CN109092330A - CdSQDs@CdIn2S4/CdWO4材料的制备 - Google Patents

CdSQDs@CdIn2S4/CdWO4材料的制备 Download PDF

Info

Publication number
CN109092330A
CN109092330A CN201810902481.3A CN201810902481A CN109092330A CN 109092330 A CN109092330 A CN 109092330A CN 201810902481 A CN201810902481 A CN 201810902481A CN 109092330 A CN109092330 A CN 109092330A
Authority
CN
China
Prior art keywords
cdwo
quality
cdin
solution
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810902481.3A
Other languages
English (en)
Other versions
CN109092330B (zh
Inventor
李莉
刘雁南
王润
田宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201810902481.3A priority Critical patent/CN109092330B/zh
Publication of CN109092330A publication Critical patent/CN109092330A/zh
Application granted granted Critical
Publication of CN109092330B publication Critical patent/CN109092330B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了CdS QDs@CdIn2S4/CdWO4光催化剂的合成方法,属于化工行业技术领域。采用硫脲(CH4N2S),钨酸钠(Na2WO4),硝酸铟(In(NO3)3),醋酸镉(Cd(CH3COO)2)四种化学试剂原料混合放入二次蒸馏水中超声均匀,搅拌均匀后,通过微波反应器微波辐射反应后,得到CdIn2S4/CdWO4。加入使用醋酸镉(Cd(CH3COO)2),硫脲(CH4N2S),巯基丙酸(C3H6O2S)合成的CdS QDs前驱体溶液后,再通过二次微波辐射,烘干得到最终产物CdS QDs@CdIn2S4/CdWO4复合光催化剂。对其晶型结构、微观结构、光催化活性进行了测定,产品性能在降解有机污染物甲基橙和光解水制氢的光催化方面有很大提高。采用微波辅助法,具有反应迅速、产物晶相较好、操作方法简单实用等特点,试样和批量生产性能稳定可靠。

Description

CdSQDs@CdIn2S4/CdWO4材料的制备
技术领域
本发明涉及CdS QDs@CdIn2S4/CdWO4光催化剂的合成方法,属于化工行业技术领域。
背景技术
传统能源消耗及其引起的相关环境问题,引发了人们对可再生和清洁能源的迫切需求。目前,许多半导体光催化剂已经应用于光解水制氢中,但是它们又各自的缺点却限制了其在实际中的应用。通常情况下,量子点具有可以利用热电子或用单一高能光子产生多个电荷载流子的特性,从而提高材料的光催化性能。而近年来,金属硫化物和钨酸盐因它们独特的光学和电学性质而备受关注,并且它们由于其合适的带隙和催化功能而在光催化中得到了研究。硫化镉(CdS)作为一个典型的Ⅱ-Ⅳ型半导体纳米结构可以进行可见光催化剂降解,同时CdS也是用于光解水制氢最有希望的材料之一,因为其在可见光下具有高活性,窄带隙(Eg = 2.4 eV)和用于将质子还原成H2的充分的负带边电位。CdWO4可以被高于其带隙的光能激发以诱导富能电子(e-)-空穴(h+)对,使得能通过光催化,使污染物降解成无毒的二氧化碳成分。而半导体材料CdIn2S4由于带隙较窄(1.7 eV),导带位置(-0.76 eV)更负而成为提高复合材料可见光响应的一种理想的材料。窄带隙的CdS和CdIn2S4与较宽带隙的CdWO4,三者者复合可构建能级匹配的多途径电子传递的复合材料,使得更易通过光解水制氢。
发明内容
本发明利用微波辅助水热法合成了CdS QDs@CdIn2S4/CdWO4光催化剂,首先,利用微波辐射来对合成样品的物理性质以及光催化性能产生影响;其次,通过CdS QDs,CdIn2S4,CdWO4三者非均相复合借助他们纳米尺寸界面之间存在的内嵌电位梯度,来加速电子-空穴对的分离和转移,同时改善复合材料的光稳定性。再其次,量子限域效应使得量子点的禁带可以通过调节量子点的大小来改变,即导带向更负的电位偏移,价带则向更正的电位偏移。因此,CdS QDs的存在更易传递电子,可以有效地增强CdS QDs修饰复合材料的电荷转移效率。最后,CdS QDs易发生光腐蚀的特性,一定程度上限制了其在实际中的应用。同时,光生电荷载体的快速复合比率和对可见光响应较差,损害了CdWO4的实际应用。半导体材料CdIn2S4由于带隙较窄(1.7 eV),导带位置(-0.76 eV)更负而成为提高复合材料可见光响应的一种理想的材料。将三者复合形成异质结材料可以抑制CdS QDs的光腐蚀和提高光生载流子的分离效率,并能增强CdWO4在可见区的吸收,且构建形成能级匹配的多途径电子传递的复合材料。据此,本文设计了一种CdS QDs修饰的CdIn2S4/CdWO4纳米复合材料,通过CdSQDs的修饰得到了纳米复合材料CdS QDs@CdIn2S4/CdWO4,其在可见光区有强吸收并实现太阳光的高利用。
本发明解决其技术问题所采用的技术方案是:称取醋酸镉(Cd(CH3COO)2),质量为0.5531 g,钨酸钠(Na2WO4),质量为0.5877 g,硝酸铟(In(NO3)3),质量为0.2551 g,硫脲(CH4N2S),质量为0.1218 g,将上述称量的药品溶解于30 mL二次蒸馏水,超声10min后,搅拌30 min,得到均一透明的溶液,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为160 ℃,反应时间为90 min的微波水热反应。反应结束后,将沉淀物用去离子水和无水乙醇分别反复洗涤4-5次,放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,取出得到产物CdIn2S4/CdWO4。称取醋酸镉(Cd(CH3COO)2),质量为0.0092 g,硫脲(CH4N2S),质量为0.0030 g,将二者溶解于10 mL二次蒸馏水,逐滴加入巯基丙酸(C3H6O2S),体积为0.375 mL,得到乳白色溶液,随后滴加1 mol•L−1 NaOH,至溶液透明,将溶液与产物混合,超声10 min,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为100 ℃,反应时间为60 min的微波水热反应,,放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,得到最终产物CdS QDs@CdIn2S4/CdWO4
本发明的有益效果是:采用微波辅助水热法合成CdS QDs@CdIn2S4/CdWO4光催化剂。该复合材料由单斜相CdWO4,立方相CdS QDs和立方相CdIn2S4组成。单体CdWO4为相互交错的棒状结构。随着CdS QDs及CdIn2S4的负载,样品本身的形貌未发生明显变化。复合光催化剂在紫外光,模拟日光和可见光下对有机污染物甲基橙具有较好的光降解效果。另外,在无助催化剂并以Na2S-Na2SO3为牺牲剂的条件下,CdS QDs@CdIn2S4/CdWO4在可见光(λ>420nm)照射8 h时产氢量可达221.3 μmol·g-1,其产氢量是市售TiO2(P25)的19.6倍,表明该复合材料具有较高的光解水制氢能力。这是因为复合材料CdS QDs@CdIn2S4/CdWO4中各半导体之间形成了匹配的能带结构,增加了光生电子传递的途径,进一步促进了电子与空穴之间的分离。采用微波辅助水热法比传统水热法相比,具有反应迅速、产物晶相较好、操作方法简单实用等特点,试样和批量生产性能稳定可靠。
附图说明
下面结合附图和具体实施方式对本发明做进一步说明。
图1是CdWO4微观表面形貌图。
图2是CdS QDs@CdIn2S4/CdWO4复合光催化剂微观表面形貌结构图。
图3是CdWO4、CdS QDs@CdWO4、CdS QDs@CdIn2S4/CdWO4紫外光降解甲基橙结果图。
图4是直接光降解、P25、CdWO4、CdS QDs@CdIn2S4/CdWO4的模拟日光催化降解甲基橙结果图。
图5是直接光降解、P25、CdWO4、CdS QDs@CdWO4、CdS QDs@CdIn2S4/CdWO4的可见光催化降解甲基橙动力学结果图。
图6是CdS、CdWO4及CdS QDs@CdWO4、CdS/CdWO4、CdS QDs@CdIn2S4/CdWO4纳米复合材料的UV–Vis/DRS吸收光谱图。
图7是CdS/CdWO4、CdS QDs@CdWO4、CdS QDs@CdIn2S4/CdWO4光解水产氢量对比图。
具体实施方式
称取购于天津科密欧化学试剂厂99.5 %的醋酸镉(Cd(CH3COO)2),质量为0.5531g,购于天津市凯通化学试剂有限公司的99.5 %的钨酸钠(Na2WO4),质量为0.5877 g,购于中国上海国药化学试剂有限公司的硝酸铟(In(NO3)3),质量为0.2551 g,购于天津福晨化学试剂厂的硫脲(CH4N2S),质量为0.1218 g,将上述称量的药品溶解于30 mL二次蒸馏水,超声10min后,搅拌30 min,得到均一透明的溶液,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为160 ℃,反应时间为90 min的微波水热反应。反应结束后,将沉淀物用去离子水和无水乙醇分别反复洗涤4-5次,放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,取出得到产物CdIn2S4/CdWO4。称取醋酸镉(Cd(CH3COO)2),质量为0.0092 g,硫脲(CH4N2S),质量为0.0030 g,将二者溶解于10 mL二次蒸馏水,逐滴加入购于上海迈瑞尔化学技术有限公司的巯基丙酸(C3H6O2S),体积为0.375 mL,得到乳白色溶液,随后滴加1 mol•L−1NaOH,至溶液透明,将溶液与产物混合,超声10 min,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为100 ℃,反应时间为60 min的微波水热反应,,放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,得到最终产物CdS QDs@CdIn2S4/CdWO4
244光催化剂的结构及性能测定:
一、表面形貌和微观结构
CdS QDs@CdIn2S4/CdWO4样品的表面形貌分析结果见图1-2。由图1可清楚地观察到,CdWO4呈现出棒状结构。同时图2结果表明,复合材料形貌表现出棒状结构。
二、光催化性能测定
CdS、CdWO4和CdS QDs@CdIn2S4/CdWO4的光催化活性进行了多模式光催化降解有机污染物甲基橙和光解水制氢的光催化实验。
、降解有机污染物甲基橙见图3、图4显示,CdS QDs@CdIn2S4/CdWO4复合材料在紫外光,模拟日光下对甲基橙的降解均呈现出最高的光催化活性。另外,不同样品对降解甲基橙速率的影响见图5所示。根据实验数据,按照公式-ln(C t /C 0 )=kt+b进行计算,其中,C t 为染料在t时刻的浓度(mg·L-1),C 0 是染料初始浓度(mg·L-1),k是速率常数(min-1),b为截距。由图5可见,-ln(C t /C 0 )与反应时间t基本呈线性关系,这说明染料甲基橙的降解遵循准一级反应动力学。
、紫外-可见漫反射吸收光谱图如图6所示,由图可见,CdWO4在紫外区有很宽的吸收,与CdWO4相比,复合材料CdS QDs@CdIn2S4/CdWO4在可见光区表现出很强的吸收强度。
3、光解水制氢CdS/CdWO4、CdS QDs@CdWO4、CdS QDs@CdIn2S4/CdWO4在Na2S-Na2SO3溶液,光解水制氢速率图7所示。结果表明,CdS QDs@CdIn2S4/CdWO4复合材料具有最好的产氢能力。

Claims (2)

1.CdS QDs@CdIn2S4/CdWO4光催化剂的合成方法,其特征是:称取醋酸镉(Cd(CH3COO)2),质量为0.5531±0.001 g,钨酸钠(Na2WO4),质量为0.5877±0.001 g,硝酸铟(In(NO3)3),质量为0.2551±0.001 g,硫脲(CH4N2S),质量为0.1218±0.001 g,将上述称量的药品溶解于30 mL二次蒸馏水,超声10 min后,搅拌30 min,得到均一透明的溶液,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为160±2 ℃,反应时间为90±3 min的微波水热反应。反应结束后,将沉淀物用去离子水和无水乙醇分别反复洗涤4-5次,放入烘干箱,设定烘干温度60±2 ℃,干燥时间12+0.1 h,取出得到产物CdIn2S4/CdWO4。称取醋酸镉(Cd(CH3COO)2),质量为0.0092±0.001 g,硫脲(CH4N2S),质量为0.0030±0.001 g,将二者溶解于10 mL二次蒸馏水,逐滴加入巯基丙酸(C3H6O2S),体积为0.375±0.001 mL,得到乳白色溶液,随后滴加1 mol•L−1 NaOH,至溶液透明,将溶液与产物混合,超声10 min,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为100±2 ℃,反应时间为60±3min的微波水热反应,,放入烘干箱,设定烘干温度60±2 ℃,干燥时间12+0.1 h,得到最终产物CdS QDs@CdIn2S4/CdWO4
2. 根据权利要求1所述的CdS QDs@CdIn2S4/CdWO4光催化剂,其特征是:称取醋酸镉(Cd(CH3COO)2),质量为0.5531 g,钨酸钠(Na2WO4),质量为0.5877 g,硝酸铟(In(NO3)3),质量为0.2551 g,硫脲(CH4N2S),质量为0.1218 g,将上述称量的药品溶解于30 mL二次蒸馏水,超声10min后,搅拌30 min,得到均一透明的溶液,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为160 ℃,反应时间为90 min的微波水热反应。反应结束后,将沉淀物用去离子水和无水乙醇分别反复洗涤4-5次,放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,取出得到产物CdIn2S4/CdWO4。称取醋酸镉(Cd(CH3COO)2),质量为0.0092 g,硫脲(CH4N2S),质量为0.0030 g,将二者溶解于10 mL二次蒸馏水,逐滴加入巯基丙酸(C3H6O2S),体积为0.375 mL,得到乳白色溶液,随后滴加1 mol•L−1 NaOH,至溶液透明,将溶液与产物混合,超声10 min,将溶液倒入100 mL聚四氟乙烯内衬的微波反应器中,进行反应温度为100℃,反应时间为60 min的微波水热反应,,放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,得到最终产物CdS QDs@CdIn2S4/CdWO4
CN201810902481.3A 2018-08-09 2018-08-09 CdSQDs@CdIn2S4/CdWO4材料的制备 Expired - Fee Related CN109092330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810902481.3A CN109092330B (zh) 2018-08-09 2018-08-09 CdSQDs@CdIn2S4/CdWO4材料的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810902481.3A CN109092330B (zh) 2018-08-09 2018-08-09 CdSQDs@CdIn2S4/CdWO4材料的制备

Publications (2)

Publication Number Publication Date
CN109092330A true CN109092330A (zh) 2018-12-28
CN109092330B CN109092330B (zh) 2021-03-02

Family

ID=64849242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810902481.3A Expired - Fee Related CN109092330B (zh) 2018-08-09 2018-08-09 CdSQDs@CdIn2S4/CdWO4材料的制备

Country Status (1)

Country Link
CN (1) CN109092330B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239206A (zh) * 2020-02-13 2020-06-05 吉林大学 一种醇类气体传感器及其制备方法
CN115779933A (zh) * 2022-11-14 2023-03-14 上海理工大学 一种复合三元异质结光催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623803A (zh) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 一种可见光光催化剂及其制备方法
CN105642316A (zh) * 2015-12-22 2016-06-08 江苏大学 一种制备BiOI/CdWO4异质结光催化剂的方法
CN106076364A (zh) * 2016-06-07 2016-11-09 温州大学 一种高效CdS‑CdIn2S4超结构光催化剂的制备方法
CN106890655A (zh) * 2017-01-16 2017-06-27 南京工业大学 一种具有高效可见光催化活性的Ag/AgCl/CdWO4催化剂
CN107742581A (zh) * 2017-09-15 2018-02-27 华南农业大学 一种基于混合溶剂提高吸附量制备量子点太阳电池的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623803A (zh) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 一种可见光光催化剂及其制备方法
CN105642316A (zh) * 2015-12-22 2016-06-08 江苏大学 一种制备BiOI/CdWO4异质结光催化剂的方法
CN106076364A (zh) * 2016-06-07 2016-11-09 温州大学 一种高效CdS‑CdIn2S4超结构光催化剂的制备方法
CN106890655A (zh) * 2017-01-16 2017-06-27 南京工业大学 一种具有高效可见光催化活性的Ag/AgCl/CdWO4催化剂
CN107742581A (zh) * 2017-09-15 2018-02-27 华南农业大学 一种基于混合溶剂提高吸附量制备量子点太阳电池的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239206A (zh) * 2020-02-13 2020-06-05 吉林大学 一种醇类气体传感器及其制备方法
CN111239206B (zh) * 2020-02-13 2021-09-17 吉林大学 一种醇类气体传感器及其制备方法
CN115779933A (zh) * 2022-11-14 2023-03-14 上海理工大学 一种复合三元异质结光催化剂的制备方法

Also Published As

Publication number Publication date
CN109092330B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
Ghanbari et al. Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes
CN105950140B (zh) 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法
Yu et al. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation
CN107497456B (zh) 层状氯氧化铋可见光催化剂的制备方法及其应用
Wang et al. High photocatalytic activity over starfish-like La-doped ZnO/SiO2 photocatalyst for malachite green degradation under visible light
Jiménez-Relinque et al. TiO2 cement-based materials: Understanding optical properties and electronic band structure of complex matrices
CN108435194B (zh) 铁酸铋/钨酸铋异质结光催化材料及其制备方法
CN106076367B (zh) 一种制备CdS/CoWO4异质结复合光催化剂的方法
CN107282077A (zh) 一种光催化固氮催化剂的制备方法及其应用
CN103623847B (zh) 一种CdSe-Bi2WO6光催化剂的制备方法
CN103130267A (zh) 一种可见光响应黑色二氧化钛光催化剂的制备方法
CN109225271B (zh) 一种SrTiO3/SnCoS4高效光催化剂的制备方法及其应用
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
CN108855131A (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
CN103769185A (zh) 一种纳米级正方形片状碳酸氧铋光催化剂的制备方法
Muñoz-Batista et al. Surface CuO, Bi2O3, and CeO2 species supported in TiO2-anatase: study of interface effects in toluene photodegradation quantum efficiency
CN109092330A (zh) CdSQDs@CdIn2S4/CdWO4材料的制备
CN109225273A (zh) 一种硫化铜/硫化钨复合光催化剂及其制备方法
CN105536765B (zh) 一种贝壳基掺硼二氧化钛复合光催化剂及其制备方法
CN110368922A (zh) 一种三氧化二铟光催化复合材料的构建方法
CN105771953B (zh) 一种钛酸锌/二氧化钛复合纳米材料的制备方法
CN107224972A (zh) 花球状结构ZnO/ZnWO4光催化剂的合成方法
CN105688937B (zh) 一种二氧化钛-石墨烯-硫化镉复合材料的制备方法
CN106582758A (zh) 层级纳米结构Bi2O3/(BiO)2CO3的制备
CN108325547A (zh) 复合光催化剂贝壳基掺硼二氧化钛及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210302

Termination date: 20210809