WO2020042534A1 - 一种低损耗纳米晶合金软磁材料及其制备方法 - Google Patents

一种低损耗纳米晶合金软磁材料及其制备方法 Download PDF

Info

Publication number
WO2020042534A1
WO2020042534A1 PCT/CN2019/072765 CN2019072765W WO2020042534A1 WO 2020042534 A1 WO2020042534 A1 WO 2020042534A1 CN 2019072765 W CN2019072765 W CN 2019072765W WO 2020042534 A1 WO2020042534 A1 WO 2020042534A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
low
soft magnetic
magnetic material
loss
Prior art date
Application number
PCT/CN2019/072765
Other languages
English (en)
French (fr)
Inventor
周国华
毛宇晨
黄丛伟
胡曹生
Original Assignee
江西大有科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西大有科技有限公司 filed Critical 江西大有科技有限公司
Publication of WO2020042534A1 publication Critical patent/WO2020042534A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Definitions

  • the invention relates to an iron-based nanocrystalline alloy soft magnetic material and a preparation method for a wireless charging system, in particular to a low-loss nanocrystalline alloy soft magnetic material and a preparation method thereof.
  • Magnetic isolation material is one of the important materials used to make magnetic isolation and magnetic assembly of wireless charging system. It mainly enhances the induction magnetic field and shields the coil magnetic field, prevents the magnetic field lines from generating eddy current loss and heating through metal devices, and prevents the magnetic field lines from interfering with the normal operation of the circuit through the circuit. Its performance plays a crucial role in the structure and function design of the wireless charging system and the charging efficiency.
  • the ferrite is used as the magnetic isolation material at the transmitting end and the receiving end. With the increasing requirements of magnetic barrier materials for wireless charging systems, ferrite materials have low Bs values, low magnetic permeability, and are difficult to make thin.
  • Iron-based nanocrystalline alloy materials have the advantages of high Bs, low hysteresis loss, adjustable permeability, and thin sheet thickness, which can make consumer electronics such as mobile phones very thin, which is the most ideal for mobile phone wireless charging receiver Magnetic isolation material.
  • traditional iron-based nanocrystalline alloys such as the national standard 1K107, the alloy composition is Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 has a low resistivity of about 90u ⁇ / cm, which is a large eddy current loss when it is used as a wireless magnetically insulating material, which seriously affects Wireless charging efficiency.
  • the invention aims at the problems existing in the prior art, and provides a low-loss nanocrystalline alloy soft magnetic material and a preparation method thereof.
  • By optimizing the alloy formula design by adding V, N and a small amount on the basis of the national standard grade 1K107 alloy composition Rare earth element M.
  • FeCuNbVSiBNM iron-based nanocrystalline alloy thin strips are prepared by single roll melt quenching method after batching, steelmaking to prepare the master alloy, and secondary remelting. It has high resistivity, low loss, high Bs value, high magnetic permeability, and flatness. Good characteristics.
  • One of the objectives of the present invention is to provide a low-loss nanocrystalline alloy soft magnetic material, which is prepared from an iron-based alloy.
  • the composition ratio of the iron-based alloy is Fe, Cu, Nb, V, Si, B, N, M; the mass percentage of each atom in the control element ratio is as follows:
  • the M is any one of Tb or La.
  • the Nb, B, V, and N elemental elements are made of an intermediate alloy material of iron niobium, iron boron, iron vanadium, iron vanadium nitride, or other nitrogen iron compound.
  • Another object of the present invention discloses a method for preparing a low-loss nanocrystalline alloy soft magnetic material, which uses an iron-based alloy as a raw material and includes the following methods:
  • the FeCuNbVSiBNM iron-based nanocrystalline alloy thin strip which is a low-loss nanocrystalline alloy soft magnetic material product, is prepared by a single-roll melt quenching method.
  • the method for preparing a low-loss nanocrystalline alloy soft magnetic material preferably includes the following method steps:
  • the M is any one of Tb or La;
  • step (2) The ratio of iron-based alloy determined according to step (1) is weighed after conversion into a mass ratio.
  • the prepared raw materials are added to the melting device according to the process, and ferroboron and electrolytic copper and silicon are added after they are completely melted.
  • M are added at the end, poured into a cooling cast pan, and form a mother iron-based alloy steel ingot;
  • step (3) secondary remelting, put the mother iron-based alloy steel ingot smelted in step (2) into an intermediate frequency induction melting furnace, remelt it into molten steel, and place the molten steel in a preheating and heat preservation device;
  • step (3) Manufacture a low-loss nanocrystalline alloy soft magnetic material.
  • the molten steel flows from the nozzle at the bottom of the preheating and holding device under the constant pressure of the protective gas.
  • ultra-rapid cooling controlling the linear speed of the copper rolls, and spraying the strip at 25-35m / s by controlling the distance between the nozzle and the copper roll; that is, iron-based nanocrystalline thin strips are prepared It is a low loss nanocrystalline alloy soft magnetic material.
  • the elemental elements of Nb, B, V, and N in the ratio in step (1) are ferro-niobium, ferron-boron, ferro-vanadium, ferro-vanadium nitride, or other nitrogen-iron compound master alloys, respectively.
  • ferro-vanadium nitride or other nitrogen-iron compounds, ferro-vanadium, pure iron, and ferroniobium are sequentially added to the smelting device. After being completely melted, ferro-boron and electrolytic copper are added, and finally silicon and M are added sequentially.
  • the melting device in step (2) is a non-vacuum induction melting furnace, the melting temperature is controlled to be 1500 ° C to 1600 ° C, uniform smelting is performed, and the melting time is controlled to be 100-120min.
  • the remelting in step (3) is to control the remelting temperature to be 1000 ° C. to 1480 ° C. and the remelting time to be 60 to 100 min.
  • the preheating and heat-preserving device in step (3) is an intermediate pressure nozzle package, and the preheating and heat-preserving temperature is controlled to be 1200 ° C to 1350 ° C.
  • the protective gas argon or nitrogen as described in step (4) is used to control the ultra-rapid cooling rate to 10 6 °C / S; and the distance between the nozzle and the copper roller is controlled to be 0.5-0.6 mm.
  • the prepared iron-based nanocrystalline ribbon has a width of 60-75mm and a thickness of 18-20um.
  • the invention adopts the above method steps to complete the preparation process of the low-loss iron-based nanocrystalline soft magnetic alloy thin strip. Since Nb and V are similar elements of the same group, have the same crystal structure, and have similar atomic radii, V and Nb can be used together as an element to prevent grain growth during the heat treatment of nanocrystalline alloys, while reducing costs.
  • the addition of N element forms a secondary phase of Fe 16 N 2 , which can increase the Bs value, initial permeability and resistivity of the nanocrystalline alloy, and the loss is lower. And has a better stress relief effect. Therefore, iron-based nanocrystalline soft magnetic alloy strips with high resistivity, low loss, high Bs value, high magnetic permeability, and good flatness can be obtained.
  • Example 1 is a static hysteresis loop diagram of a low-loss nanocrystalline alloy soft magnetic material product prepared in Example 1 of the present invention
  • Example 2 is a static hysteresis loop diagram of a low-loss nanocrystalline alloy soft magnetic material product prepared in Example 2 of the present invention
  • the technical scheme adopted by the low-loss nanocrystalline alloy soft magnetic material of the present invention includes the following method steps: first determine the iron-based alloy mix design, add V, N, and / or add a small amount of rare earth elements based on the national standard 1K107 alloy composition M; After selecting raw materials and weighing ingredients, sequentially adding them in a non-vacuum induction furnace, steelmaking is performed to prepare a master alloy, and then remelted, and FeCuNbVSiBNM iron-based nanocrystalline alloy thin strips are prepared by a single-roll melt quenching method. That is, low loss nanocrystalline alloy soft magnetic material products.
  • a low-loss nanocrystalline alloy soft magnetic material made of an iron-based alloy, the main constituent elements of the iron-based alloy are Fe, Cu, Nb, V, Si, B, N, M (Tb, La , ...); the atomic percentages in the ratio are as follows:
  • step (3) Put the smelted mother alloy steel ingot in step (2) into an intermediate frequency induction melting furnace and remelt it at a temperature of 1000 ° C to 1480 ° C. After smelting for 60 to 100 minutes, pour the molten steel into a preheating temperature of 1200 ° C to 1350 ° C. In the middle pressure nozzle package;
  • the molten steel flows from the nozzle at the bottom to the high-speed rotating copper roller under the action of protective argon gas and constant pressure, and is controlled at 10 6 °C /
  • the S speed is super-rapidly cooled, the linear speed of the copper roller is controlled at 25-35m / s, and the gap between the nozzle and the copper roller is controlled between 0.5-0.6mm, and the strip is ejected.
  • An iron-based nanocrystalline ribbon with a width of 60-75mm and a thickness of 18-20um is obtained, which is a low-loss nanocrystalline alloy soft magnetic material product.
  • Nb, B, V, and N are ferro-niobium, ferron-boron, and vanadium-iron-nitride intermediate alloys.
  • Ferro-vanadium nitride, pure iron, and ferroniobium are put into the non-vacuum induction furnace melting. After being completely melted, ferron boron and electrolytic copper are added, and silicon and La are added last. The smelting temperature is about 1520 ° C. After uniform smelting for 100 minutes, it is poured into a cooling casting pan to form a master alloy steel ingot;
  • the temperature is about 1300 ° C.
  • the molten steel is poured into a preheated and insulated 1250 ° C intermediate pressure nozzle package.
  • the molten steel flows from the nozzle at the bottom to the high-speed rotating copper roller under the constant pressure of argon gas, and controls the nozzle and the copper roller at a linear speed of 30m / s. The distance between the gaps is 0.5mm.
  • the ejection strip is the invention's low-loss nanocrystalline alloy soft magnetic material;
  • the sprayed strip has a width of 60mm and a thickness of 18-20um. It has high resistivity, low loss, high Bs value, high magnetic permeability and good flatness.
  • Nb, B, V, and N are ferro-niobium, boron, and vanadium-iron nitride intermediate alloys.
  • Iron, pure iron, vanadium iron and ferroniobium are put into the non-vacuum induction furnace for melting. After being completely melted, iron boron and electrolytic copper are added, and silicon is finally added.
  • the melting temperature is about 1500 ° C. After uniform smelting for 100 minutes, it is poured into a cooling casting plate to form a master alloy steel ingot;
  • the smelted master alloy steel ingot is placed in an intermediate frequency induction melting furnace, and is uniformly smelted at a temperature of about 1300 ° C. After smelting for 80 minutes, the molten steel is poured into an intermediate pressure nozzle package which is preheated and kept at 1250 ° C. After the temperature of the molten steel in the intermediate pressure nozzle package is stabilized, the molten steel flows from the nozzle at the bottom to the copper roller rotating at high speed under the action of nitrogen gas and constant pressure, and controls the gap between the nozzle and the copper roller at a linear speed of 30m / s.
  • the spray strip with a distance of 0.5mm is the invention's low-loss nanocrystalline alloy soft magnetic material;
  • the sprayed strip has a width of 60mm and a thickness of 18-20um. It has high resistivity, low loss, high Bs value, high magnetic permeability and good flatness.
  • the resistivity of the thin strip is 210.28u ⁇ / cm, which is much higher than the 90u ⁇ / cm of the national standard 1K107 material; loss P: 48.5W / Kg (100KHz @ 200mT); 100KHz magnetic permeability: 15000 ⁇ 16000; both sides of the thin strip Bend ⁇ 2mm.
  • the raw materials are prepared according to the ratio of Fe 72.5 Cu 1 Nb 1 V 2 Si 13.5 B 9 N 1 and a total of 20Kg.
  • Nb, B, V, and N are ferro-niobium, ferron-boron, and vanadium-iron nitride intermediate alloys.
  • Iron, pure iron, vanadium iron and ferroniobium are put into the non-vacuum induction furnace for melting. After being completely melted, iron boron and electrolytic copper are added, and silicon is finally added.
  • the smelting temperature is about 1520 ° C. After uniform smelting for 120 minutes, it is poured into a cooling casting pan to form a master alloy steel ingot;
  • the smelted master alloy steel ingot is placed in an intermediate frequency induction melting furnace, and is uniformly smelted at a temperature of about 1300 ° C. After 60 minutes of melting, the molten steel is poured into a middle pressure nozzle package which is preheated and maintained at 1250 ° C. After the temperature of the molten steel in the intermediate pressure nozzle package is stabilized, the molten steel flows from the nozzle at the bottom to the high-speed rotating copper roller under the action of nitrogen gas and constant pressure, and controls the gap between the nozzle and the copper roller at a linear speed of 32m / s. Strip the strip at a distance of 0.55mm;
  • the sprayed strip has a width of 65mm and a thickness of 18-20um. It has high resistivity, low loss, high Bs value, high magnetic permeability and good flatness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种纳米晶合金软磁材料及其制备方法,由铁基合金制备而成,元素配比中各原子质量百分比为:Si:12-13.5%,B:7-9%,Nb:1-3%,Cu:1-2%,V:1-2%,N:0.01-3%,M:0-3%,Fe:余量;M 为Tb或La任意一种。经配料、炼钢制备母合金、二次重熔后利用单辊熔体急冷法制备出FeCuNbVSiBNM铁基纳米晶合金薄带,具有高电阻率、低损耗、高Bs值、高磁导率、平整度好等特点。

Description

一种低损耗纳米晶合金软磁材料及其制备方法 技术领域:
本发明涉及一种用于无线充电系统铁基纳米晶合金软磁材料及制备方法,特别是涉及一种低损耗纳米晶合金软磁材料及其制备方法。
背景技术:
隔磁材料,是用于制作无线充电系统隔磁与聚磁组件的重要材料之一。主要是起增强感应磁场和屏蔽线圈磁场,防止磁力线通过金属器件产生涡流损耗发热,并防止磁力线通过电路干扰电路的正常工作。其性能的好坏对无线充电系统结构、功能的设计、充电效率起着至关重要的作用。目前,在无线充电系统中无论在发射端还是接收端使用的隔磁材料都是以铁氧体为主。随着无线充电系统对隔磁材料的要求越来越高,由于铁氧体材料的Bs值低、磁导率低而且很难做薄,随着无线充电大功率快充的发展,已经难以满足要求。而铁基纳米晶合金材料具有高Bs、磁滞损耗低、磁导率可调、片材厚度薄等优势,可使手机等消费电子做得非常薄,是用在手机无线充电接收端最理想的隔磁材料。但传统的铁基纳米晶合金如国标牌号1K107,合金成份为Fe 73.5Cu 1Nb 3Si 13.5B 9电阻率低约为90uΩ/cm,其作为无线充隔磁材料时涡流损耗大,从而严重影响无线充电效率。
因此如何来提供一种用于无线充电系统的低损耗软磁铁基纳米晶合金材料或叫薄带材料及其制备方法,使制备的软磁铁基纳米晶合金材料具有高电阻率、低损耗、高Bs值、高磁导率、平整度好等特点,成为无线充电系统传统隔磁材料理想的替代品。
发明内容:
本发明是针对上述现有技术存在的问题,提供一种低损耗纳米晶合金软磁材料及其制备方法,通过优化合金配方设计,在国标牌号1K107合金成份的基础上通过添加V、N及少量稀土元素M。经配料、炼钢制备母合金、二次重熔后利用单辊熔体急冷法制备出FeCuNbVSiBNM铁基纳米晶合金薄带,具有高电阻率、低损耗、高Bs值、高磁导率、平整度好等特点。
本发明的目的之一是提供一种低损耗纳米晶合金软磁材料,由铁基合金制备而成,其所述铁基合金组成元素配比为Fe、Cu、Nb、V、Si、B、N、M;控制元素配比中各原子质量百分如下:
Figure PCTCN2019072765-appb-000001
Figure PCTCN2019072765-appb-000002
所述M为Tb或La任意一种。
优选的,是所述Nb、B、V、N单质元素,分别采用铌铁、硼铁、钒铁、氮化钒铁或其他氮铁化合物的中间合金材料。
本发明的另一目的公开的是一种制备低损耗纳米晶合金软磁材料的方法,以铁基合金为原料,其是包括以下方法:
先确定铁基合金配比,在国标牌号1K107合金成份的基础上,添加V、N和/或添加少量稀土元素M;将经选用原材料称重配料、按顺序加料至熔炼装置中,进行炼钢制备母合金钢锭,然后二次重熔后,利用单辊熔体急冷法制备出FeCuNbVSiBNM铁基纳米晶合金薄带即低损耗纳米晶合金软磁材料产品。
所述制备低损耗纳米晶合金软磁材料的方法,优选是包括以下方法步骤:
(1)确定所述铁基合金配比,控制所述铁基合金的组成元素配比为Fe、Cu、Nb、V、Si、B、N、M;控制配比中原子百分比如下:
Figure PCTCN2019072765-appb-000003
所述M为Tb或La任意一种;
(2)按照(1)步确定的铁基合金配比,经换算成质量比后称重配料,配好的原材料按照工艺加入熔炼装置中,待完全熔化后再加入硼铁和电解铜,硅和M最后加入,倒入冷却铸盘,形成母铁基合金钢锭;
(3)二次重熔,将(2)步冶炼好的母铁基合金钢锭,放入中频感应熔炼炉,重熔为钢液,将钢液置于预热保温装置中;
(4)制低损耗纳米晶合金软磁材料,待步骤(3)预热保温装置中的钢液温度稳定后,钢液在保护气体的恒压力作用下,从预热保温装置底部的喷嘴流至高速旋转的铜辊,超急冷,控制铜辊线速度,在25-35m/s,通过控制喷嘴与铜辊之间缝隙的距离喷出带材;即制备得到铁基纳米晶薄带即制为低损耗纳米晶合金软磁材料。
优选的,是(1)步所述配比中的Nb、B、V、N单质元素分别采用铌铁、硼铁、钒铁、氮化钒铁或其他氮铁化合物中间合金;控制加料顺序为先将氮化钒铁或其他氮铁化合物、钒铁、纯铁和铌铁依次加入熔炼装置中,待完全熔化后,再加入硼铁和电解铜,最后依次 加入硅和M。
优选的,是(2)步所述熔炼装置为非真空感应熔炼炉,控制熔炼的温度为1500℃-1600℃,进行均匀冶炼,控制熔炼时间为100-120min。
所述制备低损耗纳米晶合金软磁材料的方法,其(3)步所述重熔是控制重熔温度为1000℃-1480℃,重熔时间60-100min。
所述制备低损耗纳米晶合金软磁材料的方法,优选是(3)步所述预热保温装置为中间压力喷嘴包,控制预热保温温度为1200℃-1350℃。
优选的,是(4)步所述保护气体氩气或氮气,控制超急冷速度为10 6℃/S;控制喷嘴与铜辊之间缝隙的距离为0.5-0.6mm。
所述制备低损耗纳米晶合金软磁材料的方法,其(4)步控制制备得到的铁基纳米晶薄带宽度为60-75mm,厚度为18-20um。
本发明采用上述方法步骤,完成了低损耗铁基纳米晶软磁合金薄带的制备工艺过程。由于Nb和V为同族相近元素,具有相同的晶体结构,原子半径相近,因此可采用V和Nb共同作为纳米晶合金热处理过程中阻碍晶粒长大元素,同时降低成本。N元素的加入形成Fe 16N 2二次相,能够提高纳米晶合金的Bs值、初始磁导率及电阻率,损耗也就更低。而且具有更优的去应力效果。因此可获得具有高电阻率、低损耗、高Bs值、高磁导率、平整度好的铁基纳米晶软磁合金薄带。
附图说明:
图1为本发明实施例1制备的低损耗纳米晶合金软磁材料产品的静态磁滞回线图;
图2为本发明实施例2制备的低损耗纳米晶合金软磁材料产品的静态磁滞回线图;
具体实施方式:
下面结合具体实施方式对本发明作进一步的说明,为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明低损耗纳米晶合金软磁材料所采用的技术方案包括以下方法步骤:先确定铁基合金配比设计,在国标牌号1K107合金成份的基础上,添加V、N和/或添加少量稀土元素M;经选用原材料称重配料、按顺序加料在非真空感应炉中,进行炼钢制备母合金,然后二次重熔后,利用单辊熔体急冷法制备出FeCuNbVSiBNM铁基纳米晶合金薄带即低损耗纳米晶合金软磁材料产品。
具体方法步骤为:
(1)一种低损耗纳米晶合金软磁材料,由铁基合金制成,所述铁基合金的主要组成元素为Fe、Cu、Nb、V、Si、B、N、M(Tb、La、……);配比中原子百分比如下:
Figure PCTCN2019072765-appb-000004
以上为原子百分比,质量百分比则用原子百分比乘以其相对原子量;
(2)按照上述给定配方或叫配比,经换算成质量比后称重配料,配好的原材料按照设计的工艺加入熔炼装置为非真空感应炉中进行熔炼,配方中的Nb、B、V、N等单质元素分别采用铌铁、硼铁、钒铁、氮化钒铁或其他氮铁化合物等中间合金;加料顺序为先将氮化钒铁或其他氮铁化合物、钒铁、纯铁和铌铁放进熔炼炉中,待完全熔化后再加入硼铁和电解铜,硅和M最后加入。设定熔炼的温度1500℃-1600℃,均匀冶炼100-120min后,倒入冷却铸盘,形成母合金钢锭或叫母铁基合金钢锭意思相同;
(3)将步骤(2)冶炼好的母合金钢锭放入中频感应熔炼炉,重熔,温度1000℃-1480℃,熔炼60-100min后,将钢液倒入预热保温1200℃-1350℃的中间压力喷嘴包中;
(4)待步骤(3)的中间压力喷嘴包中钢液体温度稳定后,钢液在保护性氩气气体及恒压力作用从底部的喷嘴流至高速旋转的铜辊,控制以10 6℃/S速度进行超急冷,铜辊线速度控制在25-35m/s、通过控制喷嘴与铜辊之间缝隙的距离在0.5-0.6mm之间,喷出带材。即可得到宽度:60-75mm,厚度为18-20um的铁基纳米晶薄带,即为低损耗纳米晶合金软磁材料产品。
实施例1:
下述实施方式中的具体说明未说明之处均与上述说明相同,
按Fe 72Cu 1Nb 1V 2Si 13.5B 9N 0.5La 1比例配制原材料共20Kg,Nb、B、V、N分别采用铌铁、硼铁、氮化钒铁中间合金,加料顺序为先将氮化钒铁、纯铁和铌铁放进非真空感应炉熔炼中,待完全熔化后再加入硼铁和电解铜,硅和La最后加入。熔炼的温度1520℃左右,均匀冶炼100min后,倒入冷却铸盘,形成母合金钢锭;
将冶炼好的母合金钢锭放入中频感应熔炼炉中进行二次重熔,即二次均匀熔炼,温度1300℃左右,熔炼80min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中;待中间压力喷嘴包中钢液体温度稳定后,钢液在氩气气体的恒压力作用下从底部的喷嘴流至高速旋转的铜辊,以30m/s线速度、通过控制喷嘴与铜辊之间缝隙的距离为0.5mm喷出带材,即为发明的低损耗纳米晶合金软磁材料;
所喷制带材,宽度为60mm,厚度为18-20um,具有高电阻率、低损耗、高Bs值、高磁导率、平整度好;经退火热处理后静态磁滞回线如图1所示,Bs=1.392T,Hc=1.907A/m。经检测薄带电阻率为209.16uΩ/cm,远高于国标牌号1K107材质的90uΩ/cm;损耗P:51W/Kg(100KHz@200mT);100KHz磁导率:15000~16000;薄带两边翘曲≤2mm。
实施例2:
以下实施例中未说明之处均与实施例1相同;
按Fe 73Cu 1Nb 2V 1Si 13.5B 9N 0.5比例配制原材料共20Kg,Nb、B、V、N分别采用铌铁、硼铁、氮化钒铁中间合金,加料顺序为先将氮化铁、纯铁、钒铁和铌铁放进非真空感应炉熔炼中,待完全熔化后再加入硼铁和电解铜,硅最后加入。熔炼的温度1500℃左右,均匀冶炼100min后,倒入冷却铸盘,形成母合金钢锭;
将冶炼好的母合金钢锭放入中频感应熔炼炉,二次均匀熔炼,温度1300℃左右,熔炼80min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中。待中间压力喷嘴包中钢液体温度稳定后,钢液在氮气气体及恒压力作用从底部的喷嘴流至高速旋转的铜辊,以30m/s线速度、通过控制喷嘴与铜辊之间缝隙的距离为0.5mm喷出带材为发明的低损耗纳米晶合金软磁材料;
所喷制带材,宽度为60mm,厚度为18-20um,具有高电阻率、低损耗、高Bs值、高磁导率、平整度好;经退火热处理后静态磁滞回线如图2所示,Bs=1.283T,Hc=1.78A/m。经检测薄带电阻率为210.28uΩ/cm,远高于国标牌号1K107材质的90uΩ/cm;损耗P:48.5W/Kg(100KHz@200mT);100KHz磁导率:15000~16000;薄带两边翘曲≤2mm。
实施例3:
按Fe 72.5Cu 1Nb 1V 2Si 13.5B 9N 1比例配制原材料共20Kg,Nb、B、V、N分别采用铌铁、硼铁、氮化钒铁中间合金,加料顺序为先将氮化铁、纯铁、钒铁和铌铁放进非真空感应炉熔炼中,待完全熔化后再加入硼铁和电解铜,硅最后加入。熔炼的温度1520℃左右,均匀冶炼120min后,倒入冷却铸盘,形成母合金钢锭;
将冶炼好的母合金钢锭放入中频感应熔炼炉,二次均匀熔炼,温度1300℃左右,熔炼60min后,将钢液倒入预热保温1250℃的中间压力喷嘴包中。待中间压力喷嘴包中钢液体温度稳定后,钢液在氮气气体及恒压力作用从底部的喷嘴流至高速旋转的铜辊,以32m/s线速度、通过控制喷嘴与铜辊之间缝隙的距离为0.55mm喷出带材;
所喷制带材,宽度为65mm,厚度为18-20um,具有高电阻率、低损耗、高Bs值、高磁导率、平整度好;经退火热处理后静态磁滞回线如图2所示,Bs=1.32T,Hc=2.68A/m。经检 测薄带电阻率为212.5uΩ/cm,远高于国标牌号1K107材质的90uΩ/cm;损耗P:46.8W/Kg(100KHz@200mT);100KHz磁导率:15000~16000;薄带两边翘曲≤2mm。

Claims (10)

  1. 一种低损耗纳米晶合金软磁材料,由铁基合金制备而成,其特征是所述铁基合金组成元素配比为Fe、Cu、Nb、V、Si、B、N、M;控制元素配比中各原子质量百分如下:
    Figure PCTCN2019072765-appb-100001
    所述M为Tb或La任意一种。
  2. 根据权利要求1所述的一种低损耗纳米晶合金软磁材料,其特征是所述Nb、B、V、N单质元素,分别采用铌铁、硼铁、钒铁、氮化钒铁或其他氮铁化合物的中间合金材料。
  3. 一种制备低损耗纳米晶合金软磁材料的方法,以铁基合金为原料,其特征是包括以下方法:先确定铁基合金配比,在国标牌号1K107合金成份的基础上,添加V、N和/或添加少量稀土元素M;将经选用原材料称重配料、按顺序加料至熔炼装置中,进行炼钢制备母合金钢锭,然后二次重熔后,利用单辊熔体急冷法制备出FeCuNbVSiBNM铁基纳米晶合金薄带即低损耗纳米晶合金软磁材料产品。
  4. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是包括以下方法步骤:
    (1)确定所述铁基合金配比,控制所述铁基合金的组成元素配比为Fe、Cu、Nb、V、Si、B、N、M;控制配比中原子百分比如下:
    Figure PCTCN2019072765-appb-100002
    所述M为Tb或La任意一种;
    (2)按照(1)步确定的铁基合金配比,经换算成质量比后称重配料,配好的原材料按照工艺加入熔炼装置中,待完全熔化后再加入硼铁和电解铜,硅和M最后加入,倒入冷却铸盘,形成母铁基合金钢锭;
    (3)二次重熔,将(2)步冶炼好的母铁基合金钢锭,放入中频感应熔炼炉,重熔为钢液,将钢液置于预热保温装置中;
    (4)制低损耗纳米晶合金软磁材料,待步骤(3)预热保温装置中的钢液温度稳定后,钢液在保护气体的恒压力作用下,从预热保温装置底部的喷嘴流至高速旋转的铜辊,超急冷,控制铜辊线速度,在25-35m/s,通过控制喷嘴与铜辊之间缝隙的距离喷出带材;即制备得到铁 基纳米晶薄带即制为低损耗纳米晶合金软磁材料。
  5. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是(1)步所述配比中的Nb、B、V、N单质元素分别采用铌铁、硼铁、钒铁、氮化钒铁或其他氮铁化合物中间合金;控制加料顺序为先将氮化钒铁或其他氮铁化合物、钒铁、纯铁和铌铁依次加入熔炼装置中,待完全熔化后,再加入硼铁和电解铜,最后依次加入硅和M。
  6. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是(2)步所述熔炼装置为非真空感应熔炼炉,控制熔炼的温度为1500℃-1600℃,进行均匀冶炼,控制熔炼时间为100-120min。
  7. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是(3)步所述重熔是控制重熔温度为1000℃-1480℃,重熔时间60-100min。
  8. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是(3)步所述预热保温装置为中间压力喷嘴包,控制预热保温温度为1200℃-1350℃。
  9. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是(4)步所述保护气体氩气或氮气,控制超急冷速度为10 6℃/S;控制喷嘴与铜辊之间缝隙的距离为0.5-0.6mm。
  10. 根据权利要求3所述制备低损耗纳米晶合金软磁材料的方法,其特征是(4)步控制制备得到的铁基纳米晶薄带宽度为60-75mm,厚度为18-20um。
PCT/CN2019/072765 2018-08-31 2019-01-23 一种低损耗纳米晶合金软磁材料及其制备方法 WO2020042534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811012599.5 2018-08-31
CN201811012599.5A CN109295385A (zh) 2018-08-31 2018-08-31 一种低损耗纳米晶合金软磁材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020042534A1 true WO2020042534A1 (zh) 2020-03-05

Family

ID=65165924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072765 WO2020042534A1 (zh) 2018-08-31 2019-01-23 一种低损耗纳米晶合金软磁材料及其制备方法

Country Status (2)

Country Link
CN (1) CN109295385A (zh)
WO (1) WO2020042534A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295385A (zh) * 2018-08-31 2019-02-01 江西大有科技有限公司 一种低损耗纳米晶合金软磁材料及其制备方法
CN111554465B (zh) * 2020-05-12 2021-07-13 全球能源互联网研究院有限公司 一种纳米晶软磁合金及其制备方法和应用
CN113025906A (zh) * 2021-03-05 2021-06-25 江西大有科技有限公司 铁基纳米晶合金材料及其制作方法
CN115961203B (zh) * 2022-12-31 2024-05-24 创明(韶关)绿色能源材料技术研究院有限公司 一种超低铝纳米晶母合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051623A2 (en) * 2006-02-21 2008-05-02 Carnegie Mellon University Soft magnetic alloy and uses thereof
CN102953020A (zh) * 2012-10-30 2013-03-06 苏州朗拓新材料有限公司 一种铁基非晶纳米晶软磁合金材料及其制备方法
CN105671461A (zh) * 2016-04-05 2016-06-15 广州齐达材料科技有限公司 一种非晶材料及其制备方法和用途
CN109108238A (zh) * 2018-09-21 2019-01-01 宜春学院 一种高电阻率铁基纳米晶合金薄带制备方法
CN109295385A (zh) * 2018-08-31 2019-02-01 江西大有科技有限公司 一种低损耗纳米晶合金软磁材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792890B (zh) * 2009-12-09 2011-08-17 青岛云路新能源科技有限公司 一种超高饱和磁感应强度铁基纳米晶薄带
CN106922111B (zh) * 2015-12-24 2023-08-18 无锡蓝沛新材料科技股份有限公司 无线充电用电磁屏蔽片的制备方法及电磁屏蔽片
CN105861958B (zh) * 2016-05-26 2017-12-01 江苏奥玛德新材料科技有限公司 一种低成本的高导磁铁基非晶纳米晶软磁合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051623A2 (en) * 2006-02-21 2008-05-02 Carnegie Mellon University Soft magnetic alloy and uses thereof
CN102953020A (zh) * 2012-10-30 2013-03-06 苏州朗拓新材料有限公司 一种铁基非晶纳米晶软磁合金材料及其制备方法
CN105671461A (zh) * 2016-04-05 2016-06-15 广州齐达材料科技有限公司 一种非晶材料及其制备方法和用途
CN109295385A (zh) * 2018-08-31 2019-02-01 江西大有科技有限公司 一种低损耗纳米晶合金软磁材料及其制备方法
CN109108238A (zh) * 2018-09-21 2019-01-01 宜春学院 一种高电阻率铁基纳米晶合金薄带制备方法

Also Published As

Publication number Publication date
CN109295385A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2020042534A1 (zh) 一种低损耗纳米晶合金软磁材料及其制备方法
CN105741995B (zh) 一种高性能烧结钕铁硼永磁体及其制备方法
CN104136637B (zh) 无取向性电磁钢板的制造方法
CN109108238B (zh) 一种高电阻率铁基纳米晶合金薄带制备方法
CN101935812B (zh) 一种高饱和磁感应强度的铁基非晶软磁合金及其制备方法
CN101805876B (zh) 一种具有高饱和磁感应强度的非晶合金带材
CN104485192B (zh) 一种铁基非晶纳米晶软磁合金及其制备方法
CN102575314B (zh) 低铁损、高磁通密度、取向电工钢板及其制造方法
CN102199721A (zh) 高硅无取向冷轧薄板及其制造方法
JP6236466B2 (ja) 鉄損に優れた方向性電磁鋼板及びその製造方法
CN104131243B (zh) 一种退火不脆的铁基非晶合金及其制备方法
Lobanov et al. Electrotechnical anisotropic steel. Part 1. History of development
CN101358272A (zh) 一种加稀土铈的高牌号无取向电工钢的制备方法
CN101992210A (zh) 一种生产冷轧无取向硅钢无铝钢种的方法
CN104451465B (zh) 一种用于工业生产的铁基非晶纳米晶软磁合金的制备方法
CN104975241A (zh) 一种非晶合金带材的制造方法
CN107488806A (zh) 非晶合金带材的生产工艺
CN102304680A (zh) 一种低成本且具有优异软磁性能的铁基非晶/纳米晶薄带及其制备方法
TWI641702B (zh) 回收性優良的無方向性電磁鋼板
CN102766811A (zh) 一种铁基非晶-纳米晶合金带材及其制备方法
CN102383070B (zh) 用于包含B和Si的铁基非晶合金和纳米晶合金的添加剂
CN108950434B (zh) 一种激磁功率小的铁基非晶带材及其制备方法
CN107419201A (zh) 一种高饱和磁感应强度的非晶合金材料生产方法
CN100436630C (zh) 一种采用薄板坯工艺制造低碳高锰取向电工钢板的方法
JP2003286533A (ja) 高純度フェロボロン、鉄基非晶質合金用母合金および鉄基非晶質合金の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855484

Country of ref document: EP

Kind code of ref document: A1