CN109055896A - 一种在绝缘衬底上直接制备石墨烯的方法 - Google Patents
一种在绝缘衬底上直接制备石墨烯的方法 Download PDFInfo
- Publication number
- CN109055896A CN109055896A CN201810804283.3A CN201810804283A CN109055896A CN 109055896 A CN109055896 A CN 109055896A CN 201810804283 A CN201810804283 A CN 201810804283A CN 109055896 A CN109055896 A CN 109055896A
- Authority
- CN
- China
- Prior art keywords
- insulating substrate
- graphene
- layer
- germanium
- germanium layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 77
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 72
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 65
- 238000002360 preparation method Methods 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 claims abstract 2
- 239000010410 layer Substances 0.000 claims description 87
- 239000007789 gas Substances 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 230000003647 oxidation Effects 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 230000035484 reaction time Effects 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 3
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- 238000012546 transfer Methods 0.000 abstract description 7
- 238000012545 processing Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010923 batch production Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- RPAJSBKBKSSMLJ-DFWYDOINSA-N (2s)-2-aminopentanedioic acid;hydrochloride Chemical compound Cl.OC(=O)[C@@H](N)CCC(O)=O RPAJSBKBKSSMLJ-DFWYDOINSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- -1 graphite alkene Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5853—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供一种在绝缘衬底上直接制备石墨烯的方法,所述制备方法包括:步骤1)提供一绝缘衬底;步骤2)于所述绝缘衬底的上表面由下至上依次形成锗层和石墨烯层;以及步骤3)对步骤2)所得结构中的所述锗层进行氧化挥发处理,以去除所述锗层,实现于所述绝缘衬底上直接形成石墨烯层。通过本发明提供的一种在绝缘衬底上直接制备石墨烯的方法,解决了现有采用转移法和催化生长法制备绝缘衬底上石墨烯时存在的诸多问题。
Description
技术领域
本发明涉及微电子技术领域,特别是涉及一种在绝缘衬底上直接制备石墨烯的方法。
背景技术
石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,是目前非常火的信息功能二维材料,其具有表面积大,电子迁移率高,电子噪声低等优良特性,是集成电路中的明星材料。
传统制备石墨烯的方法一般是:采用化学气相沉积工艺(CVD)于金属衬底上直接生长石墨烯;但由于绝缘衬底上石墨烯(GrOI graphene on insulator)具有很好的质量,同时绝缘衬底可以消除半导体材料和衬底的电耦合效应,能够起到将石墨烯与衬底绝缘,防止漏电的目的,是实现集成电路的理想衬底;因此,直接稳定地制备绝缘衬底上石墨烯是急需要解决的问题。
目前绝缘衬底上制备石墨烯的方法一般包括转移法和催化生长法,其中,转移法是先在金属衬底上生长石墨烯,然后再将石墨烯通过辅助胶层(PMMA)转移至绝缘衬底上;但是在转移过程中,辅助胶层(PMMA)很难被去除干净,而且转移过程中很容易造成石墨烯破裂,很难做到石墨烯的大尺寸转移。催化生长法是在绝缘衬底上先沉积金属催化层,然后在生长石墨烯的过程中,将金属催化层蒸发掉;虽然通过催化生长法能够得到质量较好的石墨烯,但因其工艺不稳定,成功率很低,很难进行稳定生产。
鉴于此,有必要设计一种新的在绝缘衬底上直接制备石墨烯的方法用以解决上述技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种在绝缘衬底上直接制备石墨烯的方法,用于解决现有采用转移法和催化生长法制备绝缘衬底上石墨烯时存在的诸多问题。
为实现上述目的及其他相关目的,本发明提供一种在绝缘衬底上直接制备石墨烯的方法,所述制备方法包括:
步骤1)提供一绝缘衬底;
步骤2)于所述绝缘衬底的上表面由下至上依次形成锗层和石墨烯层;
步骤3)对步骤2)所得结构中的所述锗层进行氧化挥发处理,以去除所述锗层,实现于所述绝缘衬底上直接形成石墨烯层。
可选地,在步骤2)中,采用电子束蒸发工艺、磁控溅射工艺或Smart-Cut工艺于所述绝缘衬底的上表面形成所述锗层。
可选地,采用Smart-Cut工艺形成所述锗层的具体方法包括:
步骤2.1)提供一锗片;
步骤2.2)采用离子注入工艺对所述锗片进行离子注入,以使离子注入至所述锗片的预设深度;
步骤2.3)将步骤2.2)所得结构与所述绝缘衬底进行键合,并通过退火以加固键合,同时在退火过程中,于所述锗片的预设深度附近形成一薄层氢气,以在氢气的作用下,将氢气层以上的锗片转移到所述绝缘衬底上,实现于所述绝缘衬底上形成所述锗层。
可选地,在步骤2.3)中,退火温度为300℃~500℃。
可选地,所述锗层的厚度不小于600nm。
可选地,在步骤2)中,采用化学气相沉积工艺于所述锗层的上表面形成所述石墨烯层。
可选地,所述石墨烯层为单层石墨烯。
可选地,在步骤3)中,对所述锗层进行氧化挥发处理的具体方法包括:在温度为620℃~700℃、压力为7.5E10-3Torr~3Torr的条件下,通过氧气对所述锗层进行氧化,以形成易挥发的氧化产物,实现利用所述氧化产物的挥发去除所述锗层。
可选地,进行氧化挥发处理时,氧气的气体流量为6sccm~25sccm,氩气的气体流量为900sccm~1000sccm,反应时间大于120min。
如上所述,本发明的一种在绝缘衬底上直接制备石墨烯的方法,具有以下有益效果:
1.本发明所述制备方法通过对所述锗层进行氧化挥发处理,不仅实现了直接在所述绝缘衬底上制备石墨烯,而且还使得制备的石墨烯质量好、无污染、无破裂,更实现了大尺寸石墨烯的制备。
2.本发明所述制备方法不仅工艺稳定、可实现批量生产;而且制备过程简单、可操作性;更可与传统半导体工艺相兼容,有利于促进石墨烯在微电子领域的产业化应用。
附图说明
图1显示为本发明所述制备方法的流程图。
图2至图8显示为本发明所述制备方法中各步骤的结构示意图,其中,图3至图6显示为采用smart-cut工艺形成所述锗层时各步骤的结构示意图。
元件标号说明
10 绝缘衬底
20 锗片
30 锗层
40 石墨烯层
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图8。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1所示,本实施例提供一种在绝缘衬底上直接制备石墨烯的方法,所述制备方法包括:
步骤1)提供一绝缘衬底10;
步骤2)于所述绝缘衬底10的上表面由下至上依次形成锗层30和石墨烯层40;
步骤3)对步骤2)所得结构中的所述锗层30进行氧化挥发处理,以去除所述锗层30,实现于所述绝缘衬底10上直接形成石墨烯层40。
下面请结合图1,参阅图2至图8对本实施例所述在绝缘衬底上直接制备石墨烯的方法进行详细说明。
如图2所示,提供一绝缘衬底10;其中,所述绝缘衬底10的材质为任意平整度很高的绝缘衬底材料,以确保后续形成的所述锗层30具有较高平整度,从而提高后续形成的所述石墨烯层40的质量,避免后续形成的所述石墨烯层40出现破裂,更有利于大尺寸石墨烯的制备。
作为示例,所述绝缘衬底10的材质包括二氧化硅、硅、蓝宝石或玻璃。可选地,在本实施例中,所述绝缘衬底10的材质为二氧化硅。需要注意的是,本实施例仅是给出了几种优选的绝缘衬底的材质,而非对本实施例所述绝缘衬底的材质进行限定,其它合适的绝缘衬底材质同样适用于本实施例。
如图3至图7所示,于所述绝缘衬底10的上表面由下至上依次形成锗层30和石墨烯层40。
作为示例,所述锗层30的厚度不小于600nm,以确保在后续生长石墨烯层40的过程中,所述锗层30不会破裂,进而保证在所述锗层30上生长连续的石墨烯层40;但所述锗层30的厚度也不应过厚,若所述锗层30的厚度过厚,则不利于后续对所述锗层30的去除。可选地,所述锗层30的厚度不大于1500nm。进一步可选地,在本实施例中,所述锗层30的厚度为700nm;当然,在其它实施例中,所述锗层30的厚度还可以为600nm、800nm、900nm、1000nm、1100nm、1200nm、1300nm、1400nm或1500nm等。
作为示例,采用电子束蒸发工艺、磁控溅射工艺或Smart-Cut(智能剥离)工艺于所述绝缘衬底10的上表面形成所述锗层30。可选地,在本实施例中,采用Smart-Cut工艺于所述绝缘衬底10的上表面形成所述锗层30,以使形成的所述锗层30的质量较好,从而有利于后续形成高质量的所述石墨烯层40;其中,如图3至图6所示,采用Smart-Cut工艺于所述绝缘衬底10的上表面形成所述锗层30的具体方法包括:
如图3所示,提供一锗片20;
如图4所示,采用离子注入工艺对所述锗片20进行离子注入,以使离子注入至所述锗片20的预设深度;及
如图5和图6所示,将上一步骤所得结构与所述绝缘衬底10进行键合,并通过退火以加固键合,同时在退火过程中,于所述锗片20的预设深度附近形成一薄层氢气,以在氢气的作用下,将氢气层以上的锗片转移到所述绝缘衬底10上,实现于所述绝缘衬底10上形成所述锗层30。
具体的,采用氢离子进行离子注入,由于所述氢离子的离子注入能量和离子注入剂量与所述离子注入深度相关,故为了确保后续形成的所述锗层30的厚度,需合理设计本实施例中离子注入能量和离子注入剂量。
具体的,所述退火温度为300℃~500℃,在实现加固键合的同时,于所述锗片20的预设深度附近形成一薄层氢气,实现利用氢气剥离部分所述锗片20,从而于所述绝缘衬底10上形成所述锗层30。
作为示例,如图7所示,采用化学气相沉积工艺于所述锗层30的上表面形成所述石墨烯层40;其中,化学气相沉积工艺包括但不限于热化学气相沉积工艺、低压化学气相沉积工艺或等离子增强化学气相沉积工艺等。所述石墨烯层40为单层石墨烯,即由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。
如图8所示,对上一步骤所得结构中的所述锗层30进行氧化挥发处理,以去除所述锗层30,实现于所述绝缘衬底10上直接形成石墨烯层40。
作为示例,对所述锗层30进行氧化挥发处理的具体方法包括:在温度为620℃~700℃、压力为7.5E10-3Torr~3Torr的条件下,通过氧气对所述锗层30进行氧化,以形成易挥发的氧化产物,实现利用所述氧化产物的挥发去除所述锗层30;其中,进行氧化挥发处理时,氧气的气体流量为6sccm~25sccm,氩气的气体流量为900sccm~1000sccm,反应时间大于120min。需要注意的是,通过调节氧气的气体流量或者反应温度,可以于绝缘衬底上制备不同质量的石墨烯;而在进行氧化挥发处理时,氧气的气体流量和氩气的气体流量是匹配的,并且,氧气的气体流量和氩气的气体流量比值大小和反应时间呈负相关;而本实施例给出的所述氧气的气体流量、氩气的气体流量和反应时间仅是优选值,而非对本实施例所述氧化挥发处理的气体流量和反应时间进行限制,在能够完全去除所述锗层30的情况下,气体流量和反应时间限定于其它数值范围也是可行的,但氩气的气体流量需跟随氧气的气体流量进行同比例增大。
可选地,在本实施例中,在温度为620℃~660℃、压力为7.5E10-3Torr的条件下,向氧化退火炉中通入气体流量为12sccm的氧气和气体流量为900sccm的氩气,使得氧气与所述锗层30进行氧化,以形成易挥发的氧化产物(二氧化锗);而低温低压的反应条件会进一步促进氧化产物的挥发,使得氧化产物从边缘向中心逐渐挥发,随着氧化时间(本实施例所述反应时间为240min)的推进,氧化产物完全挥发,即完全去除了位于所述绝缘衬底10和所述石墨烯层40之间的所述锗层30,实现于所述绝缘衬底10上直接形成所述石墨烯层40,此时所述石墨烯层40是通过分子间的作用力(范德华力)形成于所述绝缘衬底10的上表面。
综上所述,本发明的一种在绝缘衬底上直接制备石墨烯的方法,具有以下有益效果:本发明所述制备方法通过对所述锗层进行氧化挥发处理,不仅实现了直接在所述绝缘衬底上制备石墨烯,而且还使得制备的石墨烯质量好、无污染、无破裂,更实现了大尺寸石墨烯的制备。本发明所述制备方法不仅工艺稳定、可实现批量生产;而且制备过程简单、可操作性;更可与传统半导体工艺相兼容,有利于促进石墨烯在微电子领域的产业化应用。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (9)
1.一种在绝缘衬底上直接制备石墨烯的方法,其特征在于,所述制备方法包括:
步骤1)提供一绝缘衬底;
步骤2)于所述绝缘衬底的上表面由下至上依次形成锗层和石墨烯层;
步骤3)对步骤2)所得结构中的所述锗层进行氧化挥发处理,以去除所述锗层,实现于所述绝缘衬底上直接形成石墨烯层。
2.根据权利要求1所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤2)中,采用电子束蒸发工艺、磁控溅射工艺或Smart-Cut工艺于所述绝缘衬底的上表面形成所述锗层。
3.根据权利要求2所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,采用Smart-Cut工艺形成所述锗层的具体方法包括:
步骤2.1)提供一锗片;
步骤2.2)采用离子注入工艺对所述锗片进行离子注入,以使离子注入至所述锗片的预设深度;
步骤2.3)将步骤2.2)所得结构与所述绝缘衬底进行键合,并通过退火以加固键合,同时在退火过程中,于所述锗片的预设深度附近形成一薄层氢气,以在氢气的作用下,将氢气层以上的锗片转移到所述绝缘衬底上,实现于所述绝缘衬底上形成所述锗层。
4.根据权利要求3所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤2.3)中,退火温度为300℃~500℃。
5.根据权利要求1、2或3所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,所述锗层的厚度不小于600nm。
6.根据权利要求1所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤2)中,采用化学气相沉积工艺于所述锗层的上表面形成所述石墨烯层。
7.根据权利要求6所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,所述石墨烯层为单层石墨烯。
8.根据权利要求1所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤3)中,对所述锗层进行氧化挥发处理的具体方法包括:在温度为620℃~700℃、压力为7.5E10-3Torr~3Torr的条件下,通过氧气对所述锗层进行氧化,以形成易挥发的氧化产物,实现利用所述氧化产物的挥发去除所述锗层。
9.根据权利要求8所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,进行氧化挥发处理时,氧气的气体流量为6sccm~25sccm,氩气的气体流量为900sccm~1000sccm,反应时间大于120min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810804283.3A CN109055896B (zh) | 2018-07-20 | 2018-07-20 | 一种在绝缘衬底上直接制备石墨烯的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810804283.3A CN109055896B (zh) | 2018-07-20 | 2018-07-20 | 一种在绝缘衬底上直接制备石墨烯的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109055896A true CN109055896A (zh) | 2018-12-21 |
CN109055896B CN109055896B (zh) | 2021-08-20 |
Family
ID=64816090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810804283.3A Active CN109055896B (zh) | 2018-07-20 | 2018-07-20 | 一种在绝缘衬底上直接制备石墨烯的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109055896B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109824032A (zh) * | 2019-02-21 | 2019-05-31 | 中国科学院上海微系统与信息技术研究所 | 晶圆级石墨烯薄膜的转移方法 |
CN111593320A (zh) * | 2020-05-22 | 2020-08-28 | 青岛峰峦新材料科技有限责任公司 | 石墨烯基透明柔性导电膜层及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014109619A1 (ko) * | 2013-01-11 | 2014-07-17 | 서울대학교산학협력단 | 자가점착 필름을 이용한 그래핀의 전사 방법 |
CN106904600A (zh) * | 2015-12-17 | 2017-06-30 | 中国科学院上海微系统与信息技术研究所 | 一种在绝缘衬底上制备连续单层石墨烯的方法 |
CN106904599A (zh) * | 2015-12-17 | 2017-06-30 | 中国科学院上海微系统与信息技术研究所 | 一种在绝缘衬底上制备图形石墨烯的方法 |
CN107887319A (zh) * | 2017-11-16 | 2018-04-06 | 中国科学院上海微系统与信息技术研究所 | 一种绝缘体上石墨烯的制备方法 |
-
2018
- 2018-07-20 CN CN201810804283.3A patent/CN109055896B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014109619A1 (ko) * | 2013-01-11 | 2014-07-17 | 서울대학교산학협력단 | 자가점착 필름을 이용한 그래핀의 전사 방법 |
CN106904600A (zh) * | 2015-12-17 | 2017-06-30 | 中国科学院上海微系统与信息技术研究所 | 一种在绝缘衬底上制备连续单层石墨烯的方法 |
CN106904599A (zh) * | 2015-12-17 | 2017-06-30 | 中国科学院上海微系统与信息技术研究所 | 一种在绝缘衬底上制备图形石墨烯的方法 |
CN107887319A (zh) * | 2017-11-16 | 2018-04-06 | 中国科学院上海微系统与信息技术研究所 | 一种绝缘体上石墨烯的制备方法 |
Non-Patent Citations (3)
Title |
---|
ARIEL ISMACH,ET AL.: "Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces", 《NANO LETTERS》 * |
周令治: "《稀散金属冶金》", 31 March 1988, 冶金工业出版社 * |
林成鲁: "《SOI-纳米技术时代的高端硅基材料》", 30 June 2009, 中国科学技术大学出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109824032A (zh) * | 2019-02-21 | 2019-05-31 | 中国科学院上海微系统与信息技术研究所 | 晶圆级石墨烯薄膜的转移方法 |
CN111593320A (zh) * | 2020-05-22 | 2020-08-28 | 青岛峰峦新材料科技有限责任公司 | 石墨烯基透明柔性导电膜层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109055896B (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103553029B (zh) | 一种基于竖直石墨烯的散热材料的制备方法 | |
CN102629559B (zh) | 叠栅SiC-MIS电容的制作方法 | |
CN105140171B (zh) | 一种绝缘体上材料的制备方法 | |
JP2012513675A5 (zh) | ||
JP6116705B2 (ja) | Ge量子ドットの成長方法、Ge量子ドット複合材及びその応用 | |
CN106209003A (zh) | 利用薄膜转移技术制备薄膜体声波器件的方法 | |
CN103606514B (zh) | 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法 | |
CN102392226A (zh) | 一种石墨烯/氮化硼异质薄膜的制备方法 | |
CN103523770B (zh) | 一种石墨烯的制备方法 | |
CN102915913B (zh) | 基于蓝宝石衬底的石墨烯cvd直接外延生长方法及制造的器件 | |
CN104313684A (zh) | 一种制备六方氮化硼二维原子晶体的方法 | |
CN109055896A (zh) | 一种在绝缘衬底上直接制备石墨烯的方法 | |
US20160060120A1 (en) | Method of producing reduced graphene oxide | |
CN103050432B (zh) | 一种GaAsOI结构及Ⅲ-ⅤOI结构的制备方法 | |
CN110875170B (zh) | 基于氮化硼中间层远程外延生长二硫化铪的方法 | |
CN103247520A (zh) | 基于控制离子注入的能量来制备石墨烯的方法 | |
JP6085677B2 (ja) | 基板のボンディング方法 | |
CN106591798A (zh) | 一种无粘连插层金属箔片堆垛制备石墨烯的方法 | |
US11948983B2 (en) | Method for preparating SiC ohmic contact with low specific contact resistivity | |
CN100459046C (zh) | 一种在硅晶片上制备硅化镁薄膜的方法 | |
US20150194308A1 (en) | Method for realizing monoatomic layers of crystalline silicium upon a substrate of crystalline "beta" - silicium nitride | |
CN106927459A (zh) | 一种在绝缘衬底上直接制备层数可控石墨烯的方法 | |
CN109055895A (zh) | 在绝缘衬底上直接制备石墨烯量子点阵列的方法 | |
CN105448690A (zh) | 一种利用石墨烯插入层外延生长金属/半导体材料的方法 | |
TWI545217B (zh) | 碳、金屬雙層形成於基板及碳、金屬、碳三層形成於基板的低溫製造方法及其結構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |