CN109133912A - 一种微波介质陶瓷及其制备方法 - Google Patents

一种微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN109133912A
CN109133912A CN201710499131.2A CN201710499131A CN109133912A CN 109133912 A CN109133912 A CN 109133912A CN 201710499131 A CN201710499131 A CN 201710499131A CN 109133912 A CN109133912 A CN 109133912A
Authority
CN
China
Prior art keywords
microwave
medium ceramics
medium
raw material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710499131.2A
Other languages
English (en)
Other versions
CN109133912B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Original Assignee
Kuang Chi Institute of Advanced Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201710499131.2A priority Critical patent/CN109133912B/zh
Priority to PCT/CN2018/079817 priority patent/WO2019001032A1/zh
Publication of CN109133912A publication Critical patent/CN109133912A/zh
Application granted granted Critical
Publication of CN109133912B publication Critical patent/CN109133912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供了一种微波介质陶瓷,微波介质陶瓷包括以下组分:MgiAxOy+i,其中,A选自Sn、Si和Al中的一种并且i介于1~2的范围内,x介于1~2的范围内,y介于2~3的范围内,并且MgiAxOy+i在微波介质陶瓷中的质量百分比含量为91%~96%;BaCu(B2O5),质量百分比含量为2%~5%;以及CaTiO3、Mg2TiO4、MgTi2O5中的至少一种,并且CaTiO3、Mg2TiO4、MgTi2O5的质量百分比含量总和为2%~4%。通过该方法制备得到的微波介质陶瓷既具有优异的介电常数,又具有低介电损耗和较低的烧结温度。本发明还提供了一种微波介质陶瓷的制备方法。

Description

一种微波介质陶瓷及其制备方法
技术领域
本发明涉及电子材料技术领域,具体地,涉及一种微波介质陶瓷及其制备方法。
背景技术
微波介质陶瓷(MWDC)是指在微波频段电路中作为介质材料完成微波信号处理的一种陶瓷,是一种新型的电子功能陶瓷。随着互联网技术的迅猛发展,信息容量呈指数性增长,应用频率朝着更高的频段发展,便携式终端和移动通信进一步向着小型化、高集成化和高可稳定性等方向发展。同时,介质谐振器、滤波器、电容器等器件在电磁波的接受与发送、能量与信号耦合及筛选频率方面有待进一步的提高,这就对微波电路中的元器件提出了更高要求,开发小型化、高稳定、廉价及高集成化的新型微波介质陶瓷已成为当今研究开发的焦点所在。
常用超材料介质基材如FR4环氧复合材料板、聚酰亚胺、树脂基复合材料都具有较低介电损耗,然而其介电常数较低,烧结温度也较高,对小型化和超材料的设计有较大限制。虽然也有通过加入烧结助剂来降低烧结温度的报道,但是烧结温度一方面降低的不够大,另一方面加入烧结助剂后往往会增大介电损耗。而常见的陶瓷如氧化铝、含有陶瓷填料的树脂基复合材料具有较高的介电常数,其介电损耗较大,并且具有大的介电常数温漂现象。
因此,迫切需要开发一种既具有优异的介电常数,又具有低损耗微波介电性能和较低的烧结温度的微波介质陶瓷。
发明内容
针对现有技术中存在的问题,本发明的发明目的在于提供一种在具有优异的介电常数的情况下,具有低烧结温度和低介电损耗的微波介质陶瓷及其制备方法。
根据本发明的一个方面,提供了一种微波介质陶瓷,所述微波介质陶瓷包括以下组分:MgiAxOy+i,其中,A选自Sn、Si和Al中的一种,i介于1~2的范围内,x介于1~2的范围内,y介于2~3的范围内,并且MgiAxOy+i在所述微波介质陶瓷中的质量百分比为91%~96%;BaCu(B2O5),在所述微波介质陶瓷中的质量百分比含量为2%~5%;以及CaTiO3、Mg2TiO4、MgTi2O5中的至少一种,并且CaTiO3、Mg2TiO4、MgTi2O5在所述微波介质陶瓷中的质量百分比含量之总和为2%~4%。
在上述微波介质陶瓷中,当A为Sn时,x为1,y为2。
在上述微波介质陶瓷中,当A为Si时,x为1,y为2。
在上述微波介质陶瓷中,当A为Al时,x为2,y为3。
在上述微波介质陶瓷中,所述微波介质陶瓷包括以下组分:Mg2SnO4,其中,Mg2SnO4在所述微波介质陶瓷中的质量百分比含量为93%~96%;BaCu(B2O5),在所述微波介质陶瓷中的质量百分比含量为2%~5%;以及CaTiO3,在所述微波介质陶瓷中的质量百分比含量为2%。
根据本发明的另一方面,还提供了一种微波介质陶瓷的制备方法,其特征在于,所述制备方法包括以下步骤:将MgO和AxOy按照1~2:1的摩尔比例混合以反应生成所述微波介质陶瓷的主要的原材料;向所述原材料中添加BaCu(B2O5)烧结助剂以降低烧结温度;向所述原材料中添加CaTiO3、Mg2TiO4、MgTi2O5中的至少一种,以得到混合原料;对所述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制备;其中,AxOy选自SnO2、SiO2和Al2O3中的一种,并且加入的MgO和AxOy的质量之和占制得的所述微波介质陶瓷总重量的91%~96%;加入的BaCu(B2O5)的质量占制得的所述微波介质陶瓷总重量的2%~5%;加入的CaTiO3、Mg2TiO4、MgTi2O5的质量之和占制得的所述微波介质陶瓷总重量的2%~4%。
在上述制备方法中,AxOy选自SiO2或Al2O3,并且MgO和AxOy的摩尔比例为1~1.5:1。
在上述制备方法中,AxOy选自SiO2或Al2O3,并且MgO和AxOy的摩尔比例为1:1。
在上述制备方法中,AxOy为SnO2,并且MgO和SnO2的摩尔比例为2:1。
在上述制备方法中,所述制备方法包括以下步骤:将MgO和SnO2按照2:1的摩尔比例混合,以反应生成所述微波介质陶瓷的主要的原材料;向所述原材料中添加BaCu(B2O5)烧结助剂以降低烧结温度;向所述原材料中添加CaTiO3,以得到混合原料;以及对所述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制备;其中,加入的MgO和SnO2的质量占制得的所述微波介质陶瓷总重量的93%~96%;加入的BaCu(B2O5)的质量占制得的所述微波介质陶瓷总重量的2%~5%;加入的CaTiO3的质量占制得的所述微波介质陶瓷总重量的2%。
本发明提供了一种微波介质陶瓷的制备方法,在该制备方法中通过向原材料中添加2%~5%的BaCu(B2O5)烧结助剂,在保持优异的介电常数,和具有低损耗微波介电性能的情况下,将其烧结温度降低至1200℃以下。通过该方法制备得到的微波介质陶瓷既具有优异的介电常数,又具有低介电损耗和较低的烧结温度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的制备微波介质陶瓷的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的微波介质陶瓷的制备方法,包括以下步骤:
如本发明的步骤S101所示,将MgO和AxOy按照1~2:1的摩尔比例混合,以反应生成微波介质陶瓷的主要的原材料;其中,AxOy选自SnO2、SiO2和Al2O3中的一种,并且MgO和AxOy的摩尔比例为1~2:1,并且加入的MgO和AxOy的质量占制得的微波介质陶瓷总重量的91%~96%;优选地,AxOy选自SiO2或Al2O3,并且MgO和AxOy的摩尔比例为1~1.5:1,优选为1:1;更优选地,AxOy选自SnO2并且MgO和SnO2的摩尔比例为2:1。
如本发明的步骤S102所示,向原材料中添加BaCu(B2O5)烧结助剂以降低烧结温度;其中,BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的2%~5%。
如本发明的步骤S103所示,向原材料中添加CaTiO3、Mg2TiO4、MgTi2O5中的至少一种,以得到混合原料,CaTiO3、Mg2TiO4、MgTi2O5的的质量之和占制得的微波介质陶瓷总重量的2%~4%,优选地,向原材料中添加占制得的微波介质陶瓷总重量的2%的CaTiO3
如本发明的步骤S104所示,对混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制备。
实施例1镁基微波介质陶瓷的制备
将MgO和SnO2按照2:1的摩尔比例混合,以反应生成镁基微波介质陶瓷的主要的原材料,向原材料中添加BaCu(B2O5)烧结助剂,将其烧结温度降低至1100℃,向原材料中添加CaTiO3粉末,用以调节陶瓷的介电常数温度系数,对上述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制造。其中,MgO和SnO2的质量占制得的微波介质陶瓷总重量的96%。加入的BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的2%。加入的CaTiO3粉末的质量占制得的微波介质陶瓷总重量的2%。
在生成的镁基微波介质陶瓷中,Mg2SnO4在微波介质陶瓷中的质量百分比含量为96%,BaCu(B2O5)在微波介质陶瓷中的质量百分比含量为2%,以及CaTiO3在微波介质陶瓷中的质量百分比含量为2%。
实施例2镁基微波介质陶瓷的制备
将MgO和SiO2按照1:1的摩尔比例混合,以反应生成镁基微波介质陶瓷的主要的原材料,向原材料中添加BaCu(B2O5)烧结助剂,将其烧结温度降低至1250℃,向原材料中添加Mg2TiO4粉末,用以调节陶瓷的介电常数温度系数,对上述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制造。其中,MgO和SiO2的质量占制得的微波介质陶瓷总重量的93%。加入的BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的5%。加入的Mg2TiO4粉末的质量占制得的微波介质陶瓷总重量的2%。
在生成的镁基微波介质陶瓷中,Mg2SiO4在微波介质陶瓷中的质量百分比含量为93%,BaCu(B2O5)在微波介质陶瓷中的质量百分比含量为5%,以及Mg2TiO4在微波介质陶瓷中的质量百分比含量为2%。
实施例3镁基微波介质陶瓷的制备
将MgO和Al2O3按照1:1的摩尔比例混合,以反应生成镁基微波介质陶瓷的主要的原材料,向原材料中添加BaCu(B2O5)烧结助剂,将其烧结温度降低至1150℃,向原材料中添加MgTi2O5粉末,用以调节陶瓷的介电常数温度系数,对上述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制造。其中,MgO和Al2O3的质量占制得的微波介质陶瓷总重量的91%。加入的BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的5%。加入的Mg2TiO4粉末的质量占制得的微波介质陶瓷总重量的4%。
在生成的镁基微波介质陶瓷中,MgAl2O4在微波介质陶瓷中的质量百分比含量为91%,BaCu(B2O5)在微波介质陶瓷中的质量百分比含量为5%,以及Mg2TiO4,在微波介质陶瓷中的质量百分比含量为4%。
实施例4镁基微波介质陶瓷的制备
将MgO和Al2O3按照1.5:1的摩尔比例混合,以反应生成镁基微波介质陶瓷的主要的原材料,向原材料中添加BaCu(B2O5)烧结助剂,将其烧结温度降低至1300℃,向原材料中添加Mg2TiO4粉末,用以调节陶瓷的介电常数温度系数,对上述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制造。其中,MgO和Al2O3的质量占制得的微波介质陶瓷总重量的94%。加入的BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的3%。加入的Mg2TiO4粉末的质量占制得的微波介质陶瓷总重量的3%。
在生成的镁基微波介质陶瓷中,MgAl2O4在微波介质陶瓷中的质量百分比含量为94%,BaCu(B2O5),在微波介质陶瓷中的质量百分比含量为3%,以及CaTiO3,在微波介质陶瓷中的质量百分比含量为3%。
实施例5镁基微波介质陶瓷的制备
1.将MgO和SiO2按照1.5:1的摩尔比例混合,以反应生成镁基微波介质陶瓷的主要的原材料,向原材料中添加BaCu(B2O5)烧结助剂,将其烧结温度降低至1150℃,向原材料中添加MgTi2O5粉末,用以调节陶瓷的介电常数温度系数,对上述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制造。其中,MgO和SiO2的质量占制得的微波介质陶瓷总重量的93%。加入的BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的5%。加入的MgTi2O5粉末的质量占制得的微波介质陶瓷总重量的2%。
在生成的镁基微波介质陶瓷中,Mg2SiO4在微波介质陶瓷中的质量百分比含量为93%,BaCu(B2O5)在微波介质陶瓷中的质量百分比含量为5%,以及CaTiO3在微波介质陶瓷中的质量百分比含量为2%。
实施例6镁基微波介质陶瓷的制备
1.将MgO和SnO2按照1:1的摩尔比例混合,以反应生成镁基微波介质陶瓷的主要的原材料,向原材料中添加BaCu(B2O5)烧结助剂,将其烧结温度降低至1200℃,向原材料中添加CaTiO3粉末,用以调节陶瓷的介电常数温度系数,对上述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制造。其中,MgO和SnO2的质量占制得的微波介质陶瓷总重量的92%。加入的BaCu(B2O5)的质量占制得的微波介质陶瓷总重量的4%。加入的CaTiO3粉末的质量占制得的微波介质陶瓷总重量的4%。
在生成的镁基微波介质陶瓷中,Mg2SnO4在微波介质陶瓷中的质量百分比含量为92%,BaCu(B2O5)在微波介质陶瓷中的质量百分比含量为4%;以及CaTiO3在微波介质陶瓷中的质量百分比含量为4%。
结果显示,通过实施例1至实施例6的方法生产微波介质陶瓷,烧结温度降低至1200℃以下,制备得到的微波介质陶瓷的介电常数介于6~7的范围内,介电损耗小于0.001,介电常数温度系数绝对值低于10ppm/℃。
本发明提供了一种微波介质陶瓷的制备方法,在该制备方法中通过向原材料中添加2%~5%的BaCu(B2O5)烧结助剂,在保持优异的介电常数,和具有低损耗微波介电性能的情况下,将其烧结温度降低至1200℃以下。通过该方法制备得到的微波介质陶瓷既具有优异的介电常数,又具有低介电损耗和较低的烧结温度。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种微波介质陶瓷,其特征在于,所述微波介质陶瓷包括以下组分:
MgiAxOy+i,其中,A选自Sn、Si和Al中的一种,i介于1~2的范围内,x介于1~2的范围内,y介于2~3的范围内,并且MgiAxOy+i在所述微波介质陶瓷中的质量百分比为91%~96%;
BaCu(B2O5),在所述微波介质陶瓷中的质量百分比含量为2%~5%;以及
CaTiO3、Mg2TiO4、MgTi2O5中的至少一种,并且CaTiO3、Mg2TiO4、MgTi2O5在所述微波介质陶瓷中的质量百分比含量之和为2%~4%。
2.根据权利要求1所述的微波介质陶瓷,其特征在于,当A为Sn时,x为1,y为2。
3.根据权利要求1所述的微波介质陶瓷,其特征在于,当A为Si时,x为1,y为2。
4.根据权利要求1所述的微波介质陶瓷,其特征在于,当A为Al时,x为2,y为3。
5.根据权利要求1所述的微波介质陶瓷,其特征在于,所述微波介质陶瓷包括以下组分:
Mg2SnO4,其中,Mg2SnO4在所述微波介质陶瓷中的质量百分比含量为93%~96%;
BaCu(B2O5),在所述微波介质陶瓷中的质量百分比含量为2%~5%;以及
CaTiO3,在所述微波介质陶瓷中的质量百分比含量为2%。
6.一种微波介质陶瓷的制备方法,其特征在于,所述制备方法包括以下步骤:
将MgO和AxOy按照1~2:1的摩尔比例混合以反应生成所述微波介质陶瓷的主要的原材料;
向所述原材料中添加BaCu(B2O5)烧结助剂以降低烧结温度;
向所述原材料中添加CaTiO3、Mg2TiO4、MgTi2O5中的至少一种,以得到混合原料;
对所述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制备;
其中,AxOy选自SnO2、SiO2和Al2O3中的一种,并且加入的MgO和AxOy的质量之和占制得的所述微波介质陶瓷总重量的91%~96%;加入的BaCu(B2O5)的质量占制得的所述微波介质陶瓷总重量的2%~5%;加入的CaTiO3、Mg2TiO4、MgTi2O5的质量之和占制得的所述微波介质陶瓷总重量的2%~4%。
7.根据权利要求6所述的制备方法,其特征在于,AxOy选自SiO2或Al2O3,并且MgO和AxOy的摩尔比例为1~1.5:1。
8.根据权利要求6所述的制备方法,其特征在于,AxOy选自SiO2或Al2O3,并且MgO和AxOy的摩尔比例为1:1。
9.根据权利要求6所述的制备方法,其特征在于,AxOy为SnO2,并且MgO和SnO2的摩尔比例为2:1。
10.根据权利要求6所述的制备方法,其特征在于,所述制备方法包括以下步骤:
将MgO和SnO2按照2:1的摩尔比例混合,以反应生成所述微波介质陶瓷的主要的原材料;
向所述原材料中添加BaCu(B2O5)烧结助剂以降低烧结温度;
向所述原材料中添加CaTiO3,以得到混合原料;以及
对所述混合原料进行球磨混合,单轴压力成型和无压烧结,完成微波介质陶瓷的制备;
其中,加入的MgO和SnO2的质量占制得的所述微波介质陶瓷总重量的93%~96%;加入的BaCu(B2O5)的质量占制得的所述微波介质陶瓷总重量的2%~5%;加入的CaTiO3的质量占制得的所述微波介质陶瓷总重量的2%。
CN201710499131.2A 2017-06-27 2017-06-27 一种微波介质陶瓷及其制备方法 Active CN109133912B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710499131.2A CN109133912B (zh) 2017-06-27 2017-06-27 一种微波介质陶瓷及其制备方法
PCT/CN2018/079817 WO2019001032A1 (zh) 2017-06-27 2018-03-21 一种微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710499131.2A CN109133912B (zh) 2017-06-27 2017-06-27 一种微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109133912A true CN109133912A (zh) 2019-01-04
CN109133912B CN109133912B (zh) 2022-09-16

Family

ID=64740973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710499131.2A Active CN109133912B (zh) 2017-06-27 2017-06-27 一种微波介质陶瓷及其制备方法

Country Status (2)

Country Link
CN (1) CN109133912B (zh)
WO (1) WO2019001032A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875372A (zh) * 2020-08-12 2020-11-03 广东国华新材料科技股份有限公司 一种微波介质陶瓷及其制备方法
CN111995383A (zh) * 2020-09-08 2020-11-27 中物院成都科学技术发展中心 Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN112174653A (zh) * 2020-10-23 2021-01-05 厦门松元电子有限公司 一种高Qf低介电常数的微波介质陶瓷材料及其制备方法
CN112266238A (zh) * 2020-10-23 2021-01-26 厦门松元电子有限公司 一种微波器件用的低介电常数陶瓷材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108823B (zh) * 2022-07-19 2023-05-23 杭州电子科技大学 一种镁铝尖晶石微波介质陶瓷材料及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193662A (ja) * 2000-12-27 2002-07-10 Kyocera Corp 誘電体磁器及びその製造方法
EP1460645A2 (en) * 2003-03-17 2004-09-22 TDK Corporation Dielectric porcelain composition and dielectric resonator using the composition
WO2006054758A1 (en) * 2004-11-18 2006-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20060158300A1 (en) * 2005-01-20 2006-07-20 Avx Corporation High Q planar inductors and IPD applications
US20100105538A1 (en) * 2008-10-29 2010-04-29 Walsin Technology Corporation Microwave Dielectric Ceramics And Method For Manufacturing The Same
US20120004090A1 (en) * 2010-06-30 2012-01-05 Tdk Corporation Dielectric ceramic, method for producing dielectric ceramic, and electronic component
CN102659396A (zh) * 2012-03-28 2012-09-12 厦门松元电子有限公司 一种低介电微波陶瓷介质材料及其制备方法
CN103058658A (zh) * 2013-01-17 2013-04-24 天津大学 BaCu(B2O5)掺杂铌钛酸锌微波介质陶瓷
CN103058657A (zh) * 2013-01-17 2013-04-24 天津大学 氧化钴掺杂铌钛酸锌微波介质陶瓷
CN103214243A (zh) * 2013-04-25 2013-07-24 天津大学 铌钛酸锌微波介质陶瓷及其制备方法
CN103319166A (zh) * 2013-05-28 2013-09-25 电子科技大学 一种微波陶瓷介质材料及其制备方法
CN103641469A (zh) * 2013-12-02 2014-03-19 电子科技大学 一种低损耗微波介质陶瓷材料及其制备方法
CN104230329A (zh) * 2014-09-15 2014-12-24 电子科技大学 一种低温烧结微波陶瓷材料及其制备方法
US20160088731A1 (en) * 2014-09-23 2016-03-24 Finisar Corporation Capacitors for multilayer printed circuit boards
CN106278192A (zh) * 2016-08-24 2017-01-04 河南科技大学 一种具有枣糕模型结构的复相微波介质陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964121B (zh) * 2012-12-11 2014-01-08 北京元六鸿远电子技术有限公司 具有ba温度特性的钛酸镁系微波介质材料及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193662A (ja) * 2000-12-27 2002-07-10 Kyocera Corp 誘電体磁器及びその製造方法
EP1460645A2 (en) * 2003-03-17 2004-09-22 TDK Corporation Dielectric porcelain composition and dielectric resonator using the composition
WO2006054758A1 (en) * 2004-11-18 2006-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20060158300A1 (en) * 2005-01-20 2006-07-20 Avx Corporation High Q planar inductors and IPD applications
US20100105538A1 (en) * 2008-10-29 2010-04-29 Walsin Technology Corporation Microwave Dielectric Ceramics And Method For Manufacturing The Same
US20120004090A1 (en) * 2010-06-30 2012-01-05 Tdk Corporation Dielectric ceramic, method for producing dielectric ceramic, and electronic component
CN102659396A (zh) * 2012-03-28 2012-09-12 厦门松元电子有限公司 一种低介电微波陶瓷介质材料及其制备方法
CN103058658A (zh) * 2013-01-17 2013-04-24 天津大学 BaCu(B2O5)掺杂铌钛酸锌微波介质陶瓷
CN103058657A (zh) * 2013-01-17 2013-04-24 天津大学 氧化钴掺杂铌钛酸锌微波介质陶瓷
CN103214243A (zh) * 2013-04-25 2013-07-24 天津大学 铌钛酸锌微波介质陶瓷及其制备方法
CN103319166A (zh) * 2013-05-28 2013-09-25 电子科技大学 一种微波陶瓷介质材料及其制备方法
CN103641469A (zh) * 2013-12-02 2014-03-19 电子科技大学 一种低损耗微波介质陶瓷材料及其制备方法
CN104230329A (zh) * 2014-09-15 2014-12-24 电子科技大学 一种低温烧结微波陶瓷材料及其制备方法
US20160088731A1 (en) * 2014-09-23 2016-03-24 Finisar Corporation Capacitors for multilayer printed circuit boards
CN106278192A (zh) * 2016-08-24 2017-01-04 河南科技大学 一种具有枣糕模型结构的复相微波介质陶瓷及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GANG DOU等: "Effect of low melting point materials on sinterability and microwave dielectric properties of X2SiO4-CaTiO3 (X=Mg,Zn) for LTCC", 《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》 *
RUOPENG LIU: "Brief Introduction of Microwave Ceramics Developed in Our Labs for Brief Introduction of Microwave Ceramics Developed in Our Labs for Dielectric Resonators", 《ADVANCED MATERIALS RESEARCH》 *
周珏辉: "Mg2SnO4基微波介质陶瓷的性能优化及低温烧结研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
杨辉等: "低温共烧微波介质陶瓷及其器件的研究进展", 《硅酸盐学报》 *
郑兴华等: "微波介质陶瓷", 《江苏陶瓷》 *
顾永军: "BaCu(B205)的合成及其对CLST陶瓷烧结性能的影响", 《河南科技大学学报:自然科学版》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875372A (zh) * 2020-08-12 2020-11-03 广东国华新材料科技股份有限公司 一种微波介质陶瓷及其制备方法
CN111995383A (zh) * 2020-09-08 2020-11-27 中物院成都科学技术发展中心 Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN111995383B (zh) * 2020-09-08 2022-05-24 中物院成都科学技术发展中心 Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN112174653A (zh) * 2020-10-23 2021-01-05 厦门松元电子有限公司 一种高Qf低介电常数的微波介质陶瓷材料及其制备方法
CN112266238A (zh) * 2020-10-23 2021-01-26 厦门松元电子有限公司 一种微波器件用的低介电常数陶瓷材料及其制备方法

Also Published As

Publication number Publication date
WO2019001032A1 (zh) 2019-01-03
CN109133912B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN109133912A (zh) 一种微波介质陶瓷及其制备方法
JP5554940B2 (ja) 低温焼成用低誘電率誘電体セラミック組成物
CN103172376B (zh) 一种白钨矿型微波介质陶瓷材料及其制备方法
CN101823880A (zh) 一种硅铍石型钼基钨基超低温烧结微波介质陶瓷材料及其制备方法
CN110540420B (zh) 一种低烧结温度低介微波介质陶瓷及其制备方法
CN104261825A (zh) 可低温烧结的超低介电常数微波介质陶瓷Li3BiW8O27
CN104671785B (zh) 温度稳定型高品质因数微波介电陶瓷LaEuW2O9及其制备方法
CN104671784B (zh) 温度稳定型高品质因数微波介电陶瓷Nd2La2W3O15及其制备方法
JP2008069056A (ja) 誘電体磁器組成物
CN104016670B (zh) 一种低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN105777077A (zh) 高品质因数低介电常数微波介电陶瓷Ca3MgTiGe3O12及其制备方法
CN103360050B (zh) 一种中介电常数的微波介质陶瓷及其制备方法
CN107010952A (zh) 一种镓酸盐超低介电常数微波介电陶瓷
JP5422329B2 (ja) 誘電体磁器組成物
CN105294103A (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
JP2003146752A (ja) 誘電体磁器組成物
CN104876576A (zh) 温度稳定型超低介电常数微波介电陶瓷SrLiEu3Mo5O21
CN115611613B (zh) 低介电常数硫酸盐微波介质陶瓷
JP3311928B2 (ja) 高周波用アルミナ質焼結体
CN106045508A (zh) 一种可低温烧结的低介电常数微波介电陶瓷Al2Mo3O12
CN104291820A (zh) 近零谐振频率温度系数的低介电常数微波介质陶瓷AgNb5Bi2O16
JP4691876B2 (ja) 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置
CN106986645A (zh) 一种钼酸盐温度稳定型超低介电常数微波介电陶瓷
CN105622089A (zh) 一种可低温烧结的低介电常数微波介电陶瓷Li2ZnTiO4
CN104446375B (zh) 温度稳定型超低介电常数微波介电陶瓷BaLa0.8Nd1.2B10O19

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant