CN109055896B - 一种在绝缘衬底上直接制备石墨烯的方法 - Google Patents

一种在绝缘衬底上直接制备石墨烯的方法 Download PDF

Info

Publication number
CN109055896B
CN109055896B CN201810804283.3A CN201810804283A CN109055896B CN 109055896 B CN109055896 B CN 109055896B CN 201810804283 A CN201810804283 A CN 201810804283A CN 109055896 B CN109055896 B CN 109055896B
Authority
CN
China
Prior art keywords
insulating substrate
layer
graphene
germanium
germanium layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810804283.3A
Other languages
English (en)
Other versions
CN109055896A (zh
Inventor
狄增峰
郑鹏荣
董林玺
薛忠营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201810804283.3A priority Critical patent/CN109055896B/zh
Publication of CN109055896A publication Critical patent/CN109055896A/zh
Application granted granted Critical
Publication of CN109055896B publication Critical patent/CN109055896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种在绝缘衬底上直接制备石墨烯的方法,所述制备方法包括:步骤1)提供一绝缘衬底;步骤2)于所述绝缘衬底的上表面由下至上依次形成锗层和石墨烯层;以及步骤3)对步骤2)所得结构中的所述锗层进行氧化挥发处理,以去除所述锗层,实现于所述绝缘衬底上直接形成石墨烯层。通过本发明提供的一种在绝缘衬底上直接制备石墨烯的方法,解决了现有采用转移法和催化生长法制备绝缘衬底上石墨烯时存在的诸多问题。

Description

一种在绝缘衬底上直接制备石墨烯的方法
技术领域
本发明涉及微电子技术领域,特别是涉及一种在绝缘衬底上直接制备石墨烯的方法。
背景技术
石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,是目前非常火的信息功能二维材料,其具有表面积大,电子迁移率高,电子噪声低等优良特性,是集成电路中的明星材料。
传统制备石墨烯的方法一般是:采用化学气相沉积工艺(CVD)于金属衬底上直接生长石墨烯;但由于绝缘衬底上石墨烯(GrOI graphene on insulator)具有很好的质量,同时绝缘衬底可以消除半导体材料和衬底的电耦合效应,能够起到将石墨烯与衬底绝缘,防止漏电的目的,是实现集成电路的理想衬底;因此,直接稳定地制备绝缘衬底上石墨烯是急需要解决的问题。
目前绝缘衬底上制备石墨烯的方法一般包括转移法和催化生长法,其中,转移法是先在金属衬底上生长石墨烯,然后再将石墨烯通过辅助胶层(PMMA)转移至绝缘衬底上;但是在转移过程中,辅助胶层(PMMA)很难被去除干净,而且转移过程中很容易造成石墨烯破裂,很难做到石墨烯的大尺寸转移。催化生长法是在绝缘衬底上先沉积金属催化层,然后在生长石墨烯的过程中,将金属催化层蒸发掉;虽然通过催化生长法能够得到质量较好的石墨烯,但因其工艺不稳定,成功率很低,很难进行稳定生产。
鉴于此,有必要设计一种新的在绝缘衬底上直接制备石墨烯的方法用以解决上述技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种在绝缘衬底上直接制备石墨烯的方法,用于解决现有采用转移法和催化生长法制备绝缘衬底上石墨烯时存在的诸多问题。
为实现上述目的及其他相关目的,本发明提供一种在绝缘衬底上直接制备石墨烯的方法,所述制备方法包括:
步骤1)提供一绝缘衬底;
步骤2)于所述绝缘衬底的上表面由下至上依次形成锗层和石墨烯层;
步骤3)对步骤2)所得结构中的所述锗层进行氧化挥发处理,以去除所述锗层,实现于所述绝缘衬底上直接形成石墨烯层。
可选地,在步骤2)中,采用电子束蒸发工艺、磁控溅射工艺或Smart-Cut工艺于所述绝缘衬底的上表面形成所述锗层。
可选地,采用Smart-Cut工艺形成所述锗层的具体方法包括:
步骤2.1)提供一锗片;
步骤2.2)采用离子注入工艺对所述锗片进行离子注入,以使离子注入至所述锗片的预设深度;
步骤2.3)将步骤2.2)所得结构与所述绝缘衬底进行键合,并通过退火以加固键合,同时在退火过程中,于所述锗片的预设深度附近形成一薄层氢气,以在氢气的作用下,将氢气层以上的锗片转移到所述绝缘衬底上,实现于所述绝缘衬底上形成所述锗层。
可选地,在步骤2.3)中,退火温度为300℃~500℃。
可选地,所述锗层的厚度不小于600nm。
可选地,在步骤2)中,采用化学气相沉积工艺于所述锗层的上表面形成所述石墨烯层。
可选地,所述石墨烯层为单层石墨烯。
可选地,在步骤3)中,对所述锗层进行氧化挥发处理的具体方法包括:在温度为620℃~700℃、压力为7.5× 10-3Torr~3Torr的条件下,通过氧气对所述锗层进行氧化,以形成易挥发的氧化产物,实现利用所述氧化产物的挥发去除所述锗层。
可选地,进行氧化挥发处理时,氧气的气体流量为6sccm~25sccm,氩气的气体流量为 900sccm~1000sccm,反应时间大于120min。
如上所述,本发明的一种在绝缘衬底上直接制备石墨烯的方法,具有以下有益效果:
1.本发明所述制备方法通过对所述锗层进行氧化挥发处理,不仅实现了直接在所述绝缘衬底上制备石墨烯,而且还使得制备的石墨烯质量好、无污染、无破裂,更实现了大尺寸石墨烯的制备。
2.本发明所述制备方法不仅工艺稳定、可实现批量生产;而且制备过程简单、可操作性;更可与传统半导体工艺相兼容,有利于促进石墨烯在微电子领域的产业化应用。
附图说明
图1显示为本发明所述制备方法的流程图。
图2至图8显示为本发明所述制备方法中各步骤的结构示意图,其中,图3至图6显示为采用smart-cut工艺形成所述锗层时各步骤的结构示意图。
元件标号说明
10 绝缘衬底
20 锗片
30 锗层
40 石墨烯层
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图8。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1所示,本实施例提供一种在绝缘衬底上直接制备石墨烯的方法,所述制备方法包括:
步骤1)提供一绝缘衬底10;
步骤2)于所述绝缘衬底10的上表面由下至上依次形成锗层30和石墨烯层40;
步骤3)对步骤2)所得结构中的所述锗层30进行氧化挥发处理,以去除所述锗层30,实现于所述绝缘衬底10上直接形成石墨烯层40。
下面请结合图1,参阅图2至图8对本实施例所述在绝缘衬底上直接制备石墨烯的方法进行详细说明。
如图2所示,提供一绝缘衬底10;其中,所述绝缘衬底10的材质为任意平整度很高的绝缘衬底材料,以确保后续形成的所述锗层30具有较高平整度,从而提高后续形成的所述石墨烯层40的质量,避免后续形成的所述石墨烯层40出现破裂,更有利于大尺寸石墨烯的制备。
作为示例,所述绝缘衬底10的材质包括二氧化硅、硅、蓝宝石或玻璃。可选地,在本实施例中,所述绝缘衬底10的材质为二氧化硅。需要注意的是,本实施例仅是给出了几种优选的绝缘衬底的材质,而非对本实施例所述绝缘衬底的材质进行限定,其它合适的绝缘衬底材质同样适用于本实施例。
如图3至图7所示,于所述绝缘衬底10的上表面由下至上依次形成锗层30和石墨烯层 40。
作为示例,所述锗层30的厚度不小于600nm,以确保在后续生长石墨烯层40的过程中,所述锗层30不会破裂,进而保证在所述锗层30上生长连续的石墨烯层40;但所述锗层30的厚度也不应过厚,若所述锗层30的厚度过厚,则不利于后续对所述锗层30的去除。可选地,所述锗层30的厚度不大于1500nm。进一步可选地,在本实施例中,所述锗层30的厚度为700nm;当然,在其它实施例中,所述锗层30的厚度还可以为600nm、800nm、 900nm、1000nm、1100nm、1200nm、1300nm、1400nm或1500nm等。
作为示例,采用电子束蒸发工艺、磁控溅射工艺或Smart-Cut(智能剥离)工艺于所述绝缘衬底10的上表面形成所述锗层30。可选地,在本实施例中,采用Smart-Cut工艺于所述绝缘衬底10的上表面形成所述锗层30,以使形成的所述锗层30的质量较好,从而有利于后续形成高质量的所述石墨烯层40;其中,如图3至图6所示,采用Smart-Cut工艺于所述绝缘衬底10的上表面形成所述锗层30的具体方法包括:
如图3所示,提供一锗片20;
如图4所示,采用离子注入工艺对所述锗片20进行离子注入,以使离子注入至所述锗片 20的预设深度;及
如图5和图6所示,将上一步骤所得结构与所述绝缘衬底10进行键合,并通过退火以加固键合,同时在退火过程中,于所述锗片20的预设深度附近形成一薄层氢气,以在氢气的作用下,将氢气层以上的锗片转移到所述绝缘衬底10上,实现于所述绝缘衬底10上形成所述锗层30。
具体的,采用氢离子进行离子注入,由于所述氢离子的离子注入能量和离子注入剂量与所述离子注入深度相关,故为了确保后续形成的所述锗层30的厚度,需合理设计本实施例中离子注入能量和离子注入剂量。
具体的,所述退火温度为300℃~500℃,在实现加固键合的同时,于所述锗片20的预设深度附近形成一薄层氢气,实现利用氢气剥离部分所述锗片20,从而于所述绝缘衬底10 上形成所述锗层30。
作为示例,如图7所示,采用化学气相沉积工艺于所述锗层30的上表面形成所述石墨烯层40;其中,化学气相沉积工艺包括但不限于热化学气相沉积工艺、低压化学气相沉积工艺或等离子增强化学气相沉积工艺等。所述石墨烯层40为单层石墨烯,即由一层以苯环结构 (即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。
如图8所示,对上一步骤所得结构中的所述锗层30进行氧化挥发处理,以去除所述锗层 30,实现于所述绝缘衬底10上直接形成石墨烯层40。
作为示例,对所述锗层30进行氧化挥发处理的具体方法包括:在温度为620℃~700℃、压力为7.5× 10-3Torr~3Torr的条件下,通过氧气对所述锗层30进行氧化,以形成易挥发的氧化产物,实现利用所述氧化产物的挥发去除所述锗层30;其中,进行氧化挥发处理时,氧气的气体流量为6sccm~25sccm,氩气的气体流量为900sccm~1000sccm,反应时间大于120min。需要注意的是,通过调节氧气的气体流量或者反应温度,可以于绝缘衬底上制备不同质量的石墨烯;而在进行氧化挥发处理时,氧气的气体流量和氩气的气体流量是匹配的,并且,氧气的气体流量和氩气的气体流量比值大小和反应时间呈负相关;而本实施例给出的所述氧气的气体流量、氩气的气体流量和反应时间仅是优选值,而非对本实施例所述氧化挥发处理的气体流量和反应时间进行限制,在能够完全去除所述锗层30的情况下,气体流量和反应时间限定于其它数值范围也是可行的,但氩气的气体流量需跟随氧气的气体流量进行同比例增大。
可选地,在本实施例中,在温度为620℃~660℃、压力为7.5× 10-3Torr的条件下,向氧化退火炉中通入气体流量为12sccm的氧气和气体流量为900sccm的氩气,使得氧气与所述锗层30进行氧化,以形成易挥发的氧化产物(二氧化锗);而低温低压的反应条件会进一步促进氧化产物的挥发,使得氧化产物从边缘向中心逐渐挥发,随着氧化时间(本实施例所述反应时间为240min)的推进,氧化产物完全挥发,即完全去除了位于所述绝缘衬底10和所述石墨烯层40之间的所述锗层30,实现于所述绝缘衬底10上直接形成所述石墨烯层40,此时所述石墨烯层40是通过分子间的作用力(范德华力)形成于所述绝缘衬底10的上表面。
综上所述,本发明的一种在绝缘衬底上直接制备石墨烯的方法,具有以下有益效果:本发明所述制备方法通过对所述锗层进行氧化挥发处理,不仅实现了直接在所述绝缘衬底上制备石墨烯,而且还使得制备的石墨烯质量好、无污染、无破裂,更实现了大尺寸石墨烯的制备。本发明所述制备方法不仅工艺稳定、可实现批量生产;而且制备过程简单、可操作性;更可与传统半导体工艺相兼容,有利于促进石墨烯在微电子领域的产业化应用。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (6)

1.一种在绝缘衬底上直接制备石墨烯的方法,其特征在于,所述制备方法包括:
步骤1)提供一绝缘衬底;
步骤2)于所述绝缘衬底的上表面由下至上依次形成锗层和石墨烯层;
步骤3)对步骤2)所得结构中的所述锗层进行氧化挥发处理,以去除所述锗层,实现于所述绝缘衬底上直接形成石墨烯层;
其中,在步骤2)中,所述锗层的厚度不小于600nm且不大于1500nm;在步骤3)中,对所述锗层进行氧化挥发处理的具体方法包括:在温度为620℃~700℃、压力为7.5×10-3Torr~3Torr的条件下,通过氧气对所述锗层进行氧化,以形成易挥发的氧化产物,实现利用所述氧化产物的挥发去除所述锗层;其中进行氧化挥发处理时,氧气的气体流量为6sccm~25sccm,氩气的气体流量为900sccm~1000sccm,反应时间大于120min。
2.根据权利要求1所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤2)中,采用电子束蒸发工艺、磁控溅射工艺或Smart-Cut工艺于所述绝缘衬底的上表面形成所述锗层。
3.根据权利要求2所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,采用Smart-Cut工艺形成所述锗层的具体方法包括:
步骤2.1)提供一锗片;
步骤2.2)采用离子注入工艺对所述锗片进行离子注入,以使离子注入至所述锗片的预设深度;
步骤2.3)将步骤2.2)所得结构与所述绝缘衬底进行键合,并通过退火以加固键合,同时在退火过程中,于所述锗片的预设深度附近形成一薄层氢气,以在氢气的作用下,将氢气层以上的锗片转移到所述绝缘衬底上,实现于所述绝缘衬底上形成所述锗层。
4.根据权利要求3所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤2.3)中,退火温度为300℃~500℃。
5.根据权利要求1所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,在步骤2)中,采用化学气相沉积工艺于所述锗层的上表面形成所述石墨烯层。
6.根据权利要求5所述的在绝缘衬底上直接制备石墨烯的方法,其特征在于,所述石墨烯层为单层石墨烯。
CN201810804283.3A 2018-07-20 2018-07-20 一种在绝缘衬底上直接制备石墨烯的方法 Active CN109055896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810804283.3A CN109055896B (zh) 2018-07-20 2018-07-20 一种在绝缘衬底上直接制备石墨烯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810804283.3A CN109055896B (zh) 2018-07-20 2018-07-20 一种在绝缘衬底上直接制备石墨烯的方法

Publications (2)

Publication Number Publication Date
CN109055896A CN109055896A (zh) 2018-12-21
CN109055896B true CN109055896B (zh) 2021-08-20

Family

ID=64816090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810804283.3A Active CN109055896B (zh) 2018-07-20 2018-07-20 一种在绝缘衬底上直接制备石墨烯的方法

Country Status (1)

Country Link
CN (1) CN109055896B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824032A (zh) * 2019-02-21 2019-05-31 中国科学院上海微系统与信息技术研究所 晶圆级石墨烯薄膜的转移方法
CN111593320A (zh) * 2020-05-22 2020-08-28 青岛峰峦新材料科技有限责任公司 石墨烯基透明柔性导电膜层及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904600A (zh) * 2015-12-17 2017-06-30 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上制备连续单层石墨烯的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716468B1 (ko) * 2013-01-11 2017-03-16 서울대학교산학협력단 자가점착 필름을 이용한 그래핀의 전사 방법
CN106904599B (zh) * 2015-12-17 2019-03-01 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上制备图形石墨烯的方法
CN107887319A (zh) * 2017-11-16 2018-04-06 中国科学院上海微系统与信息技术研究所 一种绝缘体上石墨烯的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904600A (zh) * 2015-12-17 2017-06-30 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上制备连续单层石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces;Ariel Ismach,et al.;《NANO LETTERS》;20100402;第10卷;第1543页 *

Also Published As

Publication number Publication date
CN109055896A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
TWI610335B (zh) 貼合式soi晶圓的製造方法及貼合式soi晶圓
JP5726796B2 (ja) 絶縁体上の半導体タイプの基板のためのベース基板を製造する方法
CN102629559B (zh) 叠栅SiC-MIS电容的制作方法
TWI378538B (en) Oxydation after oxide dissolution
CN103187283B (zh) 石墨烯场效应晶体管及其制作方法
CN109055896B (zh) 一种在绝缘衬底上直接制备石墨烯的方法
CN104377114A (zh) 一种锗量子点的生长方法、锗量子点复合材料及其应用
CN105489669A (zh) 一种硅异质结太阳能电池及其界面处理方法
WO2019119958A1 (zh) SiC功率二极管器件的制备方法及其结构
CN103928524B (zh) 带有n型漂移层台面的碳化硅umosfet器件及制作方法
CN102832160A (zh) 一种soi硅片的制备方法
CN103928345B (zh) 离子注入形成n型重掺杂漂移层台面的umosfet制备方法
JP5168990B2 (ja) 半導体基板の製造方法
JP2013508962A (ja) 結晶シリコンの少なくとも一つの極薄層を含む多層膜を製造する方法及び前記方法により得られたデバイス
JP2017118113A (ja) 2つの構造体間の直接接合を実行する方法
US11682556B2 (en) Methods of improving graphene deposition for processes using microwave surface-wave plasma on dielectric materials
JP2007165878A (ja) 基板上に少なくとも1つの単結晶層を含む構成要素の製作方法
JP6085677B2 (ja) 基板のボンディング方法
CN107093559B (zh) 一种基于Ni催化制备石墨烯电极MoS2场效应晶体管的方法
CN109055895B (zh) 在绝缘衬底上直接制备石墨烯量子点阵列的方法
TW201507033A (zh) 薄膜電晶體的製造方法
CN110085509B (zh) 一种均匀性厚膜soi硅片的制备方法
CN107419220B (zh) 非晶相碳/m金属层形成于基板的制造方法
CN103928346A (zh) 外延生长形成n型重掺杂漂移层台面的umosfet器件制备方法
WO2014002123A1 (en) Method for realizing monoatomic layers of crystalline silicium upon a substrate of crystalline "beta" - silicium nitride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant