CN109126762A - 一种CeO2/TiO2纳米管复合材料的制备方法 - Google Patents

一种CeO2/TiO2纳米管复合材料的制备方法 Download PDF

Info

Publication number
CN109126762A
CN109126762A CN201811072930.2A CN201811072930A CN109126762A CN 109126762 A CN109126762 A CN 109126762A CN 201811072930 A CN201811072930 A CN 201811072930A CN 109126762 A CN109126762 A CN 109126762A
Authority
CN
China
Prior art keywords
tio
ceo
composite materials
nanometer tube
tube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811072930.2A
Other languages
English (en)
Other versions
CN109126762B (zh
Inventor
郭禧斌
郑剀心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Science and Technology
Original Assignee
Zhengzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Science and Technology filed Critical Zhengzhou University of Science and Technology
Priority to CN201811072930.2A priority Critical patent/CN109126762B/zh
Publication of CN109126762A publication Critical patent/CN109126762A/zh
Application granted granted Critical
Publication of CN109126762B publication Critical patent/CN109126762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种CeO2/TiO2纳米管复合材料的制备方法,首先通过水热法制备出TiO2纳米管前体,再加入铈盐溶液和丙三醇,进行CeO2的修饰,最后再在惰性气体的保护下进行干燥,得到CeO2/TiO2纳米管复合材料。本发明公开的技术方案,在传统的水热法基础上替换反应原料,在用浓碱与TiO2反应后,用弱酸乙酸代替盐酸进行除Na,同时通过控制碱NaOH、弱酸乙酸的浓度,以及浸泡的时间,控制制备得到的TiO2纳米管前体的形貌,并在纳米管表面形成较多结合活性位点,为后续与Ce的结合提供条件。得到的CeO2/TiO2纳米管复合材料,分散性好,结构均匀,有着优异光催化性能。

Description

一种CeO2/TiO2纳米管复合材料的制备方法
技术领域
本发明涉及一种复合材料的制备方法,特别是涉及一种CeO2/TiO2纳米管复合材料的制备方法。
背景技术
二氧化钛(TiO2)是一种白色固体或粉末状的两性氧化物,广泛应用于涂料、塑料、造纸、印刷油墨、化纤、橡胶、化妆品等工业。它的熔点很高,也被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。
TiO2也是一种宽禁带半导体,其禁带宽度为3.2eV左右,具有优异的物理化学稳定性,因此在光催化领域、太阳能电池领域、传感器元件等领域也都得到了广泛的应用与研究。
随着能源和环境问题的日渐严峻,对于半导体光催化剂的研究越来越多,TiO2纳米管由于廉价、无毒、稳定等优点,被广泛的用于光催化剂领域。
但锐钛矿相TiO2的禁带宽度决定了其仅可吸收紫外光(占太阳光的4%),量子效率低,不能用于实际生产产氢。因此,需要引入其他催化成分提高可见光响应产氢的能力。
公开号为CN103657699A的中国专利申请,提供了一种g-C3N4量子点修饰的TiO2纳米管光催化剂制备方法,产物具有高效光电催化产氢性能。
公开号为CN108149300A的中国专利申请,提供了一种CeO2纳米颗粒/TiO2纳米管阵列复合异质结薄膜的制备方法,但其采用阳极氧化法制备得到TiO2纳米管阵列,且产物为薄膜,成本高,适用范围有限。
发明内容
本发明的目的在于提供一种CeO2/TiO2纳米管复合材料的制备方法,得到的CeO2/TiO2纳米管复合材料的结构为CeO2附着于TiO2纳米管上,所述复合材料具有高的光催化效果,用于光解水制氢等领域。
本发明的目的通过以下技术方案实现:
一种CeO2/TiO2纳米管复合材料的制备方法,包括如下步骤:
(1)取分析纯的TiO2颗粒,加入到12-16mol/L的NaOH溶液中,磁力搅拌0.6-1h,然后装入水热反应釜中,加入量为水热反应釜的三分之二,在150-180℃下水热反应18-36h,反应结束取出产物置于1-4mol/L的乙酸溶液中浸泡30min-1h,同时在300-600rpm的转速下进行缓慢搅拌,浸泡结束抽滤得到抽滤产物;
(2)制备浓度为2-5mol/L的铈盐溶液,向其中加入丙三醇得到混合溶液,并控制丙三醇的浓度为0.2-0.4mol/L,将步骤(1)得到的抽滤产物缓慢加入到所述混合溶液中,同时在100-300rpm的转速下进行缓慢搅拌10-20min,搅拌结束后将得到的产物取出,用无水乙醇和蒸馏水交替洗涤3-5次;
(3)将步骤(2)的产物惰性气体的保护下,干燥10-20min,即得到CeO2/TiO2纳米管复合材料。
优选地,步骤(2)中的铈盐溶液铈硝酸铈溶液、氯化铈溶液中的一种或两种。
优选地,步骤(2)中,搅拌的同时维持混合溶液的温度在50-60℃。
优选地,步骤(3)中,干燥是在120-180℃下进行的。
本发明公开的技术方案,通过步骤(1)制备TiO2纳米管前体。考虑到目标产物需要用CeO2进行修饰,为了提高TiO2纳米管上结合位点数量,在传统的水热法基础上替换反应原料,在用浓碱与TiO2反应后,用弱酸乙酸代替盐酸进行除Na,同时通过控制碱NaOH、弱酸乙酸的浓度,以及浸泡的时间,控制制备得到的TiO2纳米管前体的形貌,并在纳米管表面形成较多结合活性位点,为后续与Ce的结合提供条件。发明人也曾尝试用传统的盐酸进行洗涤,但是后续TiO2和Ce的结合程度较差,难以达到所需的CeO2修饰效果,而乙酸则较好的克服了上述问题。
步骤(2)中,在铈盐溶液中加入丙三醇,一方面通过丙三醇与Ce离子的结合作用,加大其与TiO2纳米管前体的结合机会,其次,利用丙三醇与乙酸的作用,顺利除去附着的乙酸。
步骤(3)中,为了避免TiO2纳米管的团聚以及变形,适当提高干燥温度,取代煅烧步骤,得到分散性良好的CeO2/TiO2纳米管复合材料。
本发明得到的CeO2/TiO2纳米管复合材料,首先通过控制水热条件得到形貌均一的TiO2纳米管结构前体,长度在400nm以上,管径粗细均匀。用弱酸乙酸取代传统的盐酸进行洗涤除Na、破坏化学键,以及加入丙三醇辅助Ce与TiO2纳米管的结合,得到分散性好、结构均匀,有着优异光催化性能的复合材料。
附图说明
图1是实施例1得到的CeO2/TiO2纳米管复合材料的TEM图。
具体实施方式
以下为本发明的具体实施方式,用以对本发明进行解释和说明。
实施例1
一种CeO2/TiO2纳米管复合材料的制备方法,包括如下步骤:
(1)取分析纯的TiO2颗粒,加入到12mol/L的NaOH溶液中,磁力搅拌1h,然后装入水热反应釜中,加入量为水热反应釜的三分之二,在180℃下水热反应18h,反应结束取出产物置于3mol/L的乙酸溶液中浸泡45min,同时在600rpm的转速下进行缓慢搅拌,浸泡结束抽滤得到抽滤产物;
(2)制备浓度为5mol/L的硝酸铈溶液,向其中加入丙三醇得到混合溶液,并控制丙三醇的浓度为0.4mol/L,将步骤(1)得到的抽滤产物缓慢加入到所述混合溶液中,同时在300rpm的转速和60℃下进行缓慢搅拌10min,搅拌结束后将得到的产物取出,用无水乙醇和蒸馏水交替洗涤5次;
(3)将步骤(2)的产物惰性气体的保护下,在120℃下干燥20min,即得到CeO2/TiO2纳米管复合材料。
图1是得到的CeO2/TiO2纳米管复合材料的TEM图,从图中可以看出,产物的长度在400nm以上,管径粗细均匀,CeO2较为均匀的附着在TiO2纳米管上。
实施例2
一种CeO2/TiO2纳米管复合材料的制备方法,包括如下步骤:
(1)取分析纯的TiO2颗粒,加入到16mol/L的NaOH溶液中,磁力搅拌0.6h,然后装入水热反应釜中,加入量为水热反应釜的三分之二,在150℃下水热反应36h,反应结束取出产物置于1mol/L的乙酸溶液中浸泡1h,同时在300rpm的转速下进行缓慢搅拌,浸泡结束抽滤得到抽滤产物;
(2)制备浓度为2mol/L的硝酸铈和氯化铈的混合溶液,向其中加入丙三醇得到混合溶液,并控制丙三醇的浓度为0.2mol/L,将步骤(1)得到的抽滤产物缓慢加入到所述混合溶液中,同时在200rpm的转速和50℃下进行缓慢搅拌20min,搅拌结束后将得到的产物取出,用无水乙醇和蒸馏水交替洗涤3次;
(3)将步骤(2)的产物惰性气体的保护下,于180℃下干燥10min,即得到CeO2/TiO2纳米管复合材料。

Claims (4)

1.一种CeO2/TiO2纳米管复合材料的制备方法,包括如下步骤:
(1)取分析纯的TiO2颗粒,加入到12-16mol/L的NaOH溶液中,磁力搅拌0.6-1h,然后装入水热反应釜中,加入量为水热反应釜的三分之二,在150-180℃下水热反应18-36h,反应结束取出产物置于1-4mol/L的乙酸溶液中浸泡30min-1h,同时在300-600rpm的转速下进行缓慢搅拌,浸泡结束抽滤得到抽滤产物;
(2)制备浓度为2-5mol/L的铈盐溶液,向其中加入丙三醇得到混合溶液,并控制丙三醇的浓度为0.2-0.4mol/L,将步骤(1)得到的抽滤产物缓慢加入到所述混合溶液中,同时在100-300rpm的转速下进行缓慢搅拌10-20min,搅拌结束后将得到的产物取出,用无水乙醇和蒸馏水交替洗涤3-5次;
(3)将步骤(2)的产物惰性气体的保护下,干燥10-20min,即得到CeO2/TiO2纳米管复合材料。
2.根据权利要求1所述的一种CeO2/TiO2纳米管复合材料的制备方法,其特征在于,步骤(2)中的铈盐溶液铈硝酸铈溶液、氯化铈溶液中的一种或两种。
3.根据权利要求1所述的一种CeO2/TiO2纳米管复合材料的制备方法,其特征在于,步骤(2)中,搅拌的同时维持混合溶液的温度在50-60℃。
4.根据权利要求1所述的一种CeO2/TiO2纳米管复合材料的制备方法,其特征在于,步骤(3)中,干燥是在120-180℃下进行的。
CN201811072930.2A 2018-09-10 2018-09-10 一种CeO2/TiO2纳米管复合材料的制备方法 Active CN109126762B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811072930.2A CN109126762B (zh) 2018-09-10 2018-09-10 一种CeO2/TiO2纳米管复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811072930.2A CN109126762B (zh) 2018-09-10 2018-09-10 一种CeO2/TiO2纳米管复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109126762A true CN109126762A (zh) 2019-01-04
CN109126762B CN109126762B (zh) 2021-08-24

Family

ID=64825359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811072930.2A Active CN109126762B (zh) 2018-09-10 2018-09-10 一种CeO2/TiO2纳米管复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109126762B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713237A (zh) * 2022-04-01 2022-07-08 华南理工大学 一种结构可控的铜-铈氧化物-二氧化钛催化剂的制备与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903428A (zh) * 2005-07-31 2007-01-31 浙江师范大学 CeO2基复合氧化物涂层负载Pd催化剂及其制备方法
WO2009103970A1 (en) * 2008-02-19 2009-08-27 Solarprint Limited Electrolyte composition
US20100179053A1 (en) * 2009-01-15 2010-07-15 National Changhua University Of Education Metal oxide nanotube-supported gold catalyst and preparing method thereof
CN102836708A (zh) * 2012-09-06 2012-12-26 南通大学 PdAg/TiO2纳米管直接甲醇燃料电池阳极催化剂的制备方法
CN105016381A (zh) * 2015-07-06 2015-11-04 南京工程学院 高比表面积和大孔容的介孔锐钛型TiO2纳米管制备方法
CN107597092A (zh) * 2017-07-21 2018-01-19 上海纳米技术及应用国家工程研究中心有限公司 3D形貌CeO2/TiO2催化剂制法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903428A (zh) * 2005-07-31 2007-01-31 浙江师范大学 CeO2基复合氧化物涂层负载Pd催化剂及其制备方法
WO2009103970A1 (en) * 2008-02-19 2009-08-27 Solarprint Limited Electrolyte composition
US20100179053A1 (en) * 2009-01-15 2010-07-15 National Changhua University Of Education Metal oxide nanotube-supported gold catalyst and preparing method thereof
CN102836708A (zh) * 2012-09-06 2012-12-26 南通大学 PdAg/TiO2纳米管直接甲醇燃料电池阳极催化剂的制备方法
CN105016381A (zh) * 2015-07-06 2015-11-04 南京工程学院 高比表面积和大孔容的介孔锐钛型TiO2纳米管制备方法
CN107597092A (zh) * 2017-07-21 2018-01-19 上海纳米技术及应用国家工程研究中心有限公司 3D形貌CeO2/TiO2催化剂制法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAIBIN LI ET AL.: "CeO2/TiO2 Nanotubes Composites: Synthesis, Characterization, and Photocatalytic Properties", 《ADVANCED MATERIALS RESEARCH》 *
NAIMAT ABIMBOLA ELEBURUIKE ET AL.: "Photocatalytic degradation of paraquat dichloride over CeO2-modified TiO2 nanotubes and the optimization of parameters by response surface methodology", 《RSC ADVANCES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713237A (zh) * 2022-04-01 2022-07-08 华南理工大学 一种结构可控的铜-铈氧化物-二氧化钛催化剂的制备与应用
CN114713237B (zh) * 2022-04-01 2023-06-20 华南理工大学 一种结构可控的铜-铈氧化物-二氧化钛催化剂的制备与应用

Also Published As

Publication number Publication date
CN109126762B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN102926030B (zh) 一种含TiO2/WO3异质结纳米纤维的制备方法
CN101941736B (zh) 一种单双层空腔结构及海胆状的二氧化钛微球制备方法
CN101333345B (zh) 一种纳米二氧化钛/凹凸棒土复合材料的制备方法
CN103691433B (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
CN106669431B (zh) 一种具有同时催化与膜分离功能的二氧化钛纳米线超滤膜的制备方法
JP4698981B2 (ja) 繊維状酸化チタン粒子とその製造方法ならびに該粒子の用途
CN100369668C (zh) 无机粘土复合材料及其制备方法和用途
CN102498067A (zh) 稳定的纳米氧化钛溶胶及其制造方法
CN103333527B (zh) 一种锦纶化纤用表面改性消光剂的制造方法
CN106430295B (zh) 一种微纳米分级结构BaTiO3晶体及其制备方法
CN102766358A (zh) 一种锦纶化纤用消光剂的表面处理方法
CN104056611A (zh) 一种制备纳米TiO2的方法
CN102786085A (zh) 一种金红石型二氧化钛纳米棒微球的制备方法
CN107159192A (zh) 一种贵金属/TiO2混晶纳米棒组装的多级结构及其制备方法
CN104772149B (zh) 一种Bi2O3/BiFeO3/TiO2纳米花光催化材料及其制备方法
Lai et al. The ZnO–Au-Titanium oxide nanotubes (TiNTs) composites photocatalysts for CO2 reduction application
CN109126762A (zh) 一种CeO2/TiO2纳米管复合材料的制备方法
CN100551829C (zh) 一种二氧化钛空心微球的制备方法
CN106582726A (zh) 一种Bi4O5Br2中空球及以微乳液为模板的制备方法
CN103756397B (zh) 氧化锆复合纳米粉体材料及其制备方法
Liu et al. Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method
CN107008337B (zh) 一种非化学计量比铋酸铜纳米材料及其制备方法和应用
CN101805017B (zh) 一种二氧化钛纳米粒子的制备方法
CN106423227A (zh) 一种溴掺杂二氧化钛空心球纳米材料的合成方法
CN107892326B (zh) 金红石相TiO2纳米棒组装体的制备方法及产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant