CN109108238A - 一种高电阻率铁基纳米晶合金薄带制备方法 - Google Patents
一种高电阻率铁基纳米晶合金薄带制备方法 Download PDFInfo
- Publication number
- CN109108238A CN109108238A CN201811103803.4A CN201811103803A CN109108238A CN 109108238 A CN109108238 A CN 109108238A CN 201811103803 A CN201811103803 A CN 201811103803A CN 109108238 A CN109108238 A CN 109108238A
- Authority
- CN
- China
- Prior art keywords
- iron
- ferro
- ceramic powders
- nanometer crystal
- high resistivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/006—Making ferrous alloys compositions used for making ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/04—Nanocrystalline
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Soft Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种高电阻率铁基纳米晶合金薄带制备方法,按Fe73.5Cu1Nb3Si13.5B9配方称重,加入真空感应炉熔炼,加料顺序为先将纯铁、铌铁放进熔炼炉中,完全熔化后再加入硼铁和电解铜,完全熔化;在所得熔体中加入SiO2陶瓷粉末及硅,熔炼,形成陶瓷粉末掺杂铁基纳米晶母合金钢锭;再放入中频感应熔炼炉中二次重熔,将钢液倒入预热压力喷嘴包中;钢液体温度稳定后,喷至高速旋转的铜辊,即可得到陶瓷粉末掺杂的高电阻率铁基纳米晶合金薄带。本发明制备的铁基纳米晶合金薄带具有高电阻率、低损耗、高Bs值、高磁导率等优异的综合软磁性能。
Description
技术领域
本发明属于软磁合金材料制备领域,涉及一种铁基纳米晶合金薄带制备方法。
背景技术
铁基纳米晶合金软磁材料具有高Bs、高磁导率、低矫顽力等优异的软磁性能,并且是成本低廉的铁基材料,被广泛应用于计算机、通讯等开关电源、汽车电子、家用电器、电力与工业自动化控制、精密测量(计量)、新能源等领域。随着开关电源高频化的不断发展,对软磁材料的应用频率提出了更高的要求。由于铁基纳米晶合金是一种金属材料,其电阻率较低,如国标牌号1K107材质(合金成份为Fe73.5Cu1Nb3Si13.5B9)电阻率仅约为90uΩ/cm。低电阻率使其最佳应用频率范围为10KHz-100KHz,难以满时代发展的需求。目前,一般是通过减小纳米晶合金带材的厚度以减小其涡流损耗,从而提高其高频性能。由于带材厚度不可能无限制的减小,纳米晶合金高频磁性能的提高有限,无法满足市场对磁材高频性能的需求。在200KHz以上的高频应用领域,目前只能选高电阻率的铁氧体软磁材料。与铁基纳米晶合金相比,铁氧体软磁材料Bs值低、磁导率低等综合磁性能差,很难满足开关电源高功率密度化的需求。而高电阻率铁基纳米晶合金薄带,具有高电阻率、低损耗、高Bs值、高磁导率等特点,必将成为高频应用领域理想的软磁材料。通常,陶瓷相,如SiO2具有较高的电阻率。因此,在铁基合金中添加陶瓷相,可有效调控铁基纳米晶带材的电阻率,将有望获得具有高电阻率的铁基纳米晶磁材,以满足市场需求。
发明内容
本发明是针对上述现有技术存在的问题,提供一种高电阻率铁基纳米晶合金薄带制备方法,在1K107合金成份的基础通过在炼钢制备母合金过程中添加陶瓷粉末,经二次重熔后利用单辊熔体急冷法制备出陶瓷粉末掺杂的铁基纳米晶合金薄带。具有高电阻率、低损耗、高Bs值、高磁导率等特点,具有优异的高频软磁性能。
本发明是通过以下技术方案实现的。
本发明所述的一种高电阻率铁基纳米晶合金薄带制备方法,包括以下步骤。
(1)按照Fe73.5Cu1Nb3Si13.5B9配方经换算成重量比后进行称重配料,把按比例配好的原材料加入真空感应炉熔炼,Nb、B分别采用铌铁、硼铁中间合金,加料顺序为先将纯铁、铌铁放进熔炼炉中,加热至完全熔化后再加入硼铁和电解铜,待硼铁、电解铜也完全熔化后得到熔化好的熔体。
(2)按0.1-0.5%的质量比,在步骤(1)所得熔体中加入600-800目的SiO2 陶瓷粉末,然后再加入硅。将熔炼温度调至1500-1600℃,冶炼100-120min后,倒入冷却铸盘,形成陶瓷粉末掺杂铁基纳米晶母合金钢锭。
(3)将冶炼好的陶瓷粉末掺杂铁基纳米晶母合金钢锭放入中频感应熔炼炉中进行二次重熔,温度1200-1350℃,熔炼60-80min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中。
(4)待中间压力喷嘴包中钢液体温度稳定后,钢液在氩气恒压力作用从底部的喷嘴喷至高速旋转的铜辊,以106℃/S超急冷,铜辊线速度控制在25-35m/s、通过控制喷嘴与铜辊之间0.6-0.8mm缝隙的距离喷出带材。即可得到陶瓷粉末掺杂的高电阻率铁基纳米晶合金薄带。
本发明采用上述步骤方法,完成了陶瓷粉末掺杂的高电阻率铁基纳米晶合金薄带的制备工艺过程。陶瓷粉末的加入,作为非金属材料可大幅度提高铁基纳米晶合金的电阻率。同时,又可以起到阻碍晶粒长大的作用。使制备的铁基纳米晶合金薄带具有高电阻率、低损耗、高Bs值、高磁导率等优异的综合软磁性能。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
按Fe73.5Cu1Nb3Si13.5B9配方经换算成重量比后进行称重配制原材料20kg,Nb、B分别采用铌铁、硼铁中间合金。将原材料加入真空感应炉熔炼,加料顺序为先将纯铁、铌铁放进熔炼炉中,加热至完全熔化后再加入硼铁和电解铜,待硼铁、电解铜也完全熔化后再加入质量为0.1%,粒度为800目的SiO2陶瓷粉末,然后再加入硅。设定熔炼的温度1550℃,冶炼100min后,倒入冷却铸盘,形成陶瓷粉末掺杂铁基纳米晶母合金钢锭。
将冶炼好的陶瓷粉末掺杂铁基纳米晶母合金钢锭放入中频感应熔炼炉,二次重熔,温度1300℃,熔炼80min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中。待中间压力喷嘴包中钢液体温度稳定后,钢液在氩气恒压力作用从底部的喷嘴喷至高速旋转的铜辊,以25m/s线速度、通过控制喷嘴与铜辊之间缝隙的距离为0.8mm喷出带材。
所喷制带材,宽度为15mm,厚度为22-24μm,绕制成40×32×15mm尺寸的环形磁芯,经退火热处理后测试Bs=1.08T,Hc=15.6A/m,电阻率ρ=560uΩ/cm,100KHz磁导率:25000~26000,具有优异的高频磁性能。
实施例2。
按Fe73.5Cu1Nb3Si13.5B9配方经换算成重量比后进行称重配制原材料20kg,Nb、B分别采用铌铁、硼铁中间合金。将原材料加入真空感应炉熔炼,加料顺序为先将纯铁、铌铁放进熔炼炉中,加热至完全熔化后再加入硼铁和电解铜,待硼铁、电解铜也完全熔化后,加入质量为0.3%,粒度为600目的SiO2陶瓷粉末,然后再加入硅。设定熔炼的温度1550℃,冶炼100min后,倒入冷却铸盘,形成陶瓷粉末掺杂铁基纳米晶母合金钢锭。
将冶炼好的陶瓷粉末掺杂铁基纳米晶母合金钢锭放入中频感应熔炼炉,二次重熔,温度1300℃,熔炼80min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中。待中间压力喷嘴包中钢液体温度稳定后,钢液在氩气恒压力作用从底部的喷嘴喷至高速旋转的铜辊,以25m/s线速度、通过控制喷嘴与铜辊之间缝隙的距离为0.8mm喷出带材。
所喷制带材,宽度为15mm,厚度为26-28μm,绕制成40×32×15mm尺寸的环形磁芯,经退火热处理后测试Bs=1.0T,Hc=25.2A/m,电阻率ρ=870uΩ/cm,100KHz磁导率:25000~26000,具有优异的高频磁性能。
Claims (1)
1.一种高电阻率铁基纳米晶合金薄带制备方法,其特征是包括以下步骤:
(1)按照Fe73.5Cu1Nb3Si13.5B9配方经换算成重量比后进行称重配料,把按比例配好的原材料加入真空感应炉熔炼,Nb、B分别采用铌铁、硼铁中间合金,加料顺序为先将纯铁、铌铁放进熔炼炉中,加热至完全熔化后再加入硼铁和电解铜,待硼铁、电解铜也完全熔化后得到熔化好的熔体;
(2)按0.1-0.5%的质量比,在步骤(1)所得熔体中加入600-800目的SiO2 陶瓷粉末,然后再加入硅;将熔炼温度调至1500-1600℃,冶炼100-120min后,倒入冷却铸盘,形成陶瓷粉末掺杂铁基纳米晶母合金钢锭;
(3)将冶炼好的陶瓷粉末掺杂铁基纳米晶母合金钢锭放入中频感应熔炼炉中进行二次重熔,温度1200-1350℃,熔炼60-80min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中;
(4)待中间压力喷嘴包中钢液体温度稳定后,钢液在氩气恒压力作用从底部的喷嘴喷至高速旋转的铜辊,以106℃/S超急冷,铜辊线速度控制在25-35m/s、通过控制喷嘴与铜辊之间0.6-0.8mm缝隙的距离喷出带材;即可得到陶瓷粉末掺杂的高电阻率铁基纳米晶合金薄带。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811103803.4A CN109108238B (zh) | 2018-09-21 | 2018-09-21 | 一种高电阻率铁基纳米晶合金薄带制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811103803.4A CN109108238B (zh) | 2018-09-21 | 2018-09-21 | 一种高电阻率铁基纳米晶合金薄带制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109108238A true CN109108238A (zh) | 2019-01-01 |
CN109108238B CN109108238B (zh) | 2020-03-31 |
Family
ID=64860008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811103803.4A Expired - Fee Related CN109108238B (zh) | 2018-09-21 | 2018-09-21 | 一种高电阻率铁基纳米晶合金薄带制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109108238B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020042534A1 (zh) * | 2018-08-31 | 2020-03-05 | 江西大有科技有限公司 | 一种低损耗纳米晶合金软磁材料及其制备方法 |
CN110957096A (zh) * | 2019-11-11 | 2020-04-03 | 山西中磁尚善科技有限公司 | 一种铁硅铝磁芯及其制备工艺 |
CN112309665A (zh) * | 2020-10-21 | 2021-02-02 | 江苏大磁纳米材料有限公司 | 一种提升铁基纳米晶合金磁性的工艺 |
CN113113205A (zh) * | 2021-04-25 | 2021-07-13 | 福建尚辉润德新材料科技有限公司 | 一种提高铁基纳米晶合金薄带电阻率的方法及合金薄带 |
CN115961203A (zh) * | 2022-12-31 | 2023-04-14 | 创明(韶关)绿色能源材料技术研究院有限公司 | 一种超低铝纳米晶母合金及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257830A (en) * | 1977-12-30 | 1981-03-24 | Noboru Tsuya | Method of manufacturing a thin ribbon of magnetic material |
JPS6431922A (en) * | 1987-07-28 | 1989-02-02 | Hitachi Metals Ltd | Manufacture of fe-base magnetic alloy |
US5522948A (en) * | 1989-12-28 | 1996-06-04 | Kabushiki Kaisha Toshiba | Fe-based soft magnetic alloy, method of producing same and magnetic core made of same |
JP2006291234A (ja) * | 2005-04-05 | 2006-10-26 | Hitachi Metals Ltd | 微結晶合金薄帯 |
CN101020987A (zh) * | 2007-03-23 | 2007-08-22 | 中南大学 | 微波快速晶化制备铁基纳米晶软磁合金的方法 |
CN102543347A (zh) * | 2011-12-31 | 2012-07-04 | 中国科学院宁波材料技术与工程研究所 | 一种铁基纳米晶软磁合金及其制备方法 |
CN103741008A (zh) * | 2013-12-27 | 2014-04-23 | 青岛云路新能源科技有限公司 | 一种铁基纳米晶合金的制备方法 |
CN104078180A (zh) * | 2014-05-28 | 2014-10-01 | 浙江大学 | 一种纳米晶软磁复合材料及其制备方法 |
-
2018
- 2018-09-21 CN CN201811103803.4A patent/CN109108238B/zh not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257830A (en) * | 1977-12-30 | 1981-03-24 | Noboru Tsuya | Method of manufacturing a thin ribbon of magnetic material |
JPS6431922A (en) * | 1987-07-28 | 1989-02-02 | Hitachi Metals Ltd | Manufacture of fe-base magnetic alloy |
US5522948A (en) * | 1989-12-28 | 1996-06-04 | Kabushiki Kaisha Toshiba | Fe-based soft magnetic alloy, method of producing same and magnetic core made of same |
JP2006291234A (ja) * | 2005-04-05 | 2006-10-26 | Hitachi Metals Ltd | 微結晶合金薄帯 |
CN101020987A (zh) * | 2007-03-23 | 2007-08-22 | 中南大学 | 微波快速晶化制备铁基纳米晶软磁合金的方法 |
CN102543347A (zh) * | 2011-12-31 | 2012-07-04 | 中国科学院宁波材料技术与工程研究所 | 一种铁基纳米晶软磁合金及其制备方法 |
CN103741008A (zh) * | 2013-12-27 | 2014-04-23 | 青岛云路新能源科技有限公司 | 一种铁基纳米晶合金的制备方法 |
CN104078180A (zh) * | 2014-05-28 | 2014-10-01 | 浙江大学 | 一种纳米晶软磁复合材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Y. YOSHIZAWA等: "New Febased soft magnetic alloys composed of ultrafine grain structure", <J. APPL PHYS.> * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020042534A1 (zh) * | 2018-08-31 | 2020-03-05 | 江西大有科技有限公司 | 一种低损耗纳米晶合金软磁材料及其制备方法 |
CN110957096A (zh) * | 2019-11-11 | 2020-04-03 | 山西中磁尚善科技有限公司 | 一种铁硅铝磁芯及其制备工艺 |
CN112309665A (zh) * | 2020-10-21 | 2021-02-02 | 江苏大磁纳米材料有限公司 | 一种提升铁基纳米晶合金磁性的工艺 |
CN113113205A (zh) * | 2021-04-25 | 2021-07-13 | 福建尚辉润德新材料科技有限公司 | 一种提高铁基纳米晶合金薄带电阻率的方法及合金薄带 |
CN113113205B (zh) * | 2021-04-25 | 2024-01-30 | 福建尚辉润德新材料科技有限公司 | 一种提高铁基纳米晶合金薄带电阻率的方法及合金薄带 |
CN115961203A (zh) * | 2022-12-31 | 2023-04-14 | 创明(韶关)绿色能源材料技术研究院有限公司 | 一种超低铝纳米晶母合金及其制备方法 |
CN115961203B (zh) * | 2022-12-31 | 2024-05-24 | 创明(韶关)绿色能源材料技术研究院有限公司 | 一种超低铝纳米晶母合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109108238B (zh) | 2020-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109108238A (zh) | 一种高电阻率铁基纳米晶合金薄带制备方法 | |
CN105047348B (zh) | 一种非晶纳米晶软磁合金的电流互感器铁芯及其制备方法 | |
CN104934179A (zh) | 强非晶形成能力的铁基纳米晶软磁合金及其制备方法 | |
CN101805876A (zh) | 一种具有高饱和磁感应强度的非晶合金带材 | |
CN106373690A (zh) | 一种具有良好工艺性能、高饱和磁感应强度的纳米晶软磁合金及其制备方法 | |
CN102953020A (zh) | 一种铁基非晶纳米晶软磁合金材料及其制备方法 | |
CN103667855B (zh) | 一种用废带材冶炼铁基非晶态母合金的方法 | |
CN101509106B (zh) | 一种铁基非晶态合金材料及其制备方法 | |
CN110306130A (zh) | 一种高铁含量Fe-Si-B-P-Cu-Nb非晶纳米晶软磁合金及制备方法 | |
CN106636982B (zh) | 一种铁基非晶合金及其制备方法 | |
CN109295385A (zh) | 一种低损耗纳米晶合金软磁材料及其制备方法 | |
CN104451465B (zh) | 一种用于工业生产的铁基非晶纳米晶软磁合金的制备方法 | |
CN106756644A (zh) | 一种基于硅元素的铁基非晶纳米晶软磁合金及其制备方法 | |
CN104975241A (zh) | 一种非晶合金带材的制造方法 | |
CN103014477A (zh) | 一种冶炼铁基纳米晶母合金的方法 | |
CN103526104B (zh) | 铁基非晶纳米专用中间合金及其冶炼方法 | |
CN102304680A (zh) | 一种低成本且具有优异软磁性能的铁基非晶/纳米晶薄带及其制备方法 | |
CN110079749B (zh) | 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用 | |
CN111748755A (zh) | 一种新型高饱和磁感铁基软磁非晶合金及制备方法 | |
CN105755368A (zh) | 一种铁基纳米晶态软磁合金及其应用 | |
CN103667856B (zh) | 一种回收废带冶炼铁基纳米晶母合金的方法 | |
CN101792890A (zh) | 一种超高饱和磁感应强度铁基纳米晶薄带 | |
CN108330412A (zh) | 一种非晶合金及其生产工艺 | |
CN110400670A (zh) | 高矩形比钴基非晶合金铁芯及其制备方法 | |
CN104805382A (zh) | 一种非晶纳米晶合金薄带及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200331 Termination date: 20210921 |
|
CF01 | Termination of patent right due to non-payment of annual fee |