CN109824032A - 晶圆级石墨烯薄膜的转移方法 - Google Patents

晶圆级石墨烯薄膜的转移方法 Download PDF

Info

Publication number
CN109824032A
CN109824032A CN201910129693.7A CN201910129693A CN109824032A CN 109824032 A CN109824032 A CN 109824032A CN 201910129693 A CN201910129693 A CN 201910129693A CN 109824032 A CN109824032 A CN 109824032A
Authority
CN
China
Prior art keywords
graphene film
wafer level
buffer protection
protection layer
transfer method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910129693.7A
Other languages
English (en)
Inventor
张苗
李攀林
刘运启
王天波
薛忠营
狄增峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201910129693.7A priority Critical patent/CN109824032A/zh
Publication of CN109824032A publication Critical patent/CN109824032A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种晶圆级石墨烯薄膜的转移方法,晶圆级石墨烯薄膜的转移方法包括如下步骤:提供生长衬底;于所述生长衬底的上表面形成石墨烯薄膜;至少于所述石墨烯薄膜的上表面形成缓冲保护层;提供目标衬底,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合;去除所述生长衬底。本发明的晶圆级石墨烯的转移方法中,在石墨烯薄膜的转移过程中不需使用PMMA等有机物,在石墨烯薄膜转移后不会有有机物残留,从而克服了有机物残留造成器件电子的散射的问题,进而确保石墨烯的载流子迁移率。

Description

晶圆级石墨烯薄膜的转移方法
技术领域
本发明属于微电子技术领域,特别是涉及晶圆级石墨烯薄膜的转移方法。
背景技术
石墨烯是一种新型的碳纳米材料,它具有紧密堆积排列而成的二维蜂窝状网状结构。在过去的十余年时间里,石墨烯以其优异的物理性能、化学可调性以及潜在的应用前景引起了广泛关注。
目前高质量石墨烯薄膜的制备都是基于铜、镍和铂等衬底,这些衬底上生长的石墨烯无法直接应用于微电子器件中,需要将石墨烯转移到绝缘衬底上。成熟的转移石墨烯薄膜的方法是通过在长有石墨烯的衬底上旋涂聚甲基丙烯酸甲酯(PMMA),然后通过湿法腐蚀衬底,将石墨烯薄膜转移到目标基底上,最后利用除胶液将聚甲基丙烯酸甲酯除净。然而,石墨烯薄膜上的聚甲基丙烯酸甲酯并不能完全去除,有机物的残留会造成器件电子的散射,严重影响石墨烯的载流子迁移率。
为此,开发一种与微电子工艺兼容的无胶转移晶圆级石墨烯薄膜的方法具有非常重要的意义。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种晶圆级石墨烯薄膜的转移方法,用于解决现有技术中在石墨烯薄膜转移过程中需要使用有机物,而在转移后有机物不能完全去除,有机物的残留会造成器件电子的散射,严重影响石墨烯的载流子迁移率的问题。
为实现上述目的及其他相关目的,本发明提供一种晶圆级石墨烯薄膜的转移方法,所述晶圆级石墨烯薄膜的转移方法包括如下步骤:
提供生长衬底;
于所述生长衬底的上表面形成石墨烯薄膜;
至少于所述石墨烯薄膜的上表面形成缓冲保护层;
提供目标衬底,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合;
去除所述生长衬底。
可选地,所述生长衬底包括锗衬底。
可选地,形成所述石墨烯薄膜的方法包括化学气相沉积法。
可选地,形成的所述石墨烯薄膜包括单层石墨烯薄膜。
可选地,所述缓冲保护层包括二氧化硅层,形成所述缓冲保护层的方法包括原子层淀积法或低压化学气相沉积法。
可选地,所述缓冲保护层的厚度包括30~300纳米。
可选地,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合之前,还包括将位于所述石墨烯的上表面的所述缓冲保护层及目标衬底进行键合的键合面进行等离子活化处理的步骤。
可选地,所述目标衬底包括硅片,所述目标衬底的厚度包括100~800微米。
可选地,所述目标衬底包括硅片及位于所述硅片表面的二氧化硅层,所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合后,所述二氧化硅层与所述缓冲保护层的上表面相接触;所述二氧化硅层的厚度包括30~300纳米,所述硅片的厚度包括100~800微米。
可选地,所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合后,还包括将所得的键合结构进行退火处理的步骤。
可选地,于真空环境下或氩气保护气氛下将所述键合结构进行退火处理,所述退火处理的温度包括100~900℃。
可选地,于所述生长石墨烯薄膜的上表面及所述生长衬底的下表面同时形成所述缓冲保护层;去除所述生长衬底之前,还包括去除位于所述生长衬底的下表面的所述缓冲保护层的步骤。
可选地,使用缓冲氧化物刻蚀液去除位于所述生长衬底的下表面的所述缓冲保护层,使用磷酸与双氧水的混合液去除所述生长衬底。
如上所述,本发明的晶圆级石墨烯薄膜的转移方法具有以下有益效果:本发明的晶圆级石墨烯的转移方法中,在石墨烯薄膜的转移过程中不需使用PMMA等有机物,在石墨烯薄膜转移后不会有有机物残留,从而克服了有机物残留造成器件电子的散射的问题,进而确保石墨烯的载流子迁移率;本发明的晶圆级石墨烯的转移方法中,选用(110)晶面的锗晶圆作为生长衬底,可以生长出晶圆级单晶石墨烯薄膜,可以实现单晶石墨烯薄膜的晶圆级转移;本发明的晶圆级石墨烯的转移方法工艺步骤简单、易于操作,适用于大规模晶圆级石墨烯薄膜的转移及石墨烯微电子器件的制备。
附图说明
图1显示为本发明提供的晶圆级石墨烯薄膜的转移方法流程图。
图2至图7显示为本发明提供的晶圆级石墨烯薄膜的转移方法中各步骤所得结构的截面结构示意图。
元件标号说明
10 生长衬底
20 石墨烯薄膜
30 缓冲保护层
40 目标衬底
S1~S5 步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图7。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
请参阅图1,本发明提供一种晶圆级石墨无胶转移的方法,所述晶圆级石墨烯薄膜的转移方法包括如下步骤:
1)提供生长衬底;
2)于所述生长衬底的上表面形成石墨烯薄膜;
3)至少于所述石墨烯薄膜的上表面形成缓冲保护层;
4)提供目标衬底,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合;
5)去除所述生长衬底。
在步骤1)中,请参阅图1中的S1步骤及图2,提供生长衬底10。
作为示例,所述生长衬底10可以包括任意一种可以生长石墨烯的衬底,优选地,所述生长衬底10可以包括锗(Ge)衬底。更优选的,本实施例中,所述生长衬底10包括(110)晶面的锗晶圆。
在步骤2)中,请参阅图1中的S2步骤及图3,于所述生长衬底10的上表面形成石墨烯薄膜20。
作为示例,于所述生长衬底10的上表面形成所述石墨烯薄膜20的方法可以包括但不仅限于化学气相沉积法。
作为示例,形成的所述石墨烯薄膜20可以包括单层石墨烯薄膜或多层石墨烯薄膜,优选地,本实施例中,所述石墨烯薄膜20为单层石墨烯薄膜。
在步骤3)中,请参阅图1中的S3步骤及图4,至少于所述石墨烯薄膜20的上表面形成缓冲保护层30。
作为示例,所述缓冲保护层30可以包括但不仅限于二氧化硅层,优选地,本实施例中,所述缓冲保护层30可以包括低应力二氧化硅层。
作为示例,形成所述缓冲保护层30的方法可以包括但不仅限于原子层淀积法或低压化学气相沉积法。
作为示例,所述缓冲保护层30的厚度包括30~300纳米。
作为示例,可以于所述石墨烯薄膜20的上表面及所述生长衬底10的下表面同时形成所述缓冲保护层30(如图4所示),也可以仅于所述石墨烯薄膜20的上表面形成所述缓冲保护层30。优选地,本实施例中,如图4所示,于所述石墨烯薄膜20的上表面及所述生长衬底10的下表面同时形成所述缓冲保护层30。
在步骤4),请参阅图1中的S4步骤及图5,提供目标衬底40,将所述目标衬底40与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30键合。
作为示例,将所述目标衬底40与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30键合之前,还包括将位于所述石墨烯薄膜20的上表面的所述缓冲保护层30及目标衬底40进行键合的键合面进行等离子活化处理的步骤。
作为示例,可以采用但不仅限于氩离子对所述键合面进行等离子活化处理。
作为示例,在对所述键合面进行等离子活化处理之前,还包括对所述键合面进行清洗的步骤;具体的,可以采用但不仅限于浓硫酸对所述键合面进行清洗。
在一示例中,所述目标衬底40可以包括硅片,所述目标衬底40的厚度可以包括100~800微米。在将所述硅片与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30键合后,所述硅片与所述缓冲保护层30的上表面相接触。
在另一示例中,所述目标衬底40还可以包括硅片(未示出)及位于所述硅片表面的二氧化硅层(未示出),所述目标衬底40与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30键合后,所述二氧化硅层与所述缓冲保护层30的上表面相接触,即所述二氧化硅层远离所述硅片的表面为与所述缓冲保护层30键合的键合面;所述二氧化硅层的厚度可以包括30~300纳米,所述硅片的厚度可以包括100~800微米。
作为示例,所述目标衬底40与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30键合后,还包括将键合后所得的键合结构进行退火处理的步骤,通过将键合后所得的键合结构进行退火处理,可以加固所述目标衬底40与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30的键合,即可以使得所述目标衬底40与位于所述石墨烯薄膜20的上表面的所述缓冲保护层30键合更加牢固。
作为示例,于真空环境下或氩气保护气氛下将所述键合结构进行退火处理,即可以将键合后所得的键合结构置于真空环境下进行退火处理,也可以将键合后所得的键合结构置于氩气保护气氛下进行退火处理;所述退火处理的温度可以包括100~900℃。
在步骤5)中,请参阅图1中的S5步骤及图6至图7,去除所述生长衬底10。
作为示例,当所述生长衬底10的下表面未形成所述缓冲保护层30时,可以采用但不仅限于干法刻蚀工艺、湿法刻蚀工艺或化学机械研磨工艺去除所述生长衬底10;优选地,采用湿法刻蚀工艺去除所述生长衬底10;更为优选地,本实施例中,使用磷酸与双氧水的混合液去除所述生长衬底10。
作为示例,在所述石墨烯薄膜20的上表面及所述生长衬底10的下表面同时形成所述缓冲保护层30时,去除所述生长衬底10之前,还包括去除位于所述生长衬底10的下表面的所述缓冲保护层30的步骤。具体的,可以采用但不仅限于干法刻蚀工艺、湿法刻蚀工艺或化学机械研磨工艺去除位于所述生长衬底10的下表面的所述缓冲保护层30及所述生长衬底10;优选地,可以采用湿法腐蚀工艺去除位于所述生长衬底10的下表面的所述缓冲保护层30及所述生长衬底10;更为优选地,本实施例中,先使用缓冲氧化物刻蚀液(BOE)去除位于所述生长衬底10的下表面的所述缓冲保护层30,再使用磷酸与双氧水的混合液去除所述生长衬底10。
综上所述,本发明提供一种晶圆级石墨无胶转移的方法,所述所述晶圆级石墨烯薄膜的转移方法包括如下步骤:提供生长衬底;于所述生长衬底的上表面形成石墨烯薄膜;至少于所述石墨烯薄膜的上表面形成缓冲保护层;提供目标衬底,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合;去除所述生长衬底。本发明的晶圆级石墨烯的转移方法中,在石墨烯薄膜的转移过程中不需使用PMMA等有机物,在石墨烯薄膜转移后不会有有机物残留,从而克服了有机物残留造成器件电子的散射的问题,进而确保石墨烯的载流子迁移率;本发明的晶圆级石墨烯的转移方法中,选用(110)晶面的锗晶圆作为生长衬底,可以生长出晶圆级单晶石墨烯薄膜,可以实现单晶石墨烯薄膜的晶圆级转移;本发明的晶圆级石墨烯的转移方法工艺步骤简单、易于操作,适用于大规模晶圆级石墨烯薄膜的转移及石墨烯微电子器件的制备。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (13)

1.一种晶圆级石墨烯薄膜的转移方法,其特征在于,所述晶圆级石墨烯薄膜的转移方法包括如下步骤:
提供生长衬底;
于所述生长衬底的上表面形成石墨烯薄膜;
至少于所述石墨烯薄膜的上表面形成缓冲保护层;
提供目标衬底,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合;
去除所述生长衬底。
2.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,所述生长衬底包括锗衬底。
3.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,形成所述石墨烯薄膜的方法包括化学气相沉积法。
4.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,形成的所述石墨烯薄膜包括单层石墨烯薄膜。
5.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,所述缓冲保护层包括二氧化硅层,形成所述缓冲保护层的方法包括原子层淀积法或低压化学气相沉积法。
6.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,所述缓冲保护层的厚度包括30~300纳米。
7.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,将所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合之前,还包括将位于所述石墨烯的上表面的所述缓冲保护层及目标衬底进行键合的键合面进行等离子活化处理的步骤。
8.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,所述目标衬底包括硅片,所述目标衬底的厚度包括100~800微米。
9.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,所述目标衬底包括硅片及位于所述硅片表面的二氧化硅层,所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合后,所述二氧化硅层与所述缓冲保护层的上表面相接触;所述二氧化硅层的厚度包括30~300纳米,所述硅片的厚度包括100~800微米。
10.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,所述目标衬底与位于所述石墨烯薄膜的上表面的所述缓冲保护层键合后,还包括将所得的键合结构进行退火处理的步骤。
11.根据权利要求10所述的晶圆级石墨烯薄膜的转移方法,其特征在于,于真空环境下或氩气保护气氛下将所述键合结构进行退火处理,所述退火处理的温度包括100~900℃。
12.根据权利要求1所述的晶圆级石墨烯薄膜的转移方法,其特征在于,于所述石墨烯薄膜的上表面及所述生长衬底的下表面同时形成所述缓冲保护层;去除所述生长衬底之前,还包括去除位于所述生长衬底的下表面的所述缓冲保护层的步骤。
13.根据权利要求12所述的晶圆级石墨烯薄膜的转移方法,其特征在于,使用缓冲氧化物刻蚀液去除位于所述生长衬底的下表面的所述缓冲保护层,使用磷酸与双氧水的混合液去除所述生长衬底。
CN201910129693.7A 2019-02-21 2019-02-21 晶圆级石墨烯薄膜的转移方法 Pending CN109824032A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910129693.7A CN109824032A (zh) 2019-02-21 2019-02-21 晶圆级石墨烯薄膜的转移方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910129693.7A CN109824032A (zh) 2019-02-21 2019-02-21 晶圆级石墨烯薄膜的转移方法

Publications (1)

Publication Number Publication Date
CN109824032A true CN109824032A (zh) 2019-05-31

Family

ID=66864086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910129693.7A Pending CN109824032A (zh) 2019-02-21 2019-02-21 晶圆级石墨烯薄膜的转移方法

Country Status (1)

Country Link
CN (1) CN109824032A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035781A (zh) * 2021-03-09 2021-06-25 中国科学院微电子研究所 一种晶圆级二维材料的转移方法及器件制备方法
CN113072099A (zh) * 2020-01-03 2021-07-06 中国科学院上海微系统与信息技术研究所 TMDs二维材料薄膜、器件及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088179A (zh) * 2015-08-26 2015-11-25 中国科学院上海微系统与信息技术研究所 一种转移石墨烯的方法
CN107887319A (zh) * 2017-11-16 2018-04-06 中国科学院上海微系统与信息技术研究所 一种绝缘体上石墨烯的制备方法
CN109055896A (zh) * 2018-07-20 2018-12-21 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上直接制备石墨烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088179A (zh) * 2015-08-26 2015-11-25 中国科学院上海微系统与信息技术研究所 一种转移石墨烯的方法
CN107887319A (zh) * 2017-11-16 2018-04-06 中国科学院上海微系统与信息技术研究所 一种绝缘体上石墨烯的制备方法
CN109055896A (zh) * 2018-07-20 2018-12-21 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上直接制备石墨烯的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072099A (zh) * 2020-01-03 2021-07-06 中国科学院上海微系统与信息技术研究所 TMDs二维材料薄膜、器件及制备方法
CN113072099B (zh) * 2020-01-03 2022-07-08 中国科学院上海微系统与信息技术研究所 TMDs二维材料薄膜、器件及制备方法
CN113035781A (zh) * 2021-03-09 2021-06-25 中国科学院微电子研究所 一种晶圆级二维材料的转移方法及器件制备方法
CN113035781B (zh) * 2021-03-09 2022-06-28 中国科学院微电子研究所 一种晶圆级二维材料的转移方法及器件制备方法

Similar Documents

Publication Publication Date Title
CN102020271B (zh) 制造石墨烯的方法和通过该方法制造的石墨烯
US20150102498A1 (en) Carrier-bonding methods and articles for semiconductor and interposer processing
CN105036106B (zh) 一种超高定向导热碳基复合材料的制备方法
CN105140171B (zh) 一种绝缘体上材料的制备方法
CN104488066B (zh) 在具有负焦耳‑汤姆逊系数的气体的氛围中的接合方法
CN105405965B (zh) 一种高灵敏度石墨烯磁场传感器及其制备方法
CN106185900A (zh) 一种转移石墨烯的方法
CN103633010A (zh) 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法
CN109824032A (zh) 晶圆级石墨烯薄膜的转移方法
CN103572284A (zh) 一种转移二维纳米薄膜的方法
CN103779292A (zh) 一种基于石墨烯的芯片散热材料的制备方法
CN108793146A (zh) 一种转移石墨烯的方法
CN107887319A (zh) 一种绝缘体上石墨烯的制备方法
TW201021124A (en) Passivation of etched semiconductor structures
CN101388324B (zh) 一种锗量子点的制备方法
CN106882792B (zh) 一种干法转移金属衬底上石墨烯的方法
CN103050432B (zh) 一种GaAsOI结构及Ⅲ-ⅤOI结构的制备方法
TWI437644B (zh) Semiconductor substrate manufacturing method
CN102856184A (zh) 一种于多层石墨烯表面制备高k栅介质的方法
CN109055896A (zh) 一种在绝缘衬底上直接制备石墨烯的方法
CN106711019A (zh) 利用可控缺陷石墨烯插入层制备金属-半导体合金的方法
CN103021812B (zh) 一种ⅲ-ⅴoi结构的制备方法
CN110526202B (zh) 柔性硅片的制备方法
KR101168685B1 (ko) 소자 또는 패턴의 박리방법
CN104425342B (zh) 一种厚度可控的绝缘体上半导体材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190531