CN105950140B - 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法 - Google Patents

一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法 Download PDF

Info

Publication number
CN105950140B
CN105950140B CN201610273320.3A CN201610273320A CN105950140B CN 105950140 B CN105950140 B CN 105950140B CN 201610273320 A CN201610273320 A CN 201610273320A CN 105950140 B CN105950140 B CN 105950140B
Authority
CN
China
Prior art keywords
znin
quantum dot
luminescent quantum
photochemical catalyst
hydro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610273320.3A
Other languages
English (en)
Other versions
CN105950140A (zh
Inventor
毛宝东
宫关
刘艳红
陈天俊
王勃
谭丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610273320.3A priority Critical patent/CN105950140B/zh
Publication of CN105950140A publication Critical patent/CN105950140A/zh
Application granted granted Critical
Publication of CN105950140B publication Critical patent/CN105950140B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及纳米材料合成领域,特指利用简单快速的水热法一步合成一系列Ag:ZnIn2S4发光量子点,荧光在460‑830nm可调,具有较强的荧光寿命,可用于可见光下分解水制氢。首先将硝酸银、硝酸铟、二水合乙酸锌、L‑半胱氨酸混合溶于水溶液中,用NaOH调节溶液pH值为8.5,加入硫代乙酰胺超声搅拌,然后在110度条件下水热反应4小时,反应结束后经过离心干燥,得到不同比例Ag@ZnIn2S4纳米晶。通过在可见光下光催化制氢实验证明所制备的复合光催化剂具有良好的光催化活性。

Description

一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法
技术领域
本发明涉及纳米材料合成领域,特指利用简单快速的水热法一步合成一系列Ag:ZnIn2S4发光量子点,荧光在460-830nm可调,具有较强的荧光寿命,可用于可见光下分解水制氢。
背景技术
三元金属硫化物ZnIn2S4属于AB2X4家族的复合半导体化合物,是一类具有独特光电性能和催化性能的新型光催化剂,禁带宽度较窄,在可见光区域具有较强的吸收,可提高光能利用率,为了进一步提高光催化活性,国内外学者通过贵金属沉积,半导体复合,金属离子掺杂以及光敏化等手段,对光催化剂进行改性用于制氢,环境处理等方面,从而在光催化领域被广泛研究。由于过渡金属元素存在多个化合价,将少量的过渡金属离子掺入到半导体材料的晶格中,引入缺陷位或者改变其结晶度,影响光生电子-空穴对的复合及其传递过程,从而影响半导体的光催化活性,掺杂能级相当于为光生电子提供了一个跳板,使电子分两步或多步跃迁至导带,可以实现较低能量的长波长可见光激发,在晶格中掺杂金属离子,可以成为光生电子-空穴对的俘获阱,抑制二者的复合,使得电子-空穴对的分离效率有所提高。Lei等(Chemical Communicatoin 17(2003)2142-2143.)首次报道采用水热法合成了ZnIn2S4催化剂,并发现了它在可见光下具有活性和较强稳定性的分解水制氢性能。为了进一步提高其催化活性,研究者对其做了不同方法的修饰和改进,其中适量的金属离子掺杂能够有效地提高ZnIn2S4的催化活性,如Co掺杂ZnIn2S4催化剂,Cu掺杂ZnIn2S4催化剂,N掺杂ZnIn2S4催化剂等,然而,到目前为止还没有Ag:ZnIn2S4发光量子点的制备及光催化应用的报道。
发明内容
本发明目的在于提供一种简单快速的Ag:ZnIn2S4发光量子点材料的合成方法,该方法以硝酸银、硝酸铟、二水合乙酸锌、L-半胱氨酸、硫代乙酰胺、氢氧化钠为原料,利用一步水热法来合成具有可见响应的光催化纳米晶光催化剂的方法。
本发明通过以下步骤实现:
(1)步骤1:称取硝酸铟、二水合乙酸锌、L-半胱氨酸均匀混合溶于水溶液 中,得到溶液A。
所述二水合乙酸锌、硝酸铟和L-半胱氨酸的摩尔比为1:2:3。
步骤2:用NaOH溶液调节溶液A至PH值为8.5,得到溶液B;:NaOH的浓度为1mol/L。
步骤3:将硫代乙酰胺溶液加入溶液B,均匀混合,将样品转移于水热釜中,在110度条件下水热反应4小时,反应结束后经过离心洗涤,得到ZnIn2S4量子点。
所述二水合乙酸锌、硝酸铟和硫代乙酰胺的摩尔比为1:2:3.82。
调节pH值是为了在加入硫代乙酰胺之前使锌铟前驱体与L-半胱氨酸相互作用,避免在较低的水热反应温度生成下ZnS样品。
所述Ag:ZnIn2S4发光量子点的制备方法为:在步骤1中同时加入不同量的硝酸银,剩下的制备方法和上述ZnIn2S4量子点制备方法一样,其中调节前驱体硝酸银、硝酸铟、二水合乙酸锌的比例使得Ag:In:Zn摩尔比分别为0.25-3:10:5。
具体步骤为:称取硝酸银,硝酸铟,二水合乙酸锌混合配成水溶液,在持续搅拌下加入L-半胱氨酸,使其充分溶解,接着用NaOH将溶液pH值调为8.5,再加入硫代乙酰胺搅拌,然后将上述混合溶液转移到水热反应釜中进行水热反应,反应结束后,冷却至室温,将溶液过滤,洗涤,烘干,得到Ag:ZnIn2S4发光量子点和光催化剂。
(2)本发明所制备的Ag:ZnIn2S4发光量子点光催化剂,晶化完全,分散性良好。
本发明主要采用水热法在较低温度下合成,研究了掺杂少量金属元素Ag于ZnIn2S4催化剂的光催化性能,吸收红移提高了光能利用率,荧光向近红外区移动,可用于生物标记方面,光催化活性显著提高,掺杂Ag后,Ag离子部分取代Zn离子使得能带结构改变,硫空位或缺陷态提供更多活性位点增强了光催化性能。Ag掺杂吸收增强,光能利用率增加,带隙减小,由于量子限域效应催化性能增强,荧光寿命增强主要是内部缺陷引起电荷迁移速率的增强。
(3)利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、紫外可见光分光光度计,X光电子能谱仪等仪器对产物进行结构分析,以Na2SO3/Na2S溶液作为牺牲试剂进行光催化制氢实验,通过气相色谱仪检测,显示出优异的光催化活性;本发明工艺非常简单,价廉易得,成本低廉,反应时间较短,利用太阳光 能转化为清洁能源减少了能耗和反应成本,便于批量生产,无毒无害,符合可持续发展要求。
附图说明
图1为所制备不同比例的Ag:ZnIn2S4发光量子点光催化剂的XRD衍射谱图。
图2(a)为所制备不同比例的Ag:ZnIn2S4发光量子点光催化剂紫外可见光吸收光谱图,图2(b)为对应的荧光光谱图。
图3为所制备两种不同比例Ag:ZnIn2S4发光量子点光催化剂的透射高分辨电镜照片;(a)、(b)分别对应Ag:In:Zn摩尔比为0.5:10:5,1.5:10:5对比图。
图4为所制备不同比例的Ag:ZnIn2S4发光量子点光催化剂的可见光光催化制氢时间与制氢量关系图。
具体实施方式
实施例1 Ag:ZnIn2S4发光量子点光催化剂的制备
取硝酸银、硝酸铟、二水合乙酸锌、L-半胱氨酸混合溶于水溶液中,用NaOH调节溶液pH值为8.5,加入硫代乙酰胺超声搅拌,然后在110度条件下水热反应4小时,反应结束后经过离心干燥,得到Ag:ZnIn2S4发光量子点;二水合乙酸锌、硝酸铟和L-半胱氨酸的加入量分别为1mmol,2mmol,3mmol;硫代乙酰胺的加入量为3.82mmol;硝酸银的加入量分别为:0.05mmol、0.1mmol,0.15mmol,0.2mmol,0.3mmol,0.4mmol,0.6mmol。
实施例2 Ag:ZnIn2S4发光量子点光催化剂的表征分析
如图1所示,从图中可以看出随着掺杂Ag量的增加,仍主要是ZnIn2S4量子点的峰出现微小的角度偏移,预示着结晶度提高。
如图2所示,从图中可以看到随着掺杂Ag量的增加,吸收光谱红移,吸收范围逐渐向长波长方向移动,提高了对可见光的利用率;荧光发射峰向近红外区移动,可用于生物标记方面。
如图3所示,从图中可以看出不同比例的Ag:ZnIn2S4发光量子点仅几纳米,随着掺杂Ag的增加,纳米尺寸逐渐增大。
如图4所示,图中可以清楚看到不同比例的Ag:ZnIn2S4发光量子点光催化剂具有优异的光催化制氢活性。
实施例3 Ag:ZnIn2S4发光量子点光催化剂的可见光催化活性实验
(1)配制浓度为0.25MNa2SO3/0.35MNa2S混合溶液作为牺牲试剂,超声搅拌。
(2)称取一系列不同比例的Ag:ZnIn2S4发光量子点光催化剂各100mg,分别置于光催化反应器中,加入100mL步骤(1)所配好的目标牺牲试剂,磁力搅拌20min待光催化剂分散均匀后,渡铂或不渡铂,真空环境,打开光源,进行光催化制氢实验。
(3)每1h取采集一次样,利用气相色谱仪检测。
(4)由图4可见所制备的光催化剂具有优异的可见光催化活性,尤其是Ag:In:Zn比例为1.5:10:5时的Ag:ZnIn2S4发光量子点,催化剂5h产氢量为920μmol/g,比其他比例的Ag:ZnIn2S4发光量子点活性都要高。

Claims (3)

1.一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法,其特征在于,取硝酸银、硝酸铟、二水合乙酸锌、L-半胱氨酸混合溶于水溶液中,用NaOH调节溶液pH值为8.5,加入硫代乙酰胺超声搅拌,然后在110度条件下水热反应4小时,反应结束后经过离心干燥,得到Ag:ZnIn2S4发光量子点;二水合乙酸锌、硝酸铟和L-半胱氨酸的加入量分别为1mmol,2mmol,3mmol;硫代乙酰胺的加入量为3.82mmol;硝酸银的加入量为0.15mmol。
2.如权利要求1所述制备方法制备的Ag:ZnIn2S4发光量子点和光催化剂在生物标记方面的用途。
3.如权利要求1所述制备方法制备的Ag:ZnIn2S4发光量子点和光催化剂在光催化制氢中的用途。
CN201610273320.3A 2016-04-28 2016-04-28 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法 Expired - Fee Related CN105950140B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610273320.3A CN105950140B (zh) 2016-04-28 2016-04-28 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610273320.3A CN105950140B (zh) 2016-04-28 2016-04-28 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法

Publications (2)

Publication Number Publication Date
CN105950140A CN105950140A (zh) 2016-09-21
CN105950140B true CN105950140B (zh) 2019-02-05

Family

ID=56916004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610273320.3A Expired - Fee Related CN105950140B (zh) 2016-04-28 2016-04-28 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法

Country Status (1)

Country Link
CN (1) CN105950140B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020139A (zh) * 2017-04-26 2017-08-08 中国科学院长春光学精密机械与物理研究所 光催化制备氢气的催化剂及光催化制备氢气的方法
CN107297213A (zh) * 2017-05-31 2017-10-27 盐城工学院 一种制备四元硫化物量子点光催化剂的方法
CN107890875B (zh) * 2017-09-13 2020-07-31 江苏大学 一种AgIn5S8-ZnS量子点及其制备方法和用途
CN107552073A (zh) * 2017-09-13 2018-01-09 重庆大学 一种MoS2‑AIZS纳米复合材料的制备方法及其产品和应用
CN107805498A (zh) * 2017-11-03 2018-03-16 深圳大学 一种钙钛矿量子点及其制备方法
CN108084994B (zh) * 2017-12-13 2019-08-06 重庆大学 一种基于水性银铟锌硫荧光量子点选择性检测镉离子的方法
CN108993564A (zh) * 2018-07-02 2018-12-14 江苏大学 原位生长法一步合成量子点/纳米片异质结复合光催化剂
CN108855143A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构ZnIn2S4/Ag/Bi2WO6复合光催化剂的制备方法
CN109365001B (zh) * 2018-09-18 2021-12-21 江苏大学 一种Ag-In-Zn-S/CQDs异质结材料的合成方法
CN109395744B (zh) * 2018-11-07 2021-05-25 江苏大学 一种Ag2O量子点杂化ZnIn2S4纳米片p-n型复合光催化剂的制备方法
CN110252340A (zh) * 2019-05-13 2019-09-20 江苏大学 水热法合成Zn-AgIn5S8/ZnS超薄核壳结构量子点光催化剂及其应用
CN110124693A (zh) * 2019-05-28 2019-08-16 沈阳化工大学 石墨烯复合金属离子掺杂缺陷型半导体光催化剂制备方法
CN110508291B (zh) * 2019-09-02 2020-10-13 中国矿业大学 一种Au-ZnIn2S4纳米阵列电极光催化固氮材料的制备方法
CN110624583A (zh) * 2019-09-03 2019-12-31 沈阳化工大学 一种复合石墨相氮化碳异质结光催化剂的制备方法
CN110624563A (zh) * 2019-09-03 2019-12-31 沈阳化工大学 一种银离子掺杂硫代铟酸锌异质结光催化剂制备方法
CN110624562A (zh) * 2019-09-03 2019-12-31 沈阳化工大学 一种复合硫化镉异质结光催化剂的制备方法
CN110876945B (zh) * 2019-11-19 2021-04-20 西安交通大学 一种碳纳米空心球中限域生长ZnIn2S4光催化剂及其制备方法
CN110961121B (zh) * 2019-11-26 2022-10-28 江苏大学 一种z型光催化剂及制备方法和应用
CN111790404B (zh) * 2020-07-08 2022-07-26 齐鲁工业大学 一种缺陷型硫铟锌微球可见光催化剂及制备方法与应用
CN111957334A (zh) * 2020-07-16 2020-11-20 沈阳化工大学 一种复合三元异质结光催化剂制备方法
CN112774694B (zh) * 2021-01-06 2022-07-22 江苏大学 功能性碳量子点修饰Ag-In-Zn-S量子点的制备方法和应用
CN113134364A (zh) * 2021-03-30 2021-07-20 沈阳化工大学 一种WO3/Ag:ZnIn2S4复合半导体光催化剂制备方法
CN114292641B (zh) * 2022-01-11 2023-06-13 南昌航空大学 一种硫化铟锌量子点的制备方法
CN115282986A (zh) * 2022-07-08 2022-11-04 浙江工业大学 一种掺杂-空位双位点的二维硫铟锌光催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068979A (zh) * 2011-01-07 2011-05-25 大连海事大学 ZnIn2S4可见光催化剂降解甲基橙染料废水的方法
CN102218333A (zh) * 2011-01-07 2011-10-19 大连海事大学 一种在低温下制备ZnIn2S4可见光催化剂的方法
CN102795661A (zh) * 2012-09-11 2012-11-28 黑龙江大学 一种分级花状ZnIn2S4三元化合物的制备方法
CN105214690A (zh) * 2015-09-25 2016-01-06 安徽医科大学第一附属医院 一种牡丹花状异质结构微米球光催化剂及其制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068979A (zh) * 2011-01-07 2011-05-25 大连海事大学 ZnIn2S4可见光催化剂降解甲基橙染料废水的方法
CN102218333A (zh) * 2011-01-07 2011-10-19 大连海事大学 一种在低温下制备ZnIn2S4可见光催化剂的方法
CN102795661A (zh) * 2012-09-11 2012-11-28 黑龙江大学 一种分级花状ZnIn2S4三元化合物的制备方法
CN105214690A (zh) * 2015-09-25 2016-01-06 安徽医科大学第一附属医院 一种牡丹花状异质结构微米球光催化剂及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biomolecule-assisted synthesis of ZnIn2S4 flower-like hollow microspheres;Yanping Zhang et al.;《Materials Letters》;20130403;185–188
Hydrothermal synthesis of zinc indium sulfide microspheres with Ag+ doping for enhanced H2 production by photocatalytic water splitting under visible light;Fan Li et al.;《Catal. Sci. Technol.》;20140106;1144–1150,ESI

Also Published As

Publication number Publication date
CN105950140A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105950140B (zh) 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法
Oliveira et al. Connecting theory with experiment to understand the photocatalytic activity of CuO–ZnO heterostructure
Hezam et al. Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures as efficient sunlight-driven photocatalysts
Cavdar et al. Remarkable visible-light induced hydrogen generation with ZnIn2S4 microspheres/CuInS2 quantum dots photocatalytic system
CN105688953A (zh) 一种制备BiOI/WO3异质结复合光催化剂的方法
CN106076367B (zh) 一种制备CdS/CoWO4异质结复合光催化剂的方法
CN103623847B (zh) 一种CdSe-Bi2WO6光催化剂的制备方法
CN106622318B (zh) 一种以双金属纳米粒子为异质结的层状复合光催化剂及其制备方法
CN104108753A (zh) 一种可见光响应的BiVO4催化剂的制备
Aadil et al. Generation of mesoporous npn (ZnO–CuO–CeO2) heterojunction for highly efficient photodegradation of micro-organic pollutants
CN105642316A (zh) 一种制备BiOI/CdWO4异质结光催化剂的方法
CN107890875A (zh) 一种AgIn5S8‑ZnS量子点及其制备方法和用途
CN105478117A (zh) 一种对太阳光具有强吸收性能的金氧化锌核壳异质纳米粒子及其制备方法
Sun et al. A novel dual S-scheme heterojunction photocatalyst β-Bi2O3/NiAl-LDH/α-Bi2O3 induced by phase-transformed bismuth oxide for efficient degradation of antibiotics in full-spectrum: Degradation pathway, DFT calculation and mechanism insight
Luo et al. Lanthanide–titanium-oxalate clusters and their degradation products, photocurrent response and photocatalytic behaviours
Becerra-Paniagua et al. Facile and green synthesis of Cu/Cu2O composite for photocatalytic H2 generation
Wu et al. The synergistic role of double vacancies within AgGaS 2 nanocrystals in carrier separation and transfer for efficient photocatalytic hydrogen evolution
CN106732683A (zh) 一种合成等离子体复合光催化剂的方法
CN108568302B (zh) 一种正对称双Z型体系声催化剂SnO2–CdSe–Bi2O3及其制备方法和应用
Jiang et al. Ag 3 VO 4/gC 3 N 4/diatomite ternary compound reduces Cr (vi) ion in aqueous solution effectively under visible light
CN109382088A (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
CN106881118B (zh) 一种离子交换法合成异质结光催化剂的方法
CN106582667B (zh) 一种铒离子掺杂钴酸镧光催化剂粉体及其制备方法和应用
CN102786080B (zh) 氧化铟锡化合物及其制备方法与光催化应用
CN105032471B (zh) 一种可见光响应的纳米TiO2/沸石复合材料的制备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190205

CF01 Termination of patent right due to non-payment of annual fee