CN109087821A - 羟基氧化锰自支撑复合电极及其制备方法和应用 - Google Patents

羟基氧化锰自支撑复合电极及其制备方法和应用 Download PDF

Info

Publication number
CN109087821A
CN109087821A CN201811042972.1A CN201811042972A CN109087821A CN 109087821 A CN109087821 A CN 109087821A CN 201811042972 A CN201811042972 A CN 201811042972A CN 109087821 A CN109087821 A CN 109087821A
Authority
CN
China
Prior art keywords
electrode
manganese oxide
nickel foam
preparation
supporting combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811042972.1A
Other languages
English (en)
Other versions
CN109087821B (zh
Inventor
杨杰
陈改荣
马志华
王刘杰
张晨阳
姚文惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang University
Original Assignee
Xinxiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang University filed Critical Xinxiang University
Publication of CN109087821A publication Critical patent/CN109087821A/zh
Application granted granted Critical
Publication of CN109087821B publication Critical patent/CN109087821B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了羟基氧化锰自支撑复合电极及其制备方法和应用。采用气相沉积和电沉积法制备得到NF/GF/MnOOH自支撑复合电极。该电极具有较高的容量、良好的倍率性能和较长的循环稳定性。

Description

羟基氧化锰自支撑复合电极及其制备方法和应用
技术领域
本发明涉及电池超级电容器电极制备技术,具体涉及羟基氧化锰自支撑复合电极及其制备方法和应用。
背景技术
在传统电极制作工艺中,一般是将活性物质、导电剂及粘结剂混合,制成浆料或薄膜,然后涂布或压制在集流体上,再在极片一端焊接上金属条作为极耳,从而制成电极。这种电极制作方法由于加入了粘结剂,往往导电性比较差;需要焊接极耳,增加了成本;整个过程步骤繁多,工艺复杂。自支撑结构的电极是一次成型制备方法,工艺简单,可以降低生产成本,并且不使用任何添加剂,可以提高电极的导电性,这对于电极电化学性能的提高也是非常重要的,因此,制备自支撑结构的电极对于超级电容器技术的研究具有重要意义。
发明内容
为了解决现有技术的不足,本发明提供了羟基氧化锰自支撑复合电极及其制备方法和应用。
本发明的技术方案是:羟基氧化锰自支撑复合电极的制备方法,将泡沫镍放置在坩埚中,再将坩埚放入高温管式炉中,将管式炉抽成真空,通入Ar和H2,将高温管式炉程序设置为以50℃min-1的速率升温至1000℃,恒温10min后通入CH4,之后接着恒温1h,然后关闭H2和CH4,自然冷却至室温后,关闭Ar,得到泡沫镍/泡沫石墨烯电极;配置0.1M硫酸钠和0.1M乙酸锰的混合(wt%=0.82:1)溶液为电解液,以制备的泡沫镍/泡沫石墨烯电极为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极组成三电极体系,在电化学工作上选用循环伏安法,设定电压范围为0.5-1.2V,扫描速率为200mV/s,扫描时间为5min,得到泡沫镍/泡沫石墨烯/羟基氧化锰;将得到的电极依次水洗乙醇洗,放入真空干燥箱80℃烘24h,将烘干后的电极片放入马弗炉中,设置升温速度为10℃min-1至400度,保持6h后自然冷却至室温后取出即得。
本发明的进一步改进包括:
所述泡沫镍还包括预处理,具体包括将剪切好的泡沫镍放入烧杯中,加入丙酮,在超声波清洗机中超声10min。然后,放入真空干燥箱中80℃烘24h。
所述通入Ar、H2和CH4速率分别为200sccm、100sccm和100sccm。
本发明的另一目的在于提供了一种按照上述方法制得的羟基氧化锰自支撑复合电极。
本发明还提供了羟基氧化锰自支撑复合电极在制备超级电容器中的应用。
本发明采用气相沉积和电沉积法制备得到NF/GF/MnOOH自支撑复合电极。本发明首次制备得到这种三相复合结构的自支撑电极,并研究了它在超级电容器性能。该电极具有较高的容量、良好的倍率性能和较长的循环稳定性。
附图说明
图1为实施例1制备的NF/GF/MnOOH自支撑复合电极的XRD图;
图2为实施1例制备的NF/GF/MnOOH自支撑复合电极的SEM图;
图3为实施1例制备的NF/GF/MnOOH自支撑复合电极的在各个电流密度下的充放电曲线图;
图4为实施1例制备的NF/GF/MnOOH自支撑复合电极的循环性能图。
具体实施方式
下面结合附图对本发明做详细说明。
实施例1
(1)将泡沫镍(NF)剪成的形状(1×1×1.5cm),放入烧杯中,加入丙酮,在超声波清洗机中超声10min。然后,放入真空干燥箱中80℃烘24h;
(2)将(1)中的NF放置在坩埚中,再将坩埚放入高温管式炉中,将管式炉抽成真空,通入Ar(200sccm)和H2(100sccm),将高温管式炉程序设置为以50℃m的速率升温至1000℃,恒温10min后通入CH4(100sccm),之后接着恒温1h,到达时间后,关闭H2和CH4,自然冷却至室温后,关闭Ar,得到泡沫镍/泡沫石墨烯(NF/GF电极)
(3)配置0.1M硫酸钠和0.1M乙酸锰的混合溶液为电解液,以上述制备的电极为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极组成三电极体系,在电化学工作上选用循环伏安法,设定电压范围为0.5-1.2V,扫描速率为200mV/s,扫描时间为5min,得到泡沫镍/泡沫石墨烯/羟基氧化锰(NF/GF/MnOOH电极)
(4)将得到的电极水洗乙醇洗,放入真空干燥箱80℃烘24h。
(5)将(4)步骤所得的电极片放入马弗炉中,设置升温速度为10℃min-1,温400度,保持6h。自然冷却至室温后取出,得到如图1所示的自支撑复合电极。
(6)配置5M氢氧化钾溶液作为电解液,直接以上述得到的电极为工作电极,铂片电极为辅助电极,饱和甘汞电极为参比电极,组成三电极体系,浸泡24h后进行电化学性能的测试。测试的电压范围为0-0.35V,测试温度为室温。
检测结果:如图1所示为该复合电极的X射线衍射图。从图1可以看出该样品为NF、GF和MnOOH的复合物。图2为该复合电极的扫描电镜图,可以看出NF/GF/MnOOH复合材料是蜂窝状的微观结构。图3为上述电极在各个电流密度下的充放电曲线,从图上可以看出,当电流密度为0.5、1、2和5Ag-1时,该复合电极的比容量可以达到934、874、828、771Fg-1。图4为上述电极在2Ag-1充放电时的循环性能图,5000次循环后,容量保持率为85%。这说明本实施例所制备的NF/GF/MnOOH自支撑复合电极在超级电容器领域具有较好的应用潜力。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.羟基氧化锰自支撑复合电极的制备方法,其特征在于,将泡沫镍放置在坩埚中,再将坩埚放入高温管式炉中,将管式炉抽成真空,通入Ar和H2,将高温管式炉程序设置为以50℃min-1的速率升温至1000℃,恒温10min后通入CH4,之后接着恒温1h,然后关闭H2和CH4,自然冷却至室温后,关闭Ar,得到泡沫镍/泡沫石墨烯电极;配置0.1M硫酸钠和0.1M乙酸锰的混合溶液(wt%=0.82:1)为电解液,以制备的泡沫镍/泡沫石墨烯电极为工作电极,铂片为辅助电极,饱和甘汞电极为参比电极组成三电极体系,在电化学工作上选用循环伏安法,设定电压范围为0.5-1.2V,扫描速率为200mV/s,扫描时间为5min,得到泡沫镍/泡沫石墨烯/羟基氧化锰;将得到的电极依次水洗乙醇洗,放入真空干燥箱80℃烘24h,将烘干后的电极片放入马弗炉中,设置升温速度为10℃min-1至400度,保持6h后自然冷却至室温后取出即得。
2.根据权利要求1所述的方法,其特征在于,所述泡沫镍还包括预处理,具体包括将剪切好的泡沫镍放入烧杯中,加入丙酮,在超声波清洗机中超声10min。然后,放入真空干燥箱中80℃烘24h。
3.根据权利要求1所述的方法,其特征在于,所述通入Ar、H2和CH4速率分别为200sccm、100sccm和100sccm。
4.羟基氧化锰自支撑复合电极,其特征在于,按照权利要求1-3任一项所述方法制得。
5.羟基氧化锰自支撑复合电极作为超级电容器电极的应用。
CN201811042972.1A 2018-04-10 2018-09-05 羟基氧化锰自支撑复合电极及其制备方法和应用 Expired - Fee Related CN109087821B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018103132481 2018-04-10
CN201810313248 2018-04-10

Publications (2)

Publication Number Publication Date
CN109087821A true CN109087821A (zh) 2018-12-25
CN109087821B CN109087821B (zh) 2020-08-14

Family

ID=64841051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811042972.1A Expired - Fee Related CN109087821B (zh) 2018-04-10 2018-09-05 羟基氧化锰自支撑复合电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109087821B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566392A (zh) * 2022-03-18 2022-05-31 南昌航空大学 一种富氧缺陷ε-MnO2/碳量子点复合薄膜制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258656A (zh) * 2013-04-25 2013-08-21 华中科技大学 一种基于泡沫镍的超级电容器电极的制备方法及其产品
CN104229780A (zh) * 2014-08-30 2014-12-24 长春工业大学 一种石墨烯基复合物的制备方法
CN105448531A (zh) * 2015-11-13 2016-03-30 哈尔滨工业大学 一种针状二氧化锰/石墨烯复合电极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258656A (zh) * 2013-04-25 2013-08-21 华中科技大学 一种基于泡沫镍的超级电容器电极的制备方法及其产品
CN104229780A (zh) * 2014-08-30 2014-12-24 长春工业大学 一种石墨烯基复合物的制备方法
CN105448531A (zh) * 2015-11-13 2016-03-30 哈尔滨工业大学 一种针状二氧化锰/石墨烯复合电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YADI ZHANG,ET AL.: ""High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes"", 《JOURNAL OF POWER SOURCES》 *
王林: ""超级电容器石墨烯基复合材料的制备及电化学性能研究"", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566392A (zh) * 2022-03-18 2022-05-31 南昌航空大学 一种富氧缺陷ε-MnO2/碳量子点复合薄膜制备方法
CN114566392B (zh) * 2022-03-18 2023-04-11 南昌航空大学 一种富氧缺陷ε-MnO2/碳量子点复合薄膜制备方法

Also Published As

Publication number Publication date
CN109087821B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
CN107785181B (zh) 一种超级电容器电极材料及其制备方法
Jiang et al. Electrochemical fabrication of Ni (OH) 2/Ni 3D porous composite films as integrated capacitive electrodes
CN105789584A (zh) 一种硒化钴/碳钠离子电池复合负极材料及其制备方法与应用
Ji et al. Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries
CN104269278B (zh) 一种自立式纳米多孔镍/氧化镍复合电极片及其制备方法
CN106410153B (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN110223847A (zh) 一种超级电容器电极材料及制备方法
CN103904293A (zh) 一种三氧化钼原位包覆掺氮碳纳米管复合电极材料及其制备方法和应用
CN106783202B (zh) 一种双金属硒化物超级电容器电极材料CuxMoySez的制备方法
CN112382513B (zh) 一种双离子水系储能器件的制备方法
CN104022285A (zh) SnO2@聚合物同轴异质纳米棒阵列结构材料及其制备方法和应用
CN109616331A (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN104051161A (zh) 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极
CN109686585A (zh) 一种基于NiCo-LDH/rGO和rGO的水系非对称超级电容器及其制备方法
CN109728261A (zh) 一种三元正极材料及其制备方法
CN106328952A (zh) 一种锂电极材料及其制备方法和应用
CN106129329A (zh) 一种石墨烯基锂离子电池负极用复合电极及其制备方法
CN105957723A (zh) 一种化学气相沉积法制备硒化钴超级电容器材料的方法
CN109087821A (zh) 羟基氧化锰自支撑复合电极及其制备方法和应用
CN103337616A (zh) 一种金属氧化物包覆的钛酸锂负极材料及其制备方法
CN106450235B (zh) 一种自组装纳米片状多孔结构四氧化三钴-氧化锌复合材料的制备方法及其应用
CN111285348B (zh) 氮磷掺杂碳复合磷化铁三维棒状多孔材料、锂电池隔膜及制备方法、锂硫电池和用电设备
CN104269279B (zh) 一种超级电容器用自立式复合电极片及其制备方法
CN105552320B (zh) 一种泡沫镍基Sn/SnO/SnO2层状三维多孔负极材料及其制备方法
CN109205671A (zh) 一种由vs2纳米片组成的分等级结构球的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200814