高浓度木质素为环烷烃的方法
CN112973791B (zh) 席夫碱修饰的纤维素负载钯催化剂的制备方法
CN115340445A (zh) 一种废弃聚酯制备1,4-环己烷二甲醇的方法
CN112604685B (zh) 一种负载型催化剂及其制备方法和应用
CN110773194B (zh) 一种co2加氢制甲烷催化剂及其制备方法
Pina et al. Liquid Phase Oxidation of Organic Compounds by Supported Metal‐Based Catalysts with a Focus on Gold
CN112295571A (zh) 一种PtNi笼型催化剂及其在催化糠醛选择性加氢制备糠醇中的应用
CN115073404B (zh) 一种2,5-呋喃二甲酸的制备方法
CN112441922A (zh) Co氧化偶联制备草酸酯的方法及其催化剂和制备方法
CN109569655B (zh) 草酸酯加氢制备乙醇酸酯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant