CN109244069A - 瞬态电压抑制器及其制备方法 - Google Patents
瞬态电压抑制器及其制备方法 Download PDFInfo
- Publication number
- CN109244069A CN109244069A CN201811090923.5A CN201811090923A CN109244069A CN 109244069 A CN109244069 A CN 109244069A CN 201811090923 A CN201811090923 A CN 201811090923A CN 109244069 A CN109244069 A CN 109244069A
- Authority
- CN
- China
- Prior art keywords
- substrate
- groove
- transient voltage
- voltage suppressor
- polysilicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001052 transient effect Effects 0.000 title claims abstract description 76
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 148
- 238000002347 injection Methods 0.000 claims abstract description 126
- 239000007924 injection Substances 0.000 claims abstract description 126
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 81
- 229920005591 polysilicon Polymers 0.000 claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 16
- 238000001259 photo etching Methods 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims description 7
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 claims description 4
- 238000001883 metal evaporation Methods 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000005530 etching Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0207—Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0248—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明提供一种瞬态电压抑制器,其包括衬底、间隔形成在衬底的上表面并延伸至衬底内的多个沟槽区,每个沟槽区包括间隔排列的一个第一沟槽及一个第二沟槽,第一沟槽内填充有第一多晶硅层,第二沟槽内填充有第二多晶硅层,形成在衬底的上表面并覆盖沟槽区的第三多晶硅层,形成在第三多晶硅层的上表面的第一金属层,间隔形成在衬底的下表面并延伸至衬底内的多个第一注入区,多个第一注入区与多个沟槽区一一对应设置,形成在多个第一注入区之间的第二导电类型的多个第二注入区,形成在衬底的下表面并覆盖第一注入区及第二注入区的下表面的第二金属层。本发明还提供瞬态电压抑制器的制备方法,提高了瞬态电压抑制器的防浪涌能力和工作功率。
Description
技术领域
本发明涉及一种半导体器件工艺制造的技术领域,尤其涉及瞬态电压抑制器及其制备方法。
背景技术
瞬态电压抑制器(Transient Voltage Suppressor,TVS)是一种钳位过压保护器件,它能够在很短的时间内将浪涌电压固定在一个比较低的电压水平,使后端电路免受过压损坏,其主要应用在各类接口电路当中,如手机、平板、电视机、电脑主机中均有大量瞬态电压抑制器。目前随着电子产品的不断发展,尤其是在大功率电源及电源管理芯片领域,相应的对瞬态电压抑制器提出了更高的技术要求,其不仅要求瞬态电压抑制器能够承受高达数千瓦的浪涌电流,且同时又对瞬态电压抑制器的体积大小有明确的限制。
目前,传统的大功率瞬态电压抑制器的实现方法主要通过增大PN结面积,且该工艺为传统的平面工艺,为了增加结面积,通常会将PN结的掺杂面积不断扩大,以此来提高瞬态电压抑制器的防浪涌能力。此种方法具有明显的局限性,由于当PN结面积不断增大时,意味着器件的面积变大,封装时采用的封装外壳也会随着增大,而这与电子产品对器件小型化的要求相违背,还会因器件尺寸过大而无法焊接在具有高密度电子元器件的电路板上,甚至会影响器件在电路板上的正常使用。
发明内容
有鉴于此,本发明提供一种提高防浪涌能力、未额外增加器件的面积、增大功率的瞬态电压抑制器,来解决上述存在的技术问题,一方面,本发明采用以下技术方案来实现。
一种瞬态电压抑制器,其包括第一导电类型的衬底;
间隔形成在所述衬底的上表面并延伸至所述衬底内的多个沟槽区,每个所述沟槽区包括间隔排列的一个第一沟槽及一个第二沟槽,所述第一沟槽内填充有第二导电类型的第一多晶硅层,所述第二沟槽内填充有第二导电类型的第二多晶硅层;
形成在所述衬底的上表面并覆盖所述沟槽区的第二导电类型的第三多晶硅层;
形成在所述第三多晶硅层的上表面的第一金属层;
间隔形成在所述衬底的下表面并延伸至所述衬底内的第一导电类型的多个第一注入区,多个所述第一注入区与多个所述沟槽区一一对应设置;
形成在多个所述第一注入区之间的第二导电类型的多个第二注入区;
形成在所述衬底的下表面并覆盖所述第一注入区及所述第二注入区的下表面的第二金属层。
本发明提供一种瞬态电压抑制器的有益效果为:通过在衬底内形成间隔排列的多个沟槽区,位于所述沟槽区的间隔排列的第一沟槽及第二沟槽,在所述第一沟槽内形成第一多晶硅层、第二沟槽内形成第二多晶硅层,所述衬底与所述第一多晶硅层、所述第二多晶硅层及所述第三多晶硅层的导电类型不同,在垂直于所述衬底的上表面的方向上,所述第一多晶硅层、所述第二多晶硅层及所述第三多晶硅层分别与所述衬底形成PN结,在所述瞬态电压抑制器导通时实现分压,从而增强所述瞬态电压抑制器的防浪涌能力。在所述衬底的下表面形成多个间隔排列的第一导电类型的第一注入区,在所述第一注入区的两侧形成第二导电类型的第二注入区,在垂直于所述衬底的下表面的方向上,所述第一注入区、所述第二注入区分别与所述衬底形成PN结,从而增加所述瞬态电压抑制器经受大浪涌电流时,有更多的电流路径,提高了所述瞬态电压抑制器的浪涌电流和工作功率,在平行于所述衬底的下表面的方向上,所述第一注入区与所述第二注入区的导电类型不同且间隔交替排列,所述第一注入区与所述第二注入区形成发射结(图未示),所述第二注入区、所述衬底与所述第一注入区及所述第二注入区形成三极管(图未示)进入工作放大模式,集电极的电流随着基极电流的增加而急剧增大,因此,所述瞬态电压抑制器的电流泄放能力得到进一步提升,增强了所述瞬态电压抑制器的工作性能和稳定性。
另一方面,本发明还提供一种瞬态电压抑制器的制备方法,其包括以下工艺步骤:
S401:提供一个第一导电类型的衬底,在所述衬底上形成一层氧化层;
S402:对所述氧化层进行光刻,在所述衬底的上表面刻蚀形成延伸至所述衬底内的多个沟槽区,每个所述沟槽区包括间隔排列的一个第一沟槽及一个第二沟槽,接着去除所述氧化层,在所述第一沟槽内填充第二导电类型的第一多晶硅层及所述第二沟槽内填充第二导电类型的第二多晶硅层,在所述衬底的上表面形成覆盖所述沟槽区的第二导电类型的第三多晶硅层;
S403:在所述衬底的下表面进行光刻,注入第一导电类型离子形成间隔排列并延伸至所述衬底内的多个第一注入区,多个所述第一注入区与多个所述沟槽区一一对应设置;
S404:在多个所述第一注入区之间进行光刻,注入第二导电类型的离子形成第二注入区;
S405:对所述衬底的上表面及所述衬底的下表面进行金属蒸镀,在所述第三多晶硅层的上表面形成第一金属层及所述衬底的下表面形成覆盖所述第一注入区及所述第二注入区的第二金属层,最后得到瞬态电压抑制器。
本发明通过所述衬底内形成多个间隔排列的沟槽区,在所述沟槽区形成与所述衬底的导电类型不同的第一多晶硅层及第二多晶硅层,在所述衬底的上表面形成与所述第一多晶硅层的导电类型相同的第三多晶硅层,在所述瞬态电压抑制器遭受大浪涌电流时,所述第一多晶硅层、第二多晶硅层及第三多晶硅层分别与所述衬底形成PN结实现分压,从而提高所述瞬态电压抑制器的击穿电压。在所述衬底的下表面形成间隔排列的第一导电类型的第一注入区,在所述第一注入区的两侧形成第二导电类型的第二注入区,所述第一注入区与所述沟槽区对应设置,当电压大于所述衬底的压降时,所述衬底与所述第二注入区形成发射结,所述第一注入区、所述衬底与所述第一注入区及所述第二注入区形成三极管并进入工作放大模式,集电极电流随着基极电流的增加而增大,使所述瞬态电压抑制器的电流泄放能力增强,从而提高所述瞬态电压抑制器的浪涌电流和工作功率,由于在所述衬底的上表面和所述衬底的下表面形成多个PN结,未额外增加所述瞬态电压抑制器的面积,提高所述瞬态电压抑制器的集成度,进一步提高所述瞬态电压抑制器的可靠性。
附图说明
图1为本发明瞬态电压抑制器的结构示意图;
图2至图8为本发明瞬态电压抑制器的制备过程图;
图9为本发明瞬态电压抑制器的制备流程图;
图10为本发明瞬态电压抑制器的等效电路图。
图中:瞬态电压抑制器1;衬底10;氧化层20;沟槽区30;第一沟槽31;第二沟槽32;第一多晶硅层33;第二多晶硅层34;第三多晶硅层35;第四多晶硅层36;第一注入区41;第二注入区42;第一金属层51;第二金属层52。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“横向”、“纵向”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
参阅图1,一种瞬态电压抑制器1,其包括第一导电类型的衬底10;
间隔形成在所述衬底10的上表面并延伸至所述衬底10内的多个沟槽区30,每个所述沟槽区30包括间隔排列的一个第一沟槽31及一个第二沟槽32,所述第一沟槽31内填充有第二导电类型的第一多晶硅层33,所述第二沟槽32内填充有第二导电类型的第二多晶硅层34;
形成在所述衬底10的上表面并覆盖所述沟槽区30的第二导电类型的第三多晶硅层35;
形成在所述第三多晶硅层35的上表面的第一金属层51;
间隔形成在所述衬底10的下表面并延伸至所述衬底10内的第一导电类型的多个第一注入区41,多个所述第一注入区41与多个所述沟槽区30一一对应设置;
形成在多个所述第一注入区41之间的第二导电类型的多个第二注入区42;
形成在所述衬底10的下表面并覆盖所述第一注入区41及所述第二注入区42的下表面的第二金属层52。
本发明通过在衬底10内形成间隔排列的多个沟槽区30,位于所述沟槽区30的间隔排列的第一沟槽31及第二沟槽32,在所述第一沟槽31内形成第一多晶硅层33、第二沟槽32内形成第二多晶硅层34,所述衬底10与所述第一多晶硅层33、第二多晶硅层34及第三多晶硅层35的导电类型不同,在垂直于所述衬底10的上表面的方向上,所述第一多晶硅层33、第二多晶硅层34及第三多晶硅层35分别与所述衬底形成PN结,在所述瞬态电压抑制器1导通时实现分压,从而增强所述瞬态电压抑制器1的防浪涌能力。在所述衬底10的下表面形成多个间隔排列的第一导电类型的第一注入区41,在所述第一注入区41的两侧形成第二导电类型的第二注入区42,在垂直于所述衬底10的下表面的方向上,所述第一注入区41、所述第二注入区42分别与所述衬底10形成PN结,从而增加所述瞬态电压抑制器1经受大浪涌电流时,有更多的同流路径,提高了所述瞬态电压抑制器1的浪涌电流和工作功率,在平行于所述衬底10的下表面的方向上,所述第一注入区41与所述第二注入区42的导电类型不同且间隔交替排列,所述第一注入区41与所述第二注入区42形成发射结(图未示),此时形成的三极管(图未示)进入工作放大模式,集电极的电流随着基极电流的增加而急剧增大,因此,所述瞬态电压抑制器1的电流泄放能力得到进一步提升,增强了所述瞬态电压抑制器1的工作性能和稳定性。
进一步地,所述沟槽区30的间距与所述第一沟槽31及所述第二沟槽32之间的间距相同,且所述第一沟槽31及所述第二沟槽32的深度也相同。在本实施方式中,所述第一沟槽31及所述第二沟槽32的深度相同,所述第一沟槽31与所述第二沟槽32之间的间距也相同,便于制备工艺,提高所述瞬态电压抑制器1的制备效率。只需刻蚀一次就可以形成所有所述沟槽区30,可以保证每个所述沟槽区30及所述沟槽区30的周围的电流分担均匀,从而达到增大泄放电流的目的。便于后续在所述瞬态电压抑制器1遭受大浪涌电流时,在所述衬底10的上表面形成多个PN结和多条电流路径,使电流在所述衬底10内均衡流通,从而提高所述瞬态电压抑制器1的可靠性。
进一步地,在平行于所述衬底10的下表面的方向上,所述第一注入区41与所述第二注入区42的高度相同,所述第一注入区41的浓度小于所述第二注入区42的浓度。在本实施方式中,所述第一注入区41与所述第二注入区42的导电类型不同,所述衬底10与所述第一注入区41的导电类型为P型,所述第二注入区42的导电类型为N型,便于后续所述第二注入区42、所述衬底10与所述第一注入区41及所述第二注入区42形成NPN三极管,且该三极管的集电极和基极为短路引出,这样保证每个三极管可以同时起到放大电流的作用,进一步提高所述瞬态电压抑制器1的电流放大能力。
参阅图2至图8及图9,另一方面,本发明还提供一种瞬态电压抑制器1的制备方法,其包括以下工艺步骤:
S401:提供一个第一导电类型的衬底10,在所述衬底10上形成一层氧化层20;
参阅图2,具体的,提供一个第一导电类型的衬底10,在所述衬底10上形成氧化层20。其中,所述衬底10可以是硅衬底、锗硅衬底、Ⅲ-Ⅴ族元素化合物衬底10或本领域技术人员公知的其他半导体材料衬底10,本实施方式中采用的是硅作为所述衬底10的材料。更具体地,本实施方式中采用的衬底10中可以形成有MOS场效应含硅材料或硅化合物等,对于双极型电路提供的所述衬底10通常为P(111)晶向的衬底10。在所述衬底10表面形成氧化层20的技术有多种:热氧化生长,热分解淀积,外延生长,真空蒸发,反应溅射及阳极氧化法等。其中热生长氧化在集成电路工艺中较为普遍,其操作简便,且氧化层致密,可以作为扩散掩蔽层,通过光刻易形成定域或扩散图形等,本实施方式中优选热生长氧化形成在所述衬底10上的氧化层20,所述衬底的电阻率为0.0145~0.15欧姆*厘米,厚度为180~220微米的P型硅片,所述氧化层20的厚度为200埃。
可以理解,在所述衬底10上生长一层氧化层可以作为制备刻蚀的掩蔽层,而且在制备工艺中,也保证了所述衬底10表面不受周围气氛影响,在后续制备工艺中保护所述衬底10的作用,降低所述衬底10的上表面的应力,提高所述瞬态电压抑制器1的工作性能。
S402:对所述氧化层20进行光刻,在所述衬底10的上表面刻蚀形成延伸至所述衬底10内的多个沟槽区30,每个所述沟槽区30包括间隔排列的一个第一沟槽31及一个第二沟槽32,接着去除所述氧化层20,在所述第一沟槽31内填充第二导电类型的第一多晶硅层33及所述第二沟槽32内填充第二导电类型的第二多晶硅层34,在所述衬底10的上表面形成覆盖所述沟槽区30的第二导电类型的第三多晶硅层35;
参阅图3、图4及图5,具体的,先在所述衬底10的上表面间隔涂覆光刻胶,在未被光刻胶覆盖的位置进行光刻形成多个间隔排列的第一沟槽31及第二沟槽32,之后去除光刻胶,在所述第一沟槽31内沉积第二导电类型的第一多晶硅层33及所述第二沟槽32内形成第二导电类型的第二多晶层34,在所述衬底10的上表面形成覆盖所述沟槽区30的第二导电类型的第三多晶硅层35及所述衬底10的下表面形成第二导电类型的第四多晶硅层36,之后采用湿法腐蚀去除所述第四多晶硅层36。在本实施方式中,形成所述第一沟槽31的具体过程为:在所述衬底10上形成刻蚀阻挡层(图未示),然后在刻蚀阻挡层上涂覆光刻胶层(图未示),之后采用具有所述第一沟槽31图形的掩膜版对所述光刻胶层进行曝光,再进行显影,得到具有所述第一沟槽31图形的光刻胶层。以具有所述第一沟槽31图形的光刻胶层为掩膜,采用反应离子刻蚀法等刻蚀方法,在刻蚀阻挡层上刻蚀形成所述第一沟槽31的图形开口(图未示)。然后以具有所述第一沟槽31图形开口的刻蚀阻挡层为掩膜,采用湿法刻蚀或干法刻蚀等方法,去除未被刻蚀阻挡层覆盖的所述衬底10区域,进而在所述衬底10内形成所述沟槽30,所述第一沟槽31的宽度通常为1~2微米之间。此后可采用化学清洗等方法去除光刻胶层和刻蚀阻挡层。在上述过程中,为了保证曝光精度,还可在光刻胶层和刻蚀阻挡层之间形成抗反射层。采用上述相同的方法还形成所述第二沟槽32,之后采用湿法腐蚀去除所述氧化层,接着采用化学气相沉积方法在所述第一沟槽31内形成第一多晶硅层33及所述第二沟槽32内形成第二多晶硅层34,再采用化学气相沉积方法同时在所述衬底10的上表面及所述衬底10的下表面形成第三多晶硅层35,并在扩散源为三氯氧磷、温度为1050~1150℃、扩散时间为60分钟的条件下进行第二导电类型的离子扩散,在本实施方式中优选所述第一沟槽31及所述第二沟槽32的深度为8~10微米,宽度为1.5微米,所述第一沟槽30与所属第二沟槽32的间距为8~10微米,所述第三多晶硅层35的厚度为0.3~0.6微米。
此外,在所述衬底10内形成间隔排列的结深和间距相同的沟槽区30,在所述第一沟槽31内及所述第二沟槽32内形成第二导电类型的第一多晶硅层33及第二多晶硅层34,在所述瞬态电压抑制器1遭受大浪涌电流时,在垂直于所述衬底10的上表面的方向上,所述第一多晶硅层333及所述第二多晶硅层34分别与所述衬底10的导电类型不同形成多个二极管结构,相当于在所述衬底10内形成多条导电路径实现分压,可以实现所述沟槽区30及所述沟槽区30的周围的电流均匀流通,增大所述瞬态电压抑制器1的泄放电流,从而增强所述瞬态电压抑制器1的防浪涌能力。在平行于所述衬底10的上表面的方向上,所述第一多晶硅层33及所述第二多晶硅层34为N型重掺杂相当于发射极,这样可以获得优于硅的注入效率和电流增益,同时由于多晶硅的电阻有正温度系数,产生负反馈效应,有利于减小发射极电流的集边效应,使电流在所述衬底10内分布更加均匀,从而提高了所述瞬态电压抑制器1的驱动性能和稳定性,有效改善所述瞬态电压抑制器1的二次击穿特性。
S403:在所述衬底10的下表面进行光刻,注入第一导电类型离子形成间隔排列并延伸至所述衬底10内的多个第一注入区41,多个所述第一注入区41与多个所述沟槽区30一一对应设置;
参阅图6,具体的,先在所述衬底10的下表面间隔涂覆光刻胶,在未被光刻胶覆盖的位置进行光刻,注入第一导电类型的离子形成间隔排列在所述衬底10的下表面的第一注入区41,之后去除光刻胶。在本实施方式中,第一导电类型的离子为硼,所述第一注入区41的面积为所述衬底10的下表面的面积的60%~75%,注入剂量为2E15~1E16,注入能量为100~120KeV(千电子伏特)。在所述衬底10的下表面形成间隔排列并延伸至所述衬底10的第一注入区41,便于后续形成三极管结构,从而提高所述瞬态电压抑制器1的工作性能。
S404:在多个所述第一注入区41之间进行光刻,注入第二导电类型的离子形成第二注入区42;
参阅图7,具体的,在形成所述第一注入区41之后,先在所述第一注入区41的两侧进行光刻,注入第二导电类型的离子形成第二注入区42,之后对所述第一注入区41及所述第二注入区42进行热过程推进,推进条件950℃,时间为45~60分钟,气氛为纯氮气。在本实施方式中,第二导电类型的离子为磷,所述第二注入区42的面积为所述衬底10的下表面的面积的25%~40%,注入的剂量为1E16~5E16,注入能量为80~100KeV,形成的所述第二注入区42与所述第一注入区41间隔交替排列,在平行于所述衬底10的下表面的方向上,所述第一注入区41与所述第二注入区42的高度相同,且所述第一注入区41与所述第二注入区42的导电类型不同,在所述瞬态电压抑制器1导通时,所述第一注入区41、衬底10及第二注入区42形成三极管结构,从而提高所述瞬态电压抑制器1的工作功率。
S405:对所述衬底10的上表面及所述衬底10的下表面进行金属蒸镀,在所述第三多晶硅层35的上表面形成第一金属层51及所述衬底10的下表面形成覆盖所述第一注入区41及所述第二注入区42的第二金属层52,最后得到瞬态电压抑制器1。
参阅图8,具体的,先将所述衬底10进行清洗,分别经过双氧水、氢氟酸和纯水清洗,去除表面颗粒和原生氧化层(图未示),使所述衬底10的上表面及所述衬底10的下表面清洁干净,接着采用蒸镀方法在所述第三多晶硅层35的上表面形成第一金属层51及所述衬底10的下表面形成覆盖所述第一注入区41及所述第二注入区42的第二金属层52。在本实施方式中,优选采用直接镀铝法,在所述第三多晶硅层35的上表面形成金属铝,铝相对于其他金属较常见价廉,先将所述衬底10的表面涂覆一层胶层,再经过真空镀膜机直接镀铝,使所述衬底10的表面形成一层金属铝膜,然后将镀铝的所述衬底10经过回潮处理。其中,采用直接镀铝法具有生产工艺较简单,成本较低的特点,进而提高了所述瞬态电压抑制器1的制备效率。
参阅图10,在本实施方式中,所述第一导电类型为P型,所述第二导电类型为N型,所述第一金属层51为所述瞬态电压抑制器1的阴极,所述第二金属层52为所述瞬态电压抑制器1的阳极。
本发明通过所述衬底10内形成多个间隔排列的沟槽区30,在所述沟槽区30形成与所述衬底10的导电类型不同的第一多晶硅层33及第二多晶硅层34,在所述衬底10的上表面形成与所述第一多晶硅层33的导电类型相同的第三多晶硅层35,在所述瞬态电压抑制器1遭受大浪涌电流时,所述第一多晶硅层33、所述第二多晶硅层34及所述第三多晶硅层35分别与所述衬底10形成PN结实现分压,从而提高所述瞬态电压抑制器1的击穿电压。在所述衬底10的下表面形成间隔排列的第一导电类型的第一注入区41,在所述第一注入区41的两侧形成第二导电类型的第二注入区42,所述第一注入区41与所述沟槽区30对应设置,当电压大于所述衬底10的压降时,所述衬底与所述第二注入区形成发射结,所述第二注入区42、所述衬底10与所述第一注入区41、所述第二注入区42之间形成三极管并进入工作放大模式,集电极电流随着基极电流的增加而增大,使所述瞬态电压抑制器1的电流泄放能力增强,从而提高所述瞬态电压抑制器1的浪涌电流和工作功率,由于在所述衬底10的上表面和所述衬底10的下表面形成多个PN结,未额外增加所述瞬态电压抑制器1的面积,提高所述瞬态电压抑制器1的集成度,进一步提高所述瞬态电压抑制器1的可靠性。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
1.一种瞬态电压抑制器,其特征在于:其包括:
第一导电类型的衬底;
间隔形成在所述衬底的上表面并延伸至所述衬底内的多个沟槽区,每个所述沟槽区包括间隔排列的一个第一沟槽及一个第二沟槽,所述第一沟槽内填充有第二导电类型的第一多晶硅层,所述第二沟槽内填充有第二导电类型的第二多晶硅层;
形成在所述衬底的上表面并覆盖所述沟槽区的第二导电类型的第三多晶硅层;
形成在所述第三多晶硅层的上表面的第一金属层;
间隔形成在所述衬底的下表面并延伸至所述衬底内的第一导电类型的多个第一注入区,多个所述第一注入区与多个所述沟槽区一一对应设置;
形成在多个所述第一注入区之间的第二导电类型的多个第二注入区;
形成在所述衬底的下表面并覆盖所述第一注入区及所述第二注入区的下表面的第二金属层。
2.根据权利要求1所述的瞬态电压抑制器,其特征在于:所述沟槽区的间距与所述第一沟槽及所述第二沟槽之间的间距相同,且所述第一沟槽及所述第二沟槽的深度也相同。
3.根据权利要求1所述的瞬态电压抑制器,其特征在于:在平行于所述衬底的下表面的方向上,所述第一注入区的高度与所述第二注入区的高度相同,所述第一注入区的浓度小于所述第二注入区的浓度。
4.一种如权利要求1所述的瞬态电压抑制器的制备方法,其特征在于,其包括以下工艺步骤:
S401:提供一个第一导电类型的衬底,在所述衬底上形成一层氧化层;
S402:对所述氧化层进行光刻,在所述衬底的上表面刻蚀形成延伸至所述衬底内的多个沟槽区,每个所述沟槽区包括间隔排列的一个第一沟槽及一个第二沟槽,接着去除所述氧化层,在所述第一沟槽内填充第二导电类型的第一多晶硅层及所述第二沟槽内填充第二导电类型的第二多晶硅层,在所述衬底的上表面形成覆盖所述沟槽区的第二导电类型的第三多晶硅层;
S403:在所述衬底的下表面进行光刻,注入第一导电类型离子形成间隔排列并延伸至所述衬底内的多个第一注入区,多个所述第一注入区与多个所述沟槽区一一对应设置;
S404:在多个所述第一注入区之间进行光刻,注入第二导电类型的离子形成多个第二注入区;
S405:对所述衬底的上表面及所述衬底的下表面进行金属蒸镀,在所述第三多晶硅层的上表面形成第一金属层及所述衬底的下表面形成覆盖所述第一注入区及所述第二注入区的下表面的第二金属层,最后得到瞬态电压抑制器。
5.根据权利要求4所述的瞬态电压抑制器的制备方法,其特征在于:所述步骤S401中,所述衬底的电阻率为0.0145~0.15欧姆*厘米、厚度为180~220微米的硅片,所述氧化层的厚度为200埃。
6.根据权利要求4所述的瞬态电压抑制器的制备方法,其特征在于:所述步骤S402中,在所述衬底的下表面形成第二大点类型的第四多晶硅层,之后去除所述第四多晶硅层,所述沟槽区的深度及所述沟槽区之间的距离均为8~10微米。所述第一沟槽及所述第二沟槽的宽度为1.5微米。
7.根据权利要求6所述的瞬态电压抑制器的制备方法,其特征在于:形成所述第一多晶硅层、所述第二多晶硅层及所述第三多晶硅层之后,进行第二导电类型的离子扩散,扩散源为三氯氧磷,扩散时间为60分钟,温度1050~1150℃,所述第三多晶硅层的厚度为0.3~0.6微米。
8.根据权利要求4所述的瞬态电压抑制器的制备方法,其特征在于:所述步骤S403中,所述第一注入区的面积为所述衬底的下表面面积的60%~75%,注入的第一导电类型离子为硼,注入剂量为2E15~1E16,注入能量为100~120KeV。
9.根据权利要求4所述的瞬态电压抑制器的制备方法,其特征在于:所述步骤S404中,所述第二注入区的面积为所述衬底的下表面的面积的25%~40%,注入的第二导电类型离子为磷,注入剂量为2E15~1E16,注入能量为100~120KeV。
10.根据权利要求4所述的瞬态电压抑制器的制备方法,其特征在于:在执行所述步骤S405之前,对所述衬底进行清洗,再去除所述衬底的下表面的原生氧化层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811090923.5A CN109244069B (zh) | 2018-09-19 | 2018-09-19 | 瞬态电压抑制器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811090923.5A CN109244069B (zh) | 2018-09-19 | 2018-09-19 | 瞬态电压抑制器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109244069A true CN109244069A (zh) | 2019-01-18 |
CN109244069B CN109244069B (zh) | 2020-12-15 |
Family
ID=65059237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811090923.5A Active CN109244069B (zh) | 2018-09-19 | 2018-09-19 | 瞬态电压抑制器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109244069B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114121938A (zh) * | 2021-11-12 | 2022-03-01 | 深圳市芸鸽科技有限公司 | 一种用于充电管理系统的防静电芯片及其制备方法 |
CN114171422A (zh) * | 2022-02-11 | 2022-03-11 | 浙江里阳半导体有限公司 | 半导体器件的制造方法及其蒸镀缺陷的检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101536189A (zh) * | 2006-11-16 | 2009-09-16 | 万国半导体股份有限公司 | 具有电磁干扰滤波器的垂直瞬态电压抑制器(tvs)的电路结构及制造方法 |
CN101853853A (zh) * | 2009-03-31 | 2010-10-06 | 万国半导体有限公司 | 带有低电容和正向电压降以及耗尽的半导体控制整流器作为控向二极管的瞬态电压抑制器 |
CN103579366A (zh) * | 2012-08-03 | 2014-02-12 | 上海华虹Nec电子有限公司 | Tvs器件及制造方法 |
CN106409826A (zh) * | 2016-10-26 | 2017-02-15 | 上海先进半导体制造股份有限公司 | 瞬态电压抑制器及其制造方法 |
US20170373158A1 (en) * | 2006-11-16 | 2017-12-28 | Alpha And Omega Semiconductor Incorporated | Circuit configuration and manufacturing processes for vertical transient voltage suppressor (tvs) and emi filter |
CN108054164A (zh) * | 2017-12-12 | 2018-05-18 | 深圳迈辽技术转移中心有限公司 | 瞬态电压抑制器及其制作方法 |
CN108063137A (zh) * | 2017-12-11 | 2018-05-22 | 深圳迈辽技术转移中心有限公司 | 瞬态电压抑制器及其制作方法 |
CN104617158B (zh) * | 2015-01-23 | 2018-06-05 | 应能微电子(上海)有限公司 | 一种具有超深沟槽的瞬态电压抑制器结构 |
-
2018
- 2018-09-19 CN CN201811090923.5A patent/CN109244069B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101536189A (zh) * | 2006-11-16 | 2009-09-16 | 万国半导体股份有限公司 | 具有电磁干扰滤波器的垂直瞬态电压抑制器(tvs)的电路结构及制造方法 |
US20170373158A1 (en) * | 2006-11-16 | 2017-12-28 | Alpha And Omega Semiconductor Incorporated | Circuit configuration and manufacturing processes for vertical transient voltage suppressor (tvs) and emi filter |
CN101853853A (zh) * | 2009-03-31 | 2010-10-06 | 万国半导体有限公司 | 带有低电容和正向电压降以及耗尽的半导体控制整流器作为控向二极管的瞬态电压抑制器 |
CN103579366A (zh) * | 2012-08-03 | 2014-02-12 | 上海华虹Nec电子有限公司 | Tvs器件及制造方法 |
CN104617158B (zh) * | 2015-01-23 | 2018-06-05 | 应能微电子(上海)有限公司 | 一种具有超深沟槽的瞬态电压抑制器结构 |
CN106409826A (zh) * | 2016-10-26 | 2017-02-15 | 上海先进半导体制造股份有限公司 | 瞬态电压抑制器及其制造方法 |
CN108063137A (zh) * | 2017-12-11 | 2018-05-22 | 深圳迈辽技术转移中心有限公司 | 瞬态电压抑制器及其制作方法 |
CN108054164A (zh) * | 2017-12-12 | 2018-05-18 | 深圳迈辽技术转移中心有限公司 | 瞬态电压抑制器及其制作方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114121938A (zh) * | 2021-11-12 | 2022-03-01 | 深圳市芸鸽科技有限公司 | 一种用于充电管理系统的防静电芯片及其制备方法 |
CN114121938B (zh) * | 2021-11-12 | 2022-06-14 | 深圳市芸鸽科技有限公司 | 一种用于充电管理系统的防静电芯片及其制备方法 |
CN114171422A (zh) * | 2022-02-11 | 2022-03-11 | 浙江里阳半导体有限公司 | 半导体器件的制造方法及其蒸镀缺陷的检测方法 |
CN114171422B (zh) * | 2022-02-11 | 2022-06-03 | 浙江里阳半导体有限公司 | 半导体器件的制造方法及其蒸镀缺陷的检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109244069B (zh) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007287782A (ja) | メサ型バイポーラトランジスタ | |
CN109786471A (zh) | 一种瞬态电压抑制器及其制作方法 | |
TWI774097B (zh) | 雙極接面電晶體及其形成方法 | |
CN109037206B (zh) | 一种功率器件保护芯片及其制作方法 | |
CN109244069A (zh) | 瞬态电压抑制器及其制备方法 | |
CN106684132B (zh) | 基于有源区沟槽结构的碳化硅双极型晶体管及其制作方法 | |
CN109273521A (zh) | 一种功率器件保护芯片及其制作方法 | |
CN109037074A (zh) | 一种晶体管的制作方法 | |
CN104285285B (zh) | 半导体装置的制造方法 | |
CN109087942A (zh) | 一种沟槽型三极管及其制作方法 | |
CN109309008A (zh) | 一种功率器件及其制作方法 | |
CN112259599B (zh) | 一种硅片键合式igbt器件及其制作方法 | |
CN109103179A (zh) | 一种功率器件保护芯片及其制作方法 | |
CN114792726A (zh) | 抗辐照加固硅pnp双极型晶体管及其制备方法 | |
CN106876471A (zh) | 双槽umosfet器件 | |
CN208904023U (zh) | 一种晶体管 | |
CN109768076A (zh) | 一种双向瞬态电压抑制器及其制作方法 | |
CN108922925B (zh) | 一种功率器件保护芯片及其制作方法 | |
CN109360854A (zh) | 一种功率器件终端结构及其制作方法 | |
CN110112069A (zh) | 一种功率器件及其制作方法 | |
JPH11145155A (ja) | 半絶縁ポリシリコン(sipos)膜を用いた電力半導体装置の製造方法 | |
CN109411347A (zh) | 三极管及其制作方法 | |
CN109326592A (zh) | 瞬态电压抑制器及其制造方法 | |
CN108417615A (zh) | 一种高压衬底pnp双极结型晶体管及其制造方法 | |
CN109037073A (zh) | 一种晶体管及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20201126 Address after: 314000 South Wangnan highway, wangjiangjing Town, Xiuzhou District, Jiaxing City, Zhejiang Province Applicant after: Zhejiang Changxin biological Fiber Co.,Ltd. Address before: 518000 Guangzhou City Luohu District Guiyuan Street Baoan South Road Metropolitan Park B Building Fifth Floor B District B14 Applicant before: SHENZHEN XINBANTU TECHNOLOGY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |