CN109023313A - 一种提高BiFeO3薄膜磁电耦合效应的退火方法 - Google Patents

一种提高BiFeO3薄膜磁电耦合效应的退火方法 Download PDF

Info

Publication number
CN109023313A
CN109023313A CN201811097686.5A CN201811097686A CN109023313A CN 109023313 A CN109023313 A CN 109023313A CN 201811097686 A CN201811097686 A CN 201811097686A CN 109023313 A CN109023313 A CN 109023313A
Authority
CN
China
Prior art keywords
film
annealing
bifeo
film sample
raising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811097686.5A
Other languages
English (en)
Other versions
CN109023313B (zh
Inventor
张丰庆
王玲续
郭晓东
刘慧莹
范素华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201811097686.5A priority Critical patent/CN109023313B/zh
Publication of CN109023313A publication Critical patent/CN109023313A/zh
Application granted granted Critical
Publication of CN109023313B publication Critical patent/CN109023313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种提高BiFeO3薄膜磁电耦合效应的退火方法。以化学溶液沉积法结合层层退火工艺,以ITO/glass为基体制备BiFeO3薄膜,薄膜的奇数层采用低温退火,偶数层采用高温退火。利用高低温退火相结合的方式一方面可以保证偶数层可以形成较大的晶粒,增强铁电性能,另外一方面可以保证奇数层的晶粒粒径小于62nm,有利用薄膜磁性的提高。利用这种退火方式提高了BiFeO3薄膜的磁电耦合效应。

Description

一种提高BiFeO3薄膜磁电耦合效应的退火方法
技术领域
本发明涉及电子信息材料领域,尤其涉及一种提高BiFeO3薄膜磁电耦合效应的退火方法。
背景技术
BiFeO3是一种集铁电性和磁性于一体的单相多铁材料,室温下具有铁电有序和反铁磁有序,且铁电性和磁性之间存在耦合效应。BiFeO3的铁电性源于其晶体结构,室温下的BiFeO3属于R3c空间群,为三方扭曲的菱方钙钛矿结构,其晶体结构在立方结构基础上沿[111]方向拉伸,使铁氧八面体(FeO6)以[111]轴为中心发生扭曲,从而在该方向出现一定程度的自发极化,其理论剩余极化强度可达100μC/cm2以上。BFO的磁性来源于过渡金属Fe3 +,其相邻的两个(111)面内磁矩的反向平行造成G型反铁磁有序,但该结构在长程调制作用下表现为摆线形螺旋磁有序结构,周期为62nm,在周期内磁极化几乎可以完全抵消,从而导致BiFeO3宏观上表现为弱磁性。由于BiFeO3理论上具有较好的铁磁性能,使得BiFeO3在信息存储、传感器和微机电系统等多功能器件中有潜在的应用价值,从而不断吸引着各国研究人员的目光。但是BiFeO3的性能目前还不能满足微电子器件应用的要求,特别是铁电性和铁磁性相互制约,为此如何同时提高BiFeO3的铁电性和铁磁性是亟需解决的问题。
BiFeO3薄膜的铁电性来自于晶粒的铁电畴,因此晶粒越大铁电畴越多,铁电性越好;而BiFeO3有周期为 62 nm 的螺旋调制结构,当制备的BiFeO3尺寸小于 62 nm 时,磁性必然会增强。因此,为了同时提高BFO薄膜的磁电耦合效应(铁磁性能),我们提出了一种提高BiFeO3薄膜磁电耦合效应的退火方法。
发明内容
本发明采用化学溶液沉积法,结合层层退火工艺制备BiFeO3薄膜,薄膜的制备过程主要分为三个阶段,即前驱体溶液的配制阶段,湿膜的制备阶段,热处理成膜阶段,以ITO/glass为基体。
具体方案如下:
(1)BiFeO3薄膜前驱体溶液配制:首先用电子天平按照各溶质的摩尔计量比进行称量,硝酸铁与硝酸铋的摩尔比为1:1:1;用移液管量取体积比为1:3的乙二醇和冰乙酸作为溶剂,将上述溶质和溶液置于磁力搅拌器上搅拌8小时,直至溶质全部溶解,待溶液搅拌均匀后,量取与硝酸铋摩尔比为1:1的乙酰丙酮作为螯合剂加入其中,在磁力搅拌器上匀速搅拌12小时,得到暗红色半透明溶液。最后再补充乙二醇和冰乙酸,最后所得溶液浓度为0.3mol/L, pH值在0.3-0.4,得到制备BiFeO3薄膜样品所需的前驱体溶液。
(2)将所制备的BiFeO3溶液静置24小时,把前驱体溶液均匀旋涂在预处理过氧化铟锡/玻璃(ITO/glass)的基体上。
(3)湿膜烘干:将涂膜结束的薄膜样品快速转移到150-200℃的电热板上120s烘干,使所制备湿膜中的部分有机溶剂得以挥发,从而得到所要求薄膜的干膜。
(4)预处理:将前期所制备的干模置于快速退火炉中,奇数层薄膜样品的预处理温度为300℃,偶数层薄膜样品的预处理温度为400℃,保温时间100-200s,使得薄膜样品中的有机成分进一步去除,因预处理的温度较低,不足以提供薄膜形核和生长所需要的能量,因此,预处理结束后得到非晶态的薄膜样品。
(5)最终退火:这一过程和预处理过程相类似,只是温度不同。奇数层薄膜样品的退火温度为400-500℃,偶数层薄膜样品的退火温度为650-750℃,保温时间都为300-500s,得到晶态薄膜样品。
(6)将湿膜的制备和热处理成膜两个阶段重复,从而制得所需厚度的薄膜样品,最终制备的薄膜层数为16层。
本发明的效益是,与现有每层都选择相同的退火工艺相比,这种退火方式保证了奇数层纳米晶粒形成,特别是粒径小于62 nm的晶粒,有利用薄膜磁性的提高;而高温退火可以保证偶数层晶粒的发育,利用铁电畴的发育,有利用铁电性的提高,这种退火方式提高了BiFeO3薄膜的磁电耦合效应。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
按照上述工艺将所制备的干模置于快速退火炉中,奇数层薄膜样品的预处理温度为300℃,偶数层薄膜样品的预处理温度为400℃,保温时间150s。将热解的薄膜进行退火处理,奇数层薄膜样品的退火温度为400℃,偶数层薄膜样品的退火温度为650℃,保温时间都为400s,得到晶态薄膜样品。将湿膜的制备和热处理成膜两个阶段重复,从而制得所需厚度的薄膜样品,制备的薄膜最终层数为16层。
实施例2
按照上述工艺将所制备的干模置于快速退火炉中,奇数层薄膜样品的预处理温度为300℃,偶数层薄膜样品的预处理温度为400℃,保温时间150s。将热解的薄膜进行退火处理,奇数层薄膜样品的退火温度为450℃,偶数层薄膜样品的退火温度为700℃,保温时间都为400s,得到晶态薄膜样品。将湿膜的制备和热处理成膜两个阶段重复,从而制得所需厚度的薄膜样品,制备的薄膜最终层数为16层。
实施例3
按照上述工艺将所制备的干模置于快速退火炉中,奇数层薄膜样品的预处理温度为300℃,偶数层薄膜样品的预处理温度为400℃,保温时间150s。将热解的薄膜进行退火处理,奇数层薄膜样品的退火温度为500℃,偶数层薄膜样品的退火温度为750℃,保温时间都为400s,得到晶态薄膜样品。将湿膜的制备和热处理成膜两个阶段重复,从而制得所需厚度的薄膜样品,制备的薄膜最终层数为16层。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
表1实施例性能指标
性能 铁电性(2Pr) 磁性(2Mc)
实施例1 98μC/cm2 0.15emμ/g
实施例2 80μC/cm2 0.21emμ/g
实施例3 102μC/cm2 0.18emμ/g

Claims (4)

1.一种提高BiFeO3薄膜磁电耦合效应的退火方法,其特征在于:具体步骤如下:
(1)BiFeO3薄膜前驱体溶液配制:首先用电子天平按照各溶质的摩尔计量比进行称量,硝酸铁与硝酸铋的摩尔比为1:1:1;用移液管量取体积比为1:3的乙二醇和冰乙酸作为溶剂,将上述溶质和溶液置于磁力搅拌器上搅拌8小时,直至溶质全部溶解,待溶液搅拌均匀后,量取与硝酸铋摩尔比为1:1的乙酰丙酮作为螯合剂加入其中,在磁力搅拌器上匀速搅拌12小时,得到暗红色半透明溶液,最后再补充乙二醇和冰乙酸,最后所得溶液浓度为0.3mol/L, pH值在0.3-0.4,得到制备BiFeO3薄膜样品所需的前驱体溶液;
(2)将所制备的BiFeO3溶液静置24小时,把前驱体溶液均匀旋涂在预处理过氧化铟锡/玻璃(ITO/glass)的基体上;
(3)湿膜烘干:将涂膜的薄膜样品快速转移到150-200℃的电热板上120s烘干,使所制备湿膜中的部分有机溶剂得以挥发,得到所要求薄膜的干膜;
(4)预处理:将前期所制备的干膜置于快速退火炉中,奇数层薄膜样品的预处理温度为300℃,偶数层薄膜样品的预处理温度为400℃,保温时间100-200s;
(5)最终退火:奇数层薄膜样品的退火温度为400-500℃,偶数层薄膜样品的退火温度为650-750℃,保温时间都为300-500s,得到晶态薄膜样品;
(6)将湿膜的制备和热处理成膜两个阶段重复,最终制备的薄膜层数为16层。
2.根据权利要求1所述的一种提高BiFeO3薄膜磁电耦合效应的退火方法,奇数层薄膜样品的预处理温度为300℃,偶数层薄膜样品的预处理温度为400℃,保温时间100-200s。
3.根据权利要求1所述的一种提高BiFeO3薄膜磁电耦合效应的退火方法,奇数层薄膜样品的退火温度为400-500℃,偶数层薄膜样品的退火温度为650-750℃,保温时间为300-500s。
4.根据权利要求1所述的一种提高BiFeO3薄膜磁电耦合效应的退火方法,最终制备的薄膜层数为16层。
CN201811097686.5A 2018-09-20 2018-09-20 一种提高BiFeO3薄膜磁电耦合效应的退火方法 Active CN109023313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811097686.5A CN109023313B (zh) 2018-09-20 2018-09-20 一种提高BiFeO3薄膜磁电耦合效应的退火方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811097686.5A CN109023313B (zh) 2018-09-20 2018-09-20 一种提高BiFeO3薄膜磁电耦合效应的退火方法

Publications (2)

Publication Number Publication Date
CN109023313A true CN109023313A (zh) 2018-12-18
CN109023313B CN109023313B (zh) 2020-06-19

Family

ID=64617044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811097686.5A Active CN109023313B (zh) 2018-09-20 2018-09-20 一种提高BiFeO3薄膜磁电耦合效应的退火方法

Country Status (1)

Country Link
CN (1) CN109023313B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029308A (zh) * 2019-04-18 2019-07-19 武汉理工大学 一种铁酸铋光伏薄膜的制备方法及其制备的铁酸铋光伏薄膜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118422A1 (en) * 2007-03-26 2008-10-02 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
CN101279841A (zh) * 2008-05-22 2008-10-08 中国科学院电工研究所 一种多铁性材料的强磁场制备方法
CN102534587A (zh) * 2011-12-19 2012-07-04 陕西科技大学 溶胶凝胶法制备BiFeO3薄膜的方法
CN102603360A (zh) * 2012-03-18 2012-07-25 西北工业大学 一种制备铁酸铋薄膜材料的方法
US20130149500A1 (en) * 2011-12-06 2013-06-13 Nazanin Bassiri-Gharb Soft-template infiltration manufacturing of nanomaterials
CN103233203A (zh) * 2013-03-18 2013-08-07 内蒙古大学 一种铁磁性增强的BiFeO3薄膜的制备方法
CN103496747A (zh) * 2013-09-06 2014-01-08 山东建筑大学 一种铁酸铋-锶铋钛多铁复合薄膜及其制备方法
CN103951410A (zh) * 2014-04-30 2014-07-30 山东女子学院 一种BiFeO3薄膜的制备方法
CN106587995A (zh) * 2016-12-29 2017-04-26 陕西科技大学 一种磁场低温热处理制备多铁性复合陶瓷材料的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118422A1 (en) * 2007-03-26 2008-10-02 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
CN101279841A (zh) * 2008-05-22 2008-10-08 中国科学院电工研究所 一种多铁性材料的强磁场制备方法
US20130149500A1 (en) * 2011-12-06 2013-06-13 Nazanin Bassiri-Gharb Soft-template infiltration manufacturing of nanomaterials
CN102534587A (zh) * 2011-12-19 2012-07-04 陕西科技大学 溶胶凝胶法制备BiFeO3薄膜的方法
CN102603360A (zh) * 2012-03-18 2012-07-25 西北工业大学 一种制备铁酸铋薄膜材料的方法
CN103233203A (zh) * 2013-03-18 2013-08-07 内蒙古大学 一种铁磁性增强的BiFeO3薄膜的制备方法
CN103496747A (zh) * 2013-09-06 2014-01-08 山东建筑大学 一种铁酸铋-锶铋钛多铁复合薄膜及其制备方法
CN103951410A (zh) * 2014-04-30 2014-07-30 山东女子学院 一种BiFeO3薄膜的制备方法
CN106587995A (zh) * 2016-12-29 2017-04-26 陕西科技大学 一种磁场低温热处理制备多铁性复合陶瓷材料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029308A (zh) * 2019-04-18 2019-07-19 武汉理工大学 一种铁酸铋光伏薄膜的制备方法及其制备的铁酸铋光伏薄膜
CN110029308B (zh) * 2019-04-18 2020-09-08 武汉理工大学 一种铁酸铋光伏薄膜的制备方法及其制备的铁酸铋光伏薄膜

Also Published As

Publication number Publication date
CN109023313B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN107256866B (zh) 一种柔性外延铁电薄膜的制备方法
CN103496747B (zh) 一种铁酸铋-锶铋钛多铁复合薄膜及其制备方法
Liu et al. Sol− gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles
CN100559595C (zh) 用于铁电存储器的BiFeO3-基三明治结构薄膜及其制备方法
CN103951410B (zh) 一种BiFeO3薄膜的制备方法
CN110316973B (zh) 一种镧、钛共掺的铁酸铋薄膜及其制备方法
CN103739009A (zh) 利用溶胶凝胶法制备钛酸铜钙薄膜
CN109627043A (zh) 具有高度择优取向的纯相铁酸铋薄膜的制备方法
CN107910030A (zh) 一种柔性bnt铁电薄膜的制备方法
CN109023313A (zh) 一种提高BiFeO3薄膜磁电耦合效应的退火方法
CN101811889B (zh) 一种镧系元素掺杂的钛酸铋薄膜及其制备方法
CN103130281B (zh) 一种掺杂多铁性BiFeO3薄膜的化学制备方法
CN107482117A (zh) 一种铁酸铋/聚偏二氟乙烯‑三氟乙烯复合薄膜的制备方法
CN102515763B (zh) 一种钙钛矿结构陶瓷溶胶的制备方法
CN104478228B (zh) 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法
CN100386289C (zh) 微波介电可调钛酸锶钡/铋锌铌复合薄膜及其制备方法
CN104478229B (zh) 一种Bi1-xRExFe0.96Co0.02Mn0.02O3 铁电薄膜及其制备方法
CN107082576B (zh) 一种HoSrMnNi共掺铁酸铋多铁薄膜及其制备方法
CN109256420A (zh) 一种柔性透明氧化铪基铁电薄膜晶体管及其制备方法
CN107162437B (zh) 一种HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法
CN107245704B (zh) 一种HoSrMnNi/HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法
CN107098395B (zh) 一种HoSrMnZn共掺三方铁酸铋超晶格薄膜及其制备方法
CN107021649B (zh) 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN105837199B (zh) 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法
CN107082578B (zh) 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant