WO2019119958A1 - SiC功率二极管器件的制备方法及其结构 - Google Patents

SiC功率二极管器件的制备方法及其结构 Download PDF

Info

Publication number
WO2019119958A1
WO2019119958A1 PCT/CN2018/111392 CN2018111392W WO2019119958A1 WO 2019119958 A1 WO2019119958 A1 WO 2019119958A1 CN 2018111392 W CN2018111392 W CN 2018111392W WO 2019119958 A1 WO2019119958 A1 WO 2019119958A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sic
sic epitaxial
epitaxial layer
forming
Prior art date
Application number
PCT/CN2018/111392
Other languages
English (en)
French (fr)
Inventor
邵锦文
侯同晓
孙致祥
贾仁需
元磊
张秋洁
刘学松
Original Assignee
秦皇岛京河科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秦皇岛京河科学技术研究院有限公司 filed Critical 秦皇岛京河科学技术研究院有限公司
Publication of WO2019119958A1 publication Critical patent/WO2019119958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to the field of microelectronics, and in particular to a method for fabricating a SiC power diode device and a structure thereof.
  • the third-generation semiconductor material SiC (silicon carbide) material has characteristics such as wide band gap, high critical breakdown electric field, high thermal conductivity, high carrier saturation drift speed, high temperature, high frequency, high power, photoelectron and radiation resistance.
  • SiC silicon carbide
  • a Schottky barrier diode is a majority carrier device that operates using a contact barrier between a metal and a semiconductor. Compared with PN diodes, Schottky diodes have a simpler structure and are simpler in manufacturing process, so the cost is lower. Schottky diode-gated resistor-switched memories have certain advantages over PN diodes. The special diodes also perform well in current and corresponding time.
  • the present invention provides a method for fabricating a SiC power diode device and a structure thereof.
  • a method for fabricating a SiC power diode device includes:
  • a device cathode electrode is formed on the back side of the SiC substrate layer to complete the fabrication of the SiC power diode device.
  • the method before forming the P + region in the SiC epitaxial layer, the method further includes:
  • An ion implantation barrier layer is formed on the upper surface of the SiC epitaxial layer.
  • the ion implantation barrier layer is formed on the upper surface of the SiC epitaxial layer, including:
  • a Ni/Au layer is formed on the SiC epitaxial layer with the pattern region by electron beam evaporation, and the Ni/Au layer is peeled off to form the ion implantation barrier layer.
  • forming a P + region in the SiC epitaxial layer includes:
  • Ion-activated annealing was performed in an argon atmosphere at a temperature of 1700 ° C to 1750 ° C for an annealing time of 20 min to form the P + region.
  • the method further includes:
  • the SiO 2 spacer dielectric layer was formed by annealing the SiO 2 spacer dielectric for 60 minutes in an oxygen atmosphere at a temperature of 800 °C.
  • growing a TiC alloy layer on a surface of the SiC epitaxial layer forming the P + region to form a Schottky contact comprises:
  • Annealing was carried out for 3 minutes in a nitrogen atmosphere at a temperature of 800 ° C to 900 ° C to form a Schottky contact.
  • growing the anode electrode of the first copper graphene layer forming device on the TiC alloy layer comprises:
  • the anode electrode of the first copper graphene layer forming device was prepared by annealing the device at a temperature of 500 ° C for 30 minutes.
  • the method before the cathode electrode of the device is formed on the back surface of the SiC substrate layer, the method comprises:
  • a first metal layer is grown on the back side of the SiC substrate layer to form an ohmic contact.
  • the method includes:
  • the cathode electrode of the second metal layer forming device was prepared by annealing in a nitrogen atmosphere.
  • a structure of a SiC power diode device includes: a second metal layer, a first metal layer, a SiC substrate layer, a SiC epitaxial layer, a SiO 2 isolation dielectric layer, and a TiC alloy layer which are sequentially stacked. And a first copper graphene layer, wherein the SiC epitaxial layer is provided with a P+ region, and the SiC power diode device is formed by the method according to any one of claims 1 to 9.
  • the contact between the TiC material and the SiC according to the present invention adjusts the height of the barrier, thereby reducing the height of the Schottky barrier, reducing the turn-on voltage of the SiC power diode device, and reducing leakage current and energy consumption. The effect of the reverse voltage.
  • the present invention utilizes a TiC material as a Schottky contact metal material to increase the SiC epitaxial growth temperature and to enable the application of the SiC power diode device under high temperature conditions.
  • the invention adopts a copper graphene composite material as an anode, improves the high temperature resistance and electrical conductivity of the SiC device, and improves the heat dissipation performance of the SiC power diode device.
  • the present invention can effectively form the interface between SiC and SiO 2 and oxidize C atoms into gas by completely oxidizing the surface of SiC into SiO 2 isolation medium under O ion atmosphere before depositing SiO 2 isolation medium.
  • the final SiO 2 isolation medium is formed by chemical vapor deposition and annealing, the problem of forming a C complex at the interface between SiC and SiO 2 is completely solved under the premise of ensuring the quality of the SiO 2 dielectric layer.
  • FIG. 1 is a flow chart of a method for fabricating a SiC power diode device according to an embodiment of the present invention
  • FIGS. 2a-2I are schematic diagrams showing a process flow for preparing a SiC power diode device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a SiC power diode device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another SiC power diode device according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for fabricating a SiC power diode device according to an embodiment of the present invention.
  • the preparation method comprises the following steps:
  • Step a growing a SiC epitaxial layer on the SiC substrate layer
  • Step b forming a P + region in the SiC epitaxial layer
  • Step c growing a TiC alloy layer on the surface of the SiC epitaxial layer forming the P + region to form a Schottky contact;
  • Step d growing a first copper graphene layer 109 on the TiC alloy layer to form an anode electrode of the device;
  • Step e forming a cathode electrode of the device on the back surface of the SiC substrate layer to complete the preparation of the SiC power diode device.
  • step b it also includes:
  • Step b1 forming an ion implantation barrier layer on the upper surface of the SiC epitaxial layer.
  • step b1 comprises:
  • Step b11 after photolithography and development on the upper surface of the SiC epitaxial layer, using a photoresist as a barrier layer, and etching to form an alignment mark;
  • Step b12 engraving the alignment mark to form a graphic area
  • Step b13 forming a Ni/Au layer on the SiC epitaxial layer with the pattern region by electron beam evaporation, and peeling off the Ni/Au layer to form the ion implantation barrier layer.
  • step b includes:
  • Step b2 performing Al ion implantation on the SiC epitaxial layer
  • Step b3 forming a carbon film protection on the upper surface of the SiC epitaxial layer
  • step b4 ion-activated annealing is performed in an argon atmosphere at a temperature of 1700 ° C to 1750 ° C for an annealing time of 20 min to form a P + region.
  • step b the method further comprises:
  • Step b5 depositing a layer of SiO 2 isolation medium on the surface of the SiC epitaxial layer by using a chemical vapor deposition process;
  • Step b6 annealing the SiO 2 spacer dielectric in an oxygen atmosphere at 800 ° C for 60 minutes to form a SiO 2 spacer dielectric layer.
  • step c includes:
  • Step c1 coating and developing the SiO 2 isolation dielectric layer, and forming a Schottky contact window by photolithography etching;
  • Step c2 depositing a TiC alloy layer on the Schottky contact window on the SiC epitaxial layer by a chemical vapor deposition process
  • Step c3 annealing at a temperature of 800 ° C to 900 ° C for 3 minutes in a nitrogen atmosphere to form a Schottky contact.
  • step d includes:
  • Step d1 sputtering a first Cu metal layer on the TiC alloy layer by a magnetron sputtering process
  • Step d2 depositing a graphene layer on the first Cu metal layer by using a chemical vapor deposition process
  • Step d3 sputtering a second Cu metal layer on the graphene layer by a magnetron sputtering process
  • Step d4 annealing the device at a temperature of 500 ° C for 30 minutes to prepare an anode electrode of the first copper graphene layer forming device.
  • step e it also includes:
  • Step e1 growing a first metal layer on the back side of the SiC substrate layer to form an ohmic contact.
  • step e includes:
  • Step e2 using a magnetron sputtering process to sputter metal Ag on the lower surface of the first metal layer;
  • Step e3 annealing a nitrogen atmosphere to prepare a cathode electrode of the second metal layer forming device.
  • the first copper graphene layer is a copper graphene composite material.
  • the structure of the SiC power diode device comprises: a second metal layer, a first metal layer, a SiC substrate layer, a SiC epitaxial layer, a SiO 2 isolation dielectric layer, a TiC alloy layer, a first copper graphene layer, which are sequentially stacked, Among them, a P+ region is provided in the SiC epitaxial layer.
  • a Schottky contact is formed by forming a TiC alloy material on the surface of the SiC epitaxial layer, and the Schottky barrier height is reduced by the Schottky contact between the SiC epitaxial layer and the TiC alloy layer.
  • the turn-on voltage of the SiC power diode device is reduced, thereby achieving the effects of reducing leakage current, reducing power consumption, and increasing reverse voltage.
  • This embodiment utilizes a TiC alloy material as a Schottky contact metal material, which not only can increase the temperature of SiC epitaxial growth, but also can be applied to a SiC power diode device under high temperature conditions.
  • a copper graphene composite material is used as an anode, which improves the high temperature resistance and electrical conductivity of the SiC power diode device, and improves the heat dissipation performance of the SiC power diode device.
  • FIG. 2a to FIG. 2h are schematic diagrams showing a process flow for preparing a SiC power diode device according to an embodiment of the present invention. Based on the above embodiments, this embodiment will introduce the process flow of the present invention in more detail.
  • the preparation method comprises:
  • the N + type SiC substrate layer 103 is cleaned by an RCA (wet chemical cleaning method) cleaning standard to remove organic and inorganic chemical contaminants on the surface of the sample.
  • an N - type SiC epitaxial layer 104 having a thickness of 8 ⁇ m and a nitrogen ion doping concentration of 1 ⁇ 10 15 cm -3 is epitaxially grown on the SiC substrate layer 103 by a chemical vapor deposition process.
  • the conditions are: epitaxial growth temperature is 1570 ° C, pressure is 100 mbar, the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is liquid nitrogen.
  • the alignment mark depth is 0.4 ⁇ m;
  • S33 is fabricated by electron beam evaporation on the upper surface of the SiC epitaxial layer 104 with the pattern region.
  • Ni/Au layer wherein the thickness of Ni is The thickness of Au is Then, it is soaked in acetone for ultrasonic treatment, and the metal is peeled off to form the ion implantation barrier layer 105.
  • the implantation dose is 2.8 ⁇ 10 12 cm -2 ; when the implantation energy is 120 keV, the implantation dose is 6.5 ⁇ 10 12 cm -2 ; when the implantation energy is 300 keV, the implantation dose is 1.05 ⁇ 10 13 cm -2 ; When the energy is 420 keV, the implantation dose is 1.3 ⁇ 10 13 cm -2 ; when the implantation energy is 550 keV, the implantation dose is 1.45 ⁇ 10 13 cm -2 , forming a P + region 106 with discrete intervals;
  • the surface of the SiC epitaxial layer 104 is cleaned by the RCA cleaning standard, dried at 1000 ° C for 20 min, dried, and then coated on the surface of the SiC epitaxial layer 104 three times, and heated at 400 ° C for 90 min, the photoresist is carbonized. After conversion to an amorphous C film to form a carbon film protection;
  • ion-activated annealing is performed in an argon atmosphere at 1700 ° C to 1750 ° C for an annealing time of 20 min to form a P + region 106.
  • the whole device is placed in a chemical vapor deposition furnace and heated to 300 ° C, oxygen is introduced for 60 seconds, and the surface of the SiC epitaxial layer 104 is oxidized to a 1-2 nm SiO 2 isolation medium under an O ion atmosphere, and then silane is introduced and deposited. 100 nm SiO 2 isolating medium.
  • the SiC sample is annealed in an oxygen atmosphere at 800 ° C for 60 minutes to form a SiO 2 isolation dielectric layer 107.
  • a copper graphene composite material is sputtered on the SiO 2 isolation dielectric layer 107 and the TiC alloy layer 108 by a magnetron sputtering process to form a first copper graphene layer 109, wherein the first copper graphite
  • the olefin layer 109 has a thickness of 1 ⁇ m and is an anode.
  • annealing treatment in a nitrogen atmosphere causes the SiC substrate layer 103 and the Ni metal layer 102 to form an ohmic contact, and the Ni metal layer 102 serves as a cathode.
  • the SiC surface is oxidized to a SiO 2 isolation medium under an O ion atmosphere before depositing the SiO 2 isolation medium, the interface between SiC and SiO 2 can be effectively formed, and the C atom is oxidized to a gas discharge, thoroughly.
  • the problem of high interface state and low carrier mobility caused by the C atom complex in the high temperature thick oxide layer is solved.
  • the final SiO 2 isolation medium is formed by chemical vapor deposition and annealing, the problem of forming a C complex at the interface between SiC and SiO 2 is completely solved under the premise of ensuring the quality of the SiO 2 dielectric layer.
  • the preparation method comprises:
  • the N + type SiC substrate layer 103 is cleaned by an RCA (wet chemical cleaning method) cleaning standard to remove organic and inorganic chemical contaminants on the surface of the sample.
  • an N - type SiC epitaxial layer 104 having a thickness of 8 ⁇ m and a nitrogen ion doping concentration of 1 ⁇ 10 15 cm -3 is epitaxially grown on the SiC substrate layer 103 by a chemical vapor deposition process.
  • the conditions are: epitaxial growth temperature is 1570 ° C, pressure is 100 mbar, the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is liquid nitrogen.
  • the alignment mark depth is 0.4 ⁇ m;
  • S33 is fabricated by electron beam evaporation on the upper surface of the SiC epitaxial layer 104 with the pattern region.
  • Ni/Au layer wherein the thickness of Ni is The thickness of Au is Then, it is soaked in acetone for ultrasonic treatment, and the metal is peeled off to form the ion implantation barrier layer 105.
  • the implantation dose is 2.8 ⁇ 10 12 cm -2 ; when the implantation energy is 120 keV, the implantation dose is 6.5 ⁇ 10 12 cm -2 ; when the implantation energy is 300 keV, the implantation dose is 1.05 ⁇ 10 13 cm -2 ; When the energy is 420 keV, the implantation dose is 1.3 ⁇ 10 13 cm -2 ; when the implantation energy is 550 keV, the implantation dose is 1.45 ⁇ 10 13 cm -2 , forming a P + region 106 with discrete intervals;
  • the surface of the SiC epitaxial layer 104 is cleaned by the RCA cleaning standard, dried at 1000 ° C for 20 min, dried, and then coated on the surface of the SiC epitaxial layer 104 three times, and heated at 400 ° C for 90 min, the photoresist is carbonized. After conversion to an amorphous C film to form a carbon film protection, the thickness of the C film is 0.4 ⁇ m;
  • ion-activated annealing is performed in an argon atmosphere at 1700 ° C to 1750 ° C for an annealing time of 20 min to form a P + region 106.
  • the whole device is placed in a chemical vapor deposition furnace and heated to 300 ° C, oxygen is introduced for 60 seconds, and the surface of the SiC epitaxial layer 104 is oxidized to a 1-2 nm SiO 2 isolation medium under an O ion atmosphere, and then silane is introduced and deposited. 100 nm SiO 2 isolation medium;
  • the SiC sample is annealed in an oxygen atmosphere at 800 ° C for 60 minutes to form a SiO 2 isolation dielectric layer 107.
  • the first Cu metal layer, the graphene layer and the second Cu metal layer are annealed at a temperature of 500 ° C for 30 minutes to form the first copper graphene layer 109.
  • an annealing treatment in a nitrogen atmosphere at a temperature of 900 ° C causes the SiC substrate layer 103 and the Ni metal layer 102 to form an ohmic contact, and the Ni metal layer 102 serves as a cathode.
  • the preparation method comprises:
  • the N + type SiC substrate layer 103 is cleaned by an RCA (wet chemical cleaning method) cleaning standard to remove organic and inorganic chemical contaminants on the surface of the sample.
  • an N - type SiC epitaxial layer 104 having a thickness of 8 ⁇ m and a nitrogen ion doping concentration of 1 ⁇ 10 15 cm -3 is epitaxially grown on the surface of the SiC substrate layer 103 by a chemical vapor deposition process.
  • the process conditions are: epitaxial growth temperature of 1570 ° C, pressure of 100 mbar, reaction gas using silane and propane, carrier gas using pure hydrogen, and impurity source using liquid nitrogen.
  • the alignment mark depth is 0.4 ⁇ m;
  • S33 is fabricated by electron beam evaporation on the upper surface of the SiC epitaxial layer 104 with the pattern region.
  • Ni/Au layer wherein the thickness of Ni is The thickness of Au is Then, it is soaked in acetone for ultrasonic treatment, and the metal is peeled off to form the ion implantation barrier layer 105.
  • the implantation dose is 2.8 ⁇ 10 12 cm -2 ; when the implantation energy is 120 keV, the implantation dose is 6.5 ⁇ 10 12 cm -2 ; when the implantation energy is 300 keV, the implantation dose is 1.05 ⁇ 10 13 cm -2 ; When the energy is 420 keV, the implantation dose is 1.3 ⁇ 10 13 cm -2 ; when the implantation energy is 550 keV, the implantation dose is 1.45 ⁇ 10 13 cm -2 , forming a P + region 106 with discrete intervals;
  • the surface of the SiC epitaxial layer 104 is cleaned by the RCA cleaning standard, dried at 1000 ° C for 20 min, dried, and then coated on the surface of the SiC epitaxial layer 104 three times, and heated at 400 ° C for 90 min, the photoresist is carbonized. After conversion to an amorphous C film to form a carbon film protection, the thickness of the C film is 0.4 ⁇ m;
  • ion-activated annealing is performed in an argon atmosphere at 1700 ° C to 1750 ° C for an annealing time of 20 min to form a P + region 106.
  • the whole device is placed in a chemical vapor deposition furnace and heated to 300 ° C, oxygen is introduced for 60 seconds, and the surface of the SiC epitaxial layer 104 is oxidized to a 1-2 nm SiO 2 isolation medium under an O ion atmosphere, and then silane is introduced and deposited. 100 nm SiO 2 isolation medium;
  • the SiC sample is annealed in an oxygen atmosphere at 800 ° C for 60 minutes to form a SiO 2 isolation dielectric layer 107.
  • a copper graphene composite material is sputtered on the SiO 2 isolation dielectric layer 107 and the TiC alloy layer 108 by a magnetron sputtering process to form a first copper graphene layer 109, wherein the first copper graphite
  • the olefin layer 109 has a thickness of 1 ⁇ m and is an anode.
  • metal Al is sputtered on the SiO 2 isolation dielectric layer 107 and the NiCr alloy layer 108 by a magnetron sputtering process to form an Al metal layer as an anode.
  • an annealing treatment in a nitrogen atmosphere at a temperature of 900 ° C causes the SiC substrate layer 103 and the Ni metal layer 102 to form an ohmic contact, and the Ni metal layer 102 serves as a cathode.
  • a copper graphene composite is sputtered on the lower surface of the Ni metal layer 102 by a magnetron sputtering process to form a second copper graphene layer, and the second copper graphene layer is a cathode.
  • FIG. 3 is a schematic structural diagram of a SiC power diode device according to an embodiment of the present invention.
  • This embodiment provides a structure of a SiC power diode device, and the structure includes:
  • a second metal layer ie, Ag metal layer 101
  • the Ag metal layer 101 is a cathode and has a thickness of 1 ⁇ m.
  • a first metal layer ie, a Ni metal layer 102 located on an upper surface of the Ag metal layer 101;
  • the Ni metal layer 102 is a cathode and has a thickness of 1 ⁇ m.
  • the SiC substrate layer 103 is made of an N + -type SiC material having a doping concentration of 5 ⁇ 10 18 cm -3 and has a thickness of 360 ⁇ m.
  • the SiC substrate layer 103 and the Ni metal layer 102 form an ohmic contact.
  • SiC epitaxial layer 104 is located on the upper surface of the SiC substrate layer 103;
  • the SiC epitaxial layer 104 is composed of an N ⁇ -type SiC material having a doping concentration of 1 ⁇ 10 15 cm ⁇ 3 and a thickness of 8 ⁇ m.
  • the P + region 106 has a doping concentration of 3 ⁇ 10 18 cm ⁇ 3 and a depth of 0.4 ⁇ m, and the P + region 106 is disposed on the inner side of the SiC epitaxial layer 104 at intervals.
  • the thickness of the SiO 2 isolation dielectric layer 107 is 100 nm.
  • the SiC epitaxial layer 104 and the TiC alloy layer 108 form a Schottky contact.
  • the first copper graphene layer 109 is a composite material, and the first copper graphene layer 109 has a thickness of 1 ⁇ m and is an anode.
  • a Schottky contact is formed by forming a TiC alloy material on the surface of the SiC epitaxial layer, and the Schottky barrier height is reduced by the Schottky contact between the SiC epitaxial layer and the TiC alloy layer.
  • the turn-on voltage of the SiC power diode device is reduced, thereby achieving the effects of reducing leakage current, reducing power consumption, and increasing reverse voltage.
  • This embodiment utilizes a TiC material as a Schottky contact metal material, which can increase the SiC epitaxial growth temperature and enable the application of the SiC power diode device under high temperature conditions.
  • a copper graphene composite material is used as an anode, which improves the high temperature resistance and electrical conductivity of the SiC power diode device, and improves the heat dissipation performance of the SiC power diode device.
  • FIG. 4 is a schematic structural diagram of another SiC power diode device according to an embodiment of the present invention.
  • This embodiment provides a structure of another SiC power diode device, and the structure includes:
  • the second copper graphene layer 110 is a copper graphene composite material, and the second copper graphene layer 110 is a cathode.
  • a first metal layer ie, a Ni metal layer 102 located on an upper surface of the second copper graphene layer 110;
  • the Ni metal layer 102 is a cathode and has a thickness of 1 ⁇ m.
  • the SiC substrate layer 103 is made of an N + -type SiC material having a doping concentration of 5 ⁇ 10 18 cm -3 and has a thickness of 360 ⁇ m.
  • the SiC substrate layer 103 and the Ni metal layer 102 form an ohmic contact.
  • SiC epitaxial layer 104 is located on the upper surface of the SiC substrate layer 103;
  • the SiC epitaxial layer 104 is composed of an N ⁇ -type SiC material having a doping concentration of 1 ⁇ 10 15 cm ⁇ 3 and a thickness of 8 ⁇ m.
  • the P + region 106 has a doping concentration of 3 ⁇ 10 18 cm ⁇ 3 and a depth of 0.4 ⁇ m, and the P + region 106 is disposed on the inner side of the SiC epitaxial layer 104 at intervals.
  • the thickness of the SiO 2 isolation dielectric layer 107 is 100 nm.
  • the SiC epitaxial layer 104 and the TiC alloy layer 108 form a Schottky contact.
  • the first copper graphene layer 109 is a composite material, and the first copper graphene layer 109 has a thickness of 1 ⁇ m and is an anode.
  • the Al metal layer is on the upper surface of the SiO 2 isolation dielectric layer and the NiCr alloy layer, and the Al metal layer is the anode.
  • the anode and the cathode of the SiC power diode device are prepared by using the copper graphene composite material, which can improve the high temperature resistance and the electrical conductivity of the SiC device, and improve the heat dissipation performance of the SiC power diode device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种SiC功率二极管器件的制备方法及其结构,该制备方法包括:在SiC衬底层(103)上生长SiC外延层(104),在所述SiC外延层(104)内形成P +区域(106),在形成所述P +区域(106)的所述SiC外延层(104)表面生长TiC合金层(108)形成肖特基接触,在所述TiC合金层(108)上生长第一铜石墨烯层(109)形成器件的阳极电极,在所述SiC衬底层(103)背面形成器件阴极电极(101、102),以完成所述SiC功率二极管器件的制备。本发明的利用TiC材料与SiC之间接触调整势垒高度变化,进而减小肖特基势垒的高度,降低了SiC功率二极管器件的开启电压,达到减小漏电流和能耗、增大反向电压的效果。

Description

SiC功率二极管器件的制备方法及其结构 技术领域
本发明涉及微电子技术领域,特别是涉及一种SiC功率二极管器件的制备方法及其结构。
背景技术
第三代半导体材料SiC(碳化硅)材料由于具有宽带隙、高临界击穿电场、高热导率、高载流子饱和漂移速度等特点,在高温、高频、大功率、光电子及抗辐射等方面具有巨大的潜力,许多国家相继投入了大量的资金对SiC进行了广泛的研究,并已在SiC晶体生长技术、关键器件工艺、光电器件开发、SiC集成电路制造等方面取得了突破,为军用电子系统和武器装备性能的提高,以及抗恶劣环境的电子设备提供了新型器件。
肖特基(Schottky)势垒二极管是利用金属与半导体之间接触势垒进行工作的一种多数载流子器件。肖特基二极管相比PN二极管具有更加简单的结构,在制造工艺上也较为简单,因此成本也较低,肖特基二极管选通的电阻转换存储器相比于PN二极管具有一定的优势,并且肖特基二极管在电流和相应时间上也有不错的表现。
但是由于SiC的禁带宽度较宽,很难获得低的肖特基势垒高度值,导致SiC与金属接触时,肖特基势垒高度过高,影响半导体功率器件的开启电压,造成能耗过大。
发明内容
因此,为解决现有技术存在的技术缺陷和不足,本发明提出一种SiC功率二极管器件的制备方法及其结构。
具体地,本发明一个实施例提出的一种SiC功率二极管器件的制备方法,包括:
在SiC衬底层上生长SiC外延层;
在所述SiC外延层内形成P +区域;
在形成所述P +区域的所述SiC外延层表面生长TiC合金层形成肖特基接触;
在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极;
在所述SiC衬底层背面形成器件阴极电极,以完成所述SiC功率二极管器件的制备。
在本发明的一个实施例中,在所述SiC外延层内形成P +区域之前,还包括:
在所述SiC外延层上表面制作离子注入阻挡层。
在本发明的一个实施例中,在所述SiC外延层上表面制作离子注入阻挡层,包括:
在所述SiC外延层上表面进行光刻、显影后,利用光刻胶作阻挡层,并刻蚀形成对准标记;
将所述对准标记进行套刻,形成图形区域;
通过电子束蒸发在带有所述图形区域的所述SiC外延层的上制作Ni/Au层,剥离所述Ni/Au层形成所述离子注入阻挡层。
在本发明的一个实施例中,在所述SiC外延层内形成P +区域,包括:
对所述SiC外延层进行Al离子注入;
在所述SiC外延层上表面形成碳膜保护;
在1700℃~1750℃温度下,氩气氛围中进行离子激活退火,退火时间 为20min,形成所述P +区域。
在本发明的一个实施例中,在所述SiC外延层内形成P +区域之后,还包括:
利用化学气相沉积工艺在所述SiC外延层104上表面沉积一层SiO 2隔离介质;
在800℃温度下,在氧气氛围中使所述SiO 2隔离介质退火60分钟形成所述SiO 2隔离介质层。
在本发明的一个实施例中,在形成所述P +区域的所述SiC外延层表面生长TiC合金层形成肖特基接触,包括:
对所述SiO 2隔离介质层进行涂胶、显影,通过光刻刻蚀形成肖特基接触窗口;
利用化学气相沉积工艺在所述SiC外延层上沉积所述TiC合金层;
在800℃~900℃温度下,氮气氛围中退火3分钟,形成肖特基接触。
在本发明的一个实施例中,在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极,包括:
利用磁控溅射工艺在所述TiC合金层上溅射第一Cu金属层;
利用化学气相沉积工艺,在所述第一Cu金属层上沉积石墨烯层;
利用磁控溅射工艺在所述石墨烯层溅射第二Cu金属层;
在500℃温度下使器件退火30分钟,制备所述第一铜石墨烯层形成器件的阳极电极。
在本发明的一个实施例中,在所述SiC衬底层背面形成器件的阴极电极之前,包括:
在所述SiC衬底层背面生长第一金属层形成欧姆接触。在本发明的一 个实施例中,在所述SiC衬底层背面生长第一金属层形成欧姆接触之后,包括:
利用磁控溅射工艺在所述第一金属层下表面溅射金属Ag;
在氮气氛围中退火处理制备第二金属层形成器件的阴极电极。
在本发明的一个实施例中,一种SiC功率二极管器件的结构,包括:依次层叠的第二金属层、第一金属层、SiC衬底层、SiC外延层、SiO 2隔离介质层、TiC合金层、第一铜石墨烯层,其中,所述SiC外延层内设置有P+区域,所述SiC功率二极管器件由权利要求1~9任一项所述的方法制备形成。
本发明实施例,具备如下优点:
1、本发明的利用TiC材料与SiC之间接触调整势垒高度变化,进而减小肖特基势垒的高度,降低SiC功率二极管器件的开启电压,达到减小漏电流和能耗、增大反向电压的效果。
2、本发明利用TiC材料作为肖特基接触金属材料能够提高SiC外延生长温度,并且能够使SiC功率二极管器件在高温条件下得到应用。
3、本发明采用铜石墨烯复合材料作为阳极,改善了SiC器件的耐高温性能和导电性能,提高了SiC功率二极管器件的散热性能。
4、本发明由于在沉积SiO 2隔离介质之前,在O离子气氛下,将SiC表面氧化成SiO 2隔离介质,可以有效的形成SiC与SiO 2界面,并将C原子氧化成气体排出,彻底解决高温厚氧化层中C原子络合物引起的界面态高,载流子迁移率低的问题。
5、本发明由于最终的SiO 2隔离介质是化学气相沉积和退火形成,在保证SiO 2介质层质量的前提下,彻底解决SiC与SiO 2界面形成C络合物的问 题。
通过以下参考附图的详细说明,本发明的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本发明的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。
附图说明
下面将结合附图,对本发明的具体实施方式进行详细的说明。
图1为本发明实施例提供的一种SiC功率二极管器件的制备方法流程图;
图2a~图2i为本发明实施例提供的一种SiC功率二极管器件的制备工艺流程示意图;
图3为本发明实施例提供的一种SiC功率二极管器件的结构示意图;
图4为本发明实施例提供的另一种SiC功率二极管器件的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
实施例一
请参见图1,图1为本发明实施例提供的一种SiC功率二极管器件的制备方法流程图。该制备方法包括如下步骤:
步骤a、在SiC衬底层上生长SiC外延层;
步骤b、在所述SiC外延层内形成P +区域;
步骤c、在形成所述P +区域的所述SiC外延层表面生长TiC合金层形成肖特基接触;
步骤d、在所述TiC合金层上生长第一铜石墨烯层109形成器件的阳极电极;
步骤e、在所述SiC衬底层背面形成器件的阴极电极,以完成所述SiC功率二极管器件的制备。
其中,步骤b之前还包括:
步骤b1、在SiC外延层上表面制作离子注入阻挡层。
其中,步骤b1包括:
步骤b11、在SiC外延层上表面进行光刻、显影后,利用光刻胶作阻挡层,并刻蚀形成对准标记;
步骤b12、将对准标记进行套刻,形成图形区域;
步骤b13、通过电子束蒸发在带有所述图形区域的所述SiC外延层的上制作Ni/Au层,剥离所述Ni/Au层形成所述离子注入阻挡层。
其中,步骤b包括:
步骤b2、对SiC外延层进行Al离子注入;
步骤b3、在SiC外延层上表面形成碳膜保护;
步骤b4、在1700℃~1750℃温度下,氩气氛围中进行离子激活退火,退火时间为20min,形成P +区域。
其中,步骤b之后还包括:
步骤b5、利用化学气相沉积工艺在SiC外延层上表面沉积一层SiO 2隔离介质;
步骤b6、在800℃温度下,在氧气氛围中使SiO 2隔离介质退火60分钟 形成SiO 2隔离介质层。
其中,步骤c包括:
步骤c1、对SiO 2隔离介质层进行涂胶、显影,通过光刻刻蚀形成肖特基接触窗口;
步骤c2、利用化学气相沉积工艺在SiC外延层上的肖特基接触窗口沉积TiC合金层;
步骤c3、在800℃~900℃温度下,,氮气氛围中退火3分钟,形成肖特基接触。
其中,步骤d包括:
步骤d1、利用磁控溅射工艺在所述TiC合金层上溅射第一Cu金属层;
步骤d2、利用化学气相沉积工艺,在第一Cu金属层上沉积石墨烯层;
步骤d3、利用磁控溅射工艺在石墨烯层溅射第二Cu金属层;
步骤d4、在500℃温度下使器件退火30分钟,制备所述第一铜石墨烯层形成器件的阳极电极。
其中,步骤e之前还包括:
步骤e1、在SiC衬底层背面生长第一金属层形成欧姆接触。其中,步骤e包括:
步骤e2、利用磁控溅射工艺在第一金属层下表面溅射金属Ag;
步骤e3、在氮气氛围中退火处理制备第二金属层形成器件的阴极电极。
优选地,第一铜石墨烯层为铜石墨烯复合材料。
优选地,该SiC功率二极管器件的结构包括:依次层叠的第二金属层、第一金属层、SiC衬底层、SiC外延层、SiO 2隔离介质层、TiC合金层、第一铜石墨烯层,其中,SiC外延层内设置有P+区域。
本实施例的有益效果具体为:
1、本实施例通过在SiC外延层表面生成一层TiC合金材料,形成肖特基接触,通过SiC外延层与TiC合金层之间的肖特基接触减小了肖特基势垒高度,能够降低SiC功率二极管器件的开启电压,从而达到减小漏电流和降低能耗、增大反向电压的效果。
2、本实施例利用TiC合金材料作为肖特基接触金属材料,不仅能够提高SiC外延生长的温度,并且能够使SiC功率二极管器件在高温条件下得到应用。
3、本实施例采用铜石墨烯复合材料作为阳极,改善了SiC功率二极管器件的耐高温性能和导电性能,提高了SiC功率二极管器件的散热性能。
实施例二
请参见图2a~图2h,图2a~图2h为本发明实施例提供的一种SiC功率二极管器件的制备工艺流程示意图。在上述实施例的基础上,本实施例将较为详细地对本发明的工艺流程进行介绍。该制备方法包括:
S1、衬底选取;
选取掺杂浓度为5×10 18cm -3的N +型SiC衬底层103为初始材料。
S11、对N +型SiC衬底层103采用RCA(湿式化学清洗法)清洗标准进行清洗,以去除样品表面有机和无机化学污染物。
S2、在SiC衬底层103上外延生长SiC外延层104;
S21、如图2a所示,采用化学气相沉积工艺,在SiC衬底层103上方外延生长厚度为8μm,氮离子掺杂浓度为1×10 15cm -3的N -型SiC外延层104,其工艺条件是:外延生长温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。
S3、在SiC外延层104上生长离子注入阻挡层105;
S31、对SiC外延层104做RCA标准清洗后,进行涂胶光刻、显影后,利用光刻胶作阻挡层,采用RE刻蚀5min后形成对准标记,对准标记深度为0.4μm;
S32、对形成的对准标记进行套刻,形成图形区域;
S33、如图2b所示,通过电子束蒸发在带有图形区域的SiC外延层104的上表面制作
Figure PCTCN2018111392-appb-000001
的Ni/Au层,其中,Ni的厚度为
Figure PCTCN2018111392-appb-000002
Au的厚度为
Figure PCTCN2018111392-appb-000003
然后浸泡在丙酮中做超声波处理,剥离金属形成离子注入阻挡层105。
S4、在SiC外延层104内形成P +区域106;
S41、如图2c所示,在450℃的环境温度下对SiC外延层104进行五次Al离子注入,注入深度为0.4μm,注入能量分别为30keV、120keV、300keV、420keV和550keV,注入能量为30keV时,注入剂量为2.8×10 12cm -2;注入能量为120keV时,注入剂量为6.5×10 12cm -2;注入能量为300keV时,注入剂量为1.05×10 13cm -2;注入能量为420keV时,注入剂量为1.3×10 13cm -2;注入能量为550keV时,注入剂量为1.45×10 13cm -2,形成间隔分立排布的P +区域106;
S42、采用RCA清洗标准对SiC外延层104表面进行清洗,在1000℃温度下烘干20min,烘干后在SiC外延层104表面进行三次涂胶,并在400℃下加热90min,光刻胶碳化后转化成无定型C膜形成碳膜保护;
S43、在1700℃~1750℃氩气氛围中进行离子激活退火,退火时间为20min,形成P +区域106。
S5、在SiC外延层104上生长SiO 2隔离介质层107;
S51、将器件整体放入化学气相沉积炉中加热到300℃,通入氧气60秒,在O离子气氛下,将SiC外延层104表面氧化成1-2nmSiO 2隔离介质,再通入硅烷,沉积100nm的SiO 2隔离介质。
S52、如图2d所示,将SiC样品在氧气氛围中,800℃退火60分钟,形成SiO 2隔离介质层107。
S6、在SiC外延层104上的肖特基接触窗口生长TiC合金层108;
S61、对SiO 2隔离介质层107进行涂胶、显影,之后再进行光刻刻蚀,形成肖特基接触窗口;
S62、如图2e所示,利用化学气相沉积工艺在肖特基接触窗口沉积TiC合金层108;
S63、在850±50℃温度下的氮气氛围中退火3分钟使SiC外延层104和TiC合金层108形成肖特基接触。
S7、在SiO 2隔离介质层107和TiC合金层108上生长第一铜石墨烯层109;
S71、如图2f所示,利用磁控溅射工艺在SiO 2隔离介质层107和TiC合金层108上溅射铜石墨烯复合材料,形成第一铜石墨烯层109,其中,第一铜石墨烯层109的厚度为1μm,且为阳极。
S8、在SiC衬底层103的下表面生长第一金属层(即Ni金属层102);
S81、利用磁控溅射工艺在SiC衬底层103的下表面溅射Ni金属层102;
S82、如图2g所示,在氮气氛围中退火处理使SiC衬底层103和Ni金属层102形成欧姆接触,Ni金属层102为阴极。
S9、在Ni金属层102的下表面生长第二金属层(即Ag金属层101);
S91、如图2h所示,利用磁控溅射工艺在Ni金属层102的下表面溅射 金属Ag;
S92、在900℃温度下的氮气氛围中退火处理形成Ag金属层101,Ag金属层101为阴极。
本实施例的有益效果:
1、本实施例由于在沉积SiO 2隔离介质之前,在O离子气氛下,将SiC表面氧化成SiO 2隔离介质,可以有效的形成SiC与SiO 2界面,并将C原子氧化成气体排出,彻底解决高温厚氧化层中C原子络合物引起的界面态高,载流子迁移率低的问题。
2、本实施例由于最终的SiO 2隔离介质是化学气相沉积和退火形成,在保证SiO 2介质层质量的前提下,彻底解决SiC与SiO 2界面形成C络合物的问题。
实施例三
请再次参见图2a~图2h。在上述实施例的基础上,本实施例将较为详细地对本发明的另一种工艺流程进行介绍。该制备方法包括:
S1、衬底选取;
选取掺杂浓度为5×10 18cm -3的N +型SiC衬底层103为初始材料。
S11、对N +型SiC衬底层103采用RCA(湿式化学清洗法)清洗标准进行清洗,以去除样品表面有机和无机化学污染物。
S2、在SiC衬底层103上外延生长SiC外延层104;
S21、如图2a所示,采用化学气相沉积工艺,在SiC衬底层103上方外延生长厚度为8μm,氮离子掺杂浓度为1×10 15cm -3的N -型SiC外延层104,其工艺条件是:外延生长温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。
S3、在SiC外延层104上生长离子注入阻挡层105;
S31、对SiC外延层104做RCA标准清洗后,进行涂胶光刻、显影后,利用光刻胶作阻挡层,采用RE刻蚀5min后形成对准标记,对准标记深度为0.4μm;
S32、对形成的对准标记进行套刻,形成图形区域;
S33、如图2b所示,通过电子束蒸发在带有图形区域的SiC外延层104的上表面制作
Figure PCTCN2018111392-appb-000004
的Ni/Au层,其中,Ni的厚度为
Figure PCTCN2018111392-appb-000005
Au的厚度为
Figure PCTCN2018111392-appb-000006
然后浸泡在丙酮中做超声波处理,剥离金属形成离子注入阻挡层105。
S4、在SiC外延层104内形成P +区域106;
S41、如图2c所示,在450℃的环境温度下对SiC外延层104进行五次Al离子注入,注入深度为0.4μm,注入能量分别为30keV、120keV、300keV、420keV和550keV,注入能量为30keV时,注入剂量为2.8×10 12cm -2;注入能量为120keV时,注入剂量为6.5×10 12cm -2;注入能量为300keV时,注入剂量为1.05×10 13cm -2;注入能量为420keV时,注入剂量为1.3×10 13cm -2;注入能量为550keV时,注入剂量为1.45×10 13cm -2,形成间隔分立排布的P +区域106;
S42、采用RCA清洗标准对SiC外延层104表面进行清洗,在1000℃温度下烘干20min,烘干后在SiC外延层104表面进行三次涂胶,并在400℃下加热90min,光刻胶碳化后转化成无定型C膜形成碳膜保护,C膜厚度为0.4μm;
S43、在1700℃~1750℃氩气氛围中进行离子激活退火,退火时间为20min,形成P +区域106。
S5、在SiC外延层104上生长SiO 2隔离介质层107;
S51、将器件整体放入化学气相沉积炉中加热到300℃,通入氧气60秒,在O离子气氛下,将SiC外延层104表面氧化成1-2nmSiO 2隔离介质,再通入硅烷,沉积100nm的SiO 2隔离介质;
S52、如图2d所示,将SiC样品在氧气氛围中,800℃退火60分钟,形成SiO 2隔离介质层107。
S6、在SiC外延层104上的肖特基接触窗口生长TiC合金层108;
S61、对SiO 2隔离介质层107进行涂胶、显影,之后再进行光刻刻蚀,形成肖特基接触窗口;
S62、如图2e所示,利用化学气相沉积工艺在肖特基接触窗口沉积TiC合金层108;
S63、在850±50℃温度下的氮气氛围中退火3分钟使SiC外延层104和TiC合金层108形成肖特基接触。
S7、在SiO 2隔离介质层107和TiC合金层108上生长第一铜石墨烯层109;
S71、利用磁控溅射工艺在SiO 2隔离介质层107和TiC合金层108上溅射第一Cu金属层;
S72、利用化学气相沉积工艺,在第一Cu金属层上生长石墨烯层;
S73、利用磁控溅射工艺在石墨烯层溅射第二Cu金属层;
S74、如图2f所示,在500℃温度下使第一Cu金属层、石墨烯层和第二Cu金属层退火30分钟,形成所述第一铜石墨烯层109。
S8、在SiC衬底层103的下表面生长第一金属层(即Ni金属层102)
S81、利用磁控溅射工艺在SiC衬底层103的下表面溅射Ni金属层102;
S82、如图2g所示,在900℃温度下的氮气氛围中退火处理使SiC衬底层103和Ni金属层102形成欧姆接触,Ni金属层102为阴极。
S9、在Ni金属层102的下表面生长第二金属层(即Ag金属层101);
S91、如图2h所示,利用磁控溅射工艺在Ni金属层102的下表面溅射金属Ag;
S92、在900℃温度下的氮气氛围中退火处理形成Ag金属层101,Ag金属层101为阴极。
实施例四
请再次参见图2a~图2g及2i。在上述实施例的基础上,本实施例将较为详细地对本发明的再一种工艺流程进行介绍。该制备方法包括:
S1、衬底选取;
选取掺杂浓度为5×10 18cm -3的N +型SiC衬底层103为初始材料。
S11、对N +型SiC衬底层103采用RCA(湿式化学清洗法)清洗标准进行清洗,以去除样品表面有机和无机化学污染物。
S2、在SiC衬底层103上外延生长SiC外延层104;
S21、如图2a所示,采用化学气相沉积工艺,在SiC衬底层103上表面外延生长厚度为8μm,氮离子掺杂浓度为1×10 15cm -3的N -型SiC外延层104,其工艺条件是:外延生长温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。
S3、在SiC外延层104上生长离子注入阻挡层105;
S31、对SiC外延层104做RCA标准清洗后,进行涂胶光刻、显影后,利用光刻胶作阻挡层,采用RE刻蚀5min后形成对准标记,对准标记深度为0.4μm;
S32、对形成的对准标记进行套刻,形成图形区域;
S33、如图2b所示,通过电子束蒸发在带有图形区域的SiC外延层104的上表面制作 的Ni/Au层,其中,Ni的厚度为
Figure PCTCN2018111392-appb-000008
Au的厚度为
Figure PCTCN2018111392-appb-000009
然后浸泡在丙酮中做超声波处理,剥离金属形成离子注入阻挡层105。
S4、在SiC外延层104内形成P +区域106;
S41、如图2c所示,在450℃的环境温度下对SiC外延层104进行五次Al离子注入,注入深度为0.4μm,注入能量分别为30keV、120keV、300keV、420keV和550keV,注入能量为30keV时,注入剂量为2.8×10 12cm -2;注入能量为120keV时,注入剂量为6.5×10 12cm -2;注入能量为300keV时,注入剂量为1.05×10 13cm -2;注入能量为420keV时,注入剂量为1.3×10 13cm -2;注入能量为550keV时,注入剂量为1.45×10 13cm -2,形成间隔分立排布的P +区域106;
S42、采用RCA清洗标准对SiC外延层104表面进行清洗,在1000℃温度下烘干20min,烘干后在SiC外延层104表面进行三次涂胶,并在400℃下加热90min,光刻胶碳化后转化成无定型C膜形成碳膜保护,C膜厚度为0.4μm;
S43、在1700℃~1750℃氩气氛围中进行离子激活退火,退火时间为20min,形成P +区域106。
S5、在SiC外延层104上生长SiO 2隔离介质层107;
S51、将器件整体放入化学气相沉积炉中加热到300℃,通入氧气60秒,在O离子气氛下,将SiC外延层104表面氧化成1-2nmSiO 2隔离介质,再通入硅烷,沉积100nm的SiO 2隔离介质;
S52、如图2d所示,将SiC样品在氧气氛围中,800℃退火60分钟,形成SiO 2隔离介质层107。
S6、在SiC外延层104上的肖特基接触窗口生长TiC合金层108;
S61、对SiO 2隔离介质层107进行涂胶、显影,之后再进行光刻刻蚀,形成肖特基接触窗口;
S62、如图2e所示,利用化学气相沉积工艺在肖特基接触窗口沉积TiC合金层108;
S63、在850±50℃温度下的氮气氛围中退火3分钟使SiC外延层104和TiC合金层108形成肖特基接触。
S7、在SiO 2隔离介质层107和TiC合金层108上生长第一铜石墨烯层109;
S71、如图2f所示,利用磁控溅射工艺在SiO 2隔离介质层107和TiC合金层108上溅射铜石墨烯复合材料,形成第一铜石墨烯层109,其中,第一铜石墨烯层109的厚度为1μm,且为阳极。
可选地,利用磁控溅射工艺在SiO 2隔离介质层107和NiCr合金层108上溅射金属Al,形成Al金属层,作为阳极。
S8、在SiC衬底层103的下表面生长第一金属层(即Ni金属层102);
S81、利用磁控溅射工艺在SiC衬底层103的下表面溅射Ni金属层102;
S82、如图2g所示,在900℃温度下的氮气氛围中退火处理使SiC衬底层103和Ni金属层102形成欧姆接触,Ni金属层102为阴极。
S9、在Ni金属层102的下表面生长第二铜石墨烯层;
S91、如图2i所示,利用磁控溅射工艺在Ni金属层102的下表面溅射铜石墨烯复合材料形成第二铜石墨烯层,第二铜石墨烯层为阴极。
实施例五
请再次参见图3,图3为本发明实施例提供的一种SiC功率二极管器件的结构示意图。本实施例提供一种SiC功率二极管器件的结构,该结构,包括:
第二金属层(即Ag金属层101);
其中,Ag金属层101为阴极,厚度为1μm。
第一金属层(即Ni金属层102),位于Ag金属层101上表面;
其中,Ni金属层102为阴极,厚度为1μm。
SiC衬底层103,位于Ni金属层102的上表面;
其中,SiC衬底层103由掺杂浓度为5×10 18cm -3的N +型SiC材料构成,厚度为360μm,SiC衬底层103和Ni金属层102形成欧姆接触。
SiC外延层104,位于SiC衬底层103上表面;
其中,SiC外延层104由掺杂浓度为1×10 15cm -3的N -型SiC材料构成,厚度为8μm。
P +区域106,位于SiC外延层104内;
其中,P +区域106的掺杂浓度为3×10 18cm -3,深度为0.4μm,P +区域106位于SiC外延层104内侧呈间隔分立排布。
SiO 2隔离介质层107,位于SiC外延层104上表面;
其中,SiO 2隔离介质层107的厚度为100nm。
TiC合金层108,位于SiC外延层104上表面;
其中,SiC外延层104和TiC合金层108形成肖特基接触。
第一铜石墨烯层109,位于SiO 2隔离介质层107和TiC合金层108上表面;
其中,第一铜石墨烯层109为复合材料,第一铜石墨烯层109的厚度为1μm,且为阳极。
本实施例的有益效果:
1、本实施例通过在SiC外延层表面生成一层TiC合金材料,形成肖特基接触,通过SiC外延层与TiC合金层之间的肖特基接触减小了肖特基势垒高度,能够降低SiC功率二极管器件的开启电压,从而达到减小漏电流和降低能耗、增大反向电压的效果。
2、本实施例利用TiC材料作为肖特基接触金属材料,能够提高SiC外延生长温度,并且能够使SiC功率二极管器件在高温条件下得到应用。
3、本实施例采用铜石墨烯复合材料作为阳极,改善了SiC功率二极管器件的耐高温性能和导电性能,提高了SiC功率二极管器件的散热性能。
实施例六
请参见图4,图4为本发明实施例提供的另一种SiC功率二极管器件的结构示意图。本实施例提供另一种SiC功率二极管器件的结构,该结构,包括:
第二铜石墨烯层110;
其中,第二铜石墨烯层110为铜石墨烯复合材料,且第二铜石墨烯层110为阴极。
第一金属层(即Ni金属层102),位于第二铜石墨烯层110上表面;
其中,Ni金属层102为阴极,厚度为1μm。
SiC衬底层103,位于Ni金属层102的上表面;
其中,SiC衬底层103由掺杂浓度为5×10 18cm -3的N +型SiC材料构成,厚度为360μm,SiC衬底层103和Ni金属层102形成欧姆接触。
SiC外延层104,位于SiC衬底层103上表面;
其中,SiC外延层104由掺杂浓度为1×10 15cm -3的N -型SiC材料构成,厚度为8μm。
P +区域106,位于SiC外延层104内;
其中,P +区域106的掺杂浓度为3×10 18cm -3,深度为0.4μm,P +区域106位于SiC外延层104内侧呈间隔分立排布。
SiO 2隔离介质层107,位于SiC外延层104上表面;
其中,SiO 2隔离介质层107的厚度为100nm。
TiC合金层108,位于SiC外延层104上表面;
其中,SiC外延层104和TiC合金层108形成肖特基接触。
第一铜石墨烯层109,位于SiO 2隔离介质层107和TiC合金层108上表面;
其中,第一铜石墨烯层109为复合材料,第一铜石墨烯层109的厚度为1μm,且为阳极。
可选地,Al金属层位于SiO 2隔离介质层和NiCr合金层上表面,且Al金属层为阳极。
本实施例采用铜石墨烯复合材料制备SiC功率二极管器件的阳极和阴极,能够改善SiC器件的耐高温性能和导电性能,提高SiC功率二极管器件的散热性能。
综上所述,本文中应用了具体个例对本发明实施例提供的一种SiC功率二极管器件的制备方法及其结构的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上 均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。

Claims (10)

  1. 一种SiC功率二极管器件的制备方法,其特征在于,包括:
    在SiC衬底层上生长SiC外延层;
    在所述SiC外延层内形成P +区域;
    在形成所述P +区域的所述SiC外延层表面生长TiC合金层形成肖特基接触;
    在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极;
    在所述SiC衬底层背面形成器件的阴极电极,以完成所述SiC功率二极管器件的制备。
  2. 根据权利要求1所述的方法,其特征在于,在所述SiC外延层内形成P +区域之前,还包括:
    在所述SiC外延层上表面制作离子注入阻挡层。
  3. 根据权利要求2所述的方法,其特征在于,在所述SiC外延层上表面制作离子注入阻挡层,包括:
    在所述SiC外延层上表面进行光刻、显影后,利用光刻胶作阻挡层,并刻蚀形成对准标记;
    将所述对准标记进行套刻,形成图形区域;
    通过电子束蒸发在带有所述图形区域的所述SiC外延层的上制作Ni/Au层,剥离所述Ni/Au层形成所述离子注入阻挡层。
  4. 根据权利要求1所述的方法,其特征在于,在所述SiC外延层内形成P +区域,包括:
    对所述SiC外延层进行Al离子注入;
    在所述SiC外延层上表面形成碳膜保护;
    在1700℃~1750℃温度下,氩气氛围中进行离子激活退火,退火时间 为20min,形成所述P +区域。
  5. 根据权利要求1所述的方法,其特征在于,在所述SiC外延层内形成P +区域之后,还包括:
    利用化学气相沉积工艺在所述SiC外延层上表面沉积一层SiO 2隔离介质;
    在800℃温度下,在氧气氛围中使所述SiO 2隔离介质退火60分钟形成SiO 2隔离介质层。
  6. 根据权利要求1所述的方法,其特征在于,在形成所述P +区域的所述SiC外延层表面生长TiC合金层形成肖特基接触,包括:
    对所述SiO 2隔离介质层进行涂胶、显影,通过光刻刻蚀形成肖特基接触窗口;
    利用化学气相沉积工艺在所述SiC外延层上沉积所述TiC合金层;
    在800℃~900℃温度下,氮气氛围中退火3分钟,形成肖特基接触。
  7. 根据权利要求1所述的方法,其特征在于,在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极,包括:
    利用磁控溅射工艺在所述TiC合金层上溅射第一Cu金属层;
    利用化学气相沉积工艺,在所述第一Cu金属层上沉积石墨烯层;
    利用磁控溅射工艺在所述石墨烯层溅射第二Cu金属层;
    在500℃温度下使器件退火30分钟,制备所述第一铜石墨烯层形成器件的阳极电极。
  8. 根据权利要求1所述的方法,其特征在于,在所述SiC衬底层背面形成器件的阴极电极之前,包括:
    在所述SiC衬底层背面生长第一金属层形成欧姆接触。
  9. 根据权利要求8所述的方法,其特征在于,在所述SiC衬底层背面生长第一金属层形成欧姆接触之后,包括:
    利用磁控溅射工艺在所述第一金属层下溅射金属Ag;
    在氮气氛围中退火处理制备第二金属层形成器件的阴极电极。
  10. 一种SiC功率二极管器件的结构,其特征在于,包括:依次层叠的第二金属层、第一金属层、SiC衬底层、SiC外延层、SiO 2隔离介质层、TiC合金层、第一铜石墨烯层,其中,所述SiC外延层内设置有P+区域,所述SiC功率二极管器件由权利要求1~9任一项所述的方法制备形成。
PCT/CN2018/111392 2017-12-21 2018-10-23 SiC功率二极管器件的制备方法及其结构 WO2019119958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711397850.XA CN108321213A (zh) 2017-12-21 2017-12-21 SiC功率二极管器件的制备方法及其结构
CN201711397850.X 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019119958A1 true WO2019119958A1 (zh) 2019-06-27

Family

ID=62893173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111392 WO2019119958A1 (zh) 2017-12-21 2018-10-23 SiC功率二极管器件的制备方法及其结构

Country Status (2)

Country Link
CN (1) CN108321213A (zh)
WO (1) WO2019119958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117336A (zh) * 2020-09-22 2020-12-22 厦门大学 背照式结构的4H-SiC紫外光电探测器阵列及制备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449085A (zh) * 2018-09-12 2019-03-08 秦皇岛京河科学技术研究院有限公司 一种抗浪涌能力增强型的4H-SiC肖特基二极管及其制备方法
CN112164726B (zh) * 2020-09-15 2022-11-08 五邑大学 一种肖特基势垒二极管及其制备方法
CN113555497B (zh) * 2021-06-09 2023-12-29 浙江芯科半导体有限公司 一种高迁移率的SiC基石墨烯器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492752A (en) * 1992-12-07 1996-02-20 Oregon Graduate Institute Of Science And Technology Substrates for the growth of 3C-silicon carbide
JP2002016017A (ja) * 2000-06-27 2002-01-18 Nissan Motor Co Ltd 炭化珪素半導体装置およびその製造方法
CN103956354A (zh) * 2014-05-09 2014-07-30 浙江大学 以石墨烯为金属化层和扩散势垒层的互连线及其制备方法
CN104272442A (zh) * 2012-04-18 2015-01-07 富士电机株式会社 半导体器件的制造方法
CN104335328A (zh) * 2012-03-30 2015-02-04 富士电机株式会社 碳化硅半导体装置的制造方法以及由该方法制造的碳化硅半导体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851881B1 (en) * 2008-03-21 2010-12-14 Microsemi Corporation Schottky barrier diode (SBD) and its off-shoot merged PN/Schottky diode or junction barrier Schottky (JBS) diode
CN102881841B (zh) * 2012-10-16 2016-01-20 北京大学 以铜/石墨烯复合电极为阳极的半导体光电器件
EP3067935A1 (en) * 2015-03-10 2016-09-14 ABB Technology AG Power semiconductor rectifier with controllable on-state voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492752A (en) * 1992-12-07 1996-02-20 Oregon Graduate Institute Of Science And Technology Substrates for the growth of 3C-silicon carbide
JP2002016017A (ja) * 2000-06-27 2002-01-18 Nissan Motor Co Ltd 炭化珪素半導体装置およびその製造方法
CN104335328A (zh) * 2012-03-30 2015-02-04 富士电机株式会社 碳化硅半导体装置的制造方法以及由该方法制造的碳化硅半导体装置
CN104272442A (zh) * 2012-04-18 2015-01-07 富士电机株式会社 半导体器件的制造方法
CN103956354A (zh) * 2014-05-09 2014-07-30 浙江大学 以石墨烯为金属化层和扩散势垒层的互连线及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHN, Y. ET AL.: "Copper Nanowire-graphene Core-shell Nano-structure for Highly Stable Transparent Conducting Electrodes", ACS NANO, vol. 9, no. 3, 24 March 2015 (2015-03-24) - 31 March 2015 (2015-03-31), pages 3126 - 3130, XP055307570, ISSN: 1936-0851 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117336A (zh) * 2020-09-22 2020-12-22 厦门大学 背照式结构的4H-SiC紫外光电探测器阵列及制备
CN112117336B (zh) * 2020-09-22 2022-04-12 厦门大学 背照式结构的4H-SiC紫外光电探测器阵列及制备

Also Published As

Publication number Publication date
CN108321213A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019119958A1 (zh) SiC功率二极管器件的制备方法及其结构
WO2019119959A1 (zh) SiC肖特基二极管的制备方法及其结构
CN110379857B (zh) 一种包含p型氧化镓薄层的开关器件及其制备方法
CN103325840A (zh) 薄膜晶体管及其制作方法
JP5629570B2 (ja) グラフェン膜と金属電極とが電気的接合した回路装置
WO2022021685A1 (zh) 一种SiC基欧姆接触制备方法
KR20140090716A (ko) 그래핀 구조체, 이를 포함한 그래핀 소자 및 그 제조 방법
JP2012160485A (ja) 半導体装置とその製造方法
CN107369720A (zh) 一种p型金刚石高低势垒肖特基二极管及其制备方法
CN110098201A (zh) 晶体管器件及其制造方法、显示基板、显示装置
CN105762194A (zh) 一种石墨烯场效应晶体管及其制造方法
CN103928524B (zh) 带有n型漂移层台面的碳化硅umosfet器件及制作方法
CN103928345B (zh) 离子注入形成n型重掺杂漂移层台面的umosfet制备方法
CN109285894B (zh) 一种金刚石基多通道势垒调控场效应晶体管及其制备方法
CN104091743A (zh) 一种自对准栅极结构纳米线冷阴极电子源阵列的制作方法及其结构
CN106783997A (zh) 一种高迁移率晶体管及其制备方法
WO2019137093A1 (zh) 一种SiC基DI-MOSFET的制备方法及SiC基DI-MOSFET
US11948983B2 (en) Method for preparating SiC ohmic contact with low specific contact resistivity
WO2019095556A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
KR20170056388A (ko) 육방정계 질화붕소 및 그래핀의 이종접합구조 제조방법 및 이를 이용한 박막 트랜지스터
CN107359127B (zh) 蓝宝石衬底的Fe掺杂自旋场效应晶体管及其制造方法
CN112054053B (zh) 一种具有超高散热性能的SiC基欧姆接触制备方法
CN112054055B (zh) 一种以石墨烯为扩散阻挡层的SiC基欧姆接触制备方法
CN104979195B (zh) SiC基HEMT器件的制备方法
CN113643970A (zh) 一种碳化硅半导体器件的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890703

Country of ref document: EP

Kind code of ref document: A1