CN107021649B - 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法 - Google Patents

一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法 Download PDF

Info

Publication number
CN107021649B
CN107021649B CN201710253946.2A CN201710253946A CN107021649B CN 107021649 B CN107021649 B CN 107021649B CN 201710253946 A CN201710253946 A CN 201710253946A CN 107021649 B CN107021649 B CN 107021649B
Authority
CN
China
Prior art keywords
film
crystalline state
doped
lasrmnco
bismuth ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710253946.2A
Other languages
English (en)
Other versions
CN107021649A (zh
Inventor
谈国强
柴正军
乐忠威
薛敏涛
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhichanhui Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710253946.2A priority Critical patent/CN107021649B/zh
Publication of CN107021649A publication Critical patent/CN107021649A/zh
Application granted granted Critical
Publication of CN107021649B publication Critical patent/CN107021649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • C03C2217/241Doped oxides with halides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明提供了一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法,用晶体结构为三方结构,空间群为R3c:H和R3m:R共存的不同La浓度掺杂铁酸铋薄膜制备出Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3/Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3超晶格薄膜,即LaSrMnCo共掺铁酸铋超晶格薄膜。本发明采用溶胶凝胶工艺,并采用旋涂和层层退火法,设备要求简单,适宜在大的表面和形状不规则的表面上制备薄膜,且化学组分精确可控,可改善BiFeO3薄膜的多铁性能。

Description

一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
技术领域
本发明属于功能材料领域,涉及在功能化的FTO/glass基板表面制备LaSrMnCo共掺铁酸铋超晶格薄膜,具体为Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3/Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3超晶格薄膜。
背景技术
多铁材料越来越受到世界上科学家们的高度关注,己成为近年来国际上的一个研究热点。BiFeO3(BFO)是一种典型的单相多铁性材料,在室温下同时具有铁电性和铁磁性,具有高的居里温度(TC~1023k)和尼尔温度(TN~643k)。基于多铁性材料特有的性质,BFO在铁电和磁性器件、磁电耦合等方面具有广泛的应用前景。
由于BFO材料本身易因Bi3+的挥发变价、Fe离子的变价而产生氧空位等缺陷,并在材料内形成偶极子,大的漏导电流、高的介电弛豫现象、低的击穿场强和电阻对BFO的应用具有较大影响,大的漏导往往使BFO在极化饱和前击穿。通过离子掺杂可以有效的提高薄膜的铁电、铁磁性能。另外,可以通过将现有的一些功能材料通过界面工程将其组合起来,制备出一些异质结或者超晶格结构。超晶格是将两种或两种以上不同材料按照特定的迭代序列,沉积在衬底上而构成的。其中调制掺杂超晶格是在同种材料中有规则地掺入不同浓度的杂质,在界面处由于费米能级的不同,会产生电荷迁移,能带发生弯曲;可以通过改变超晶格薄膜的界面化学环境来控制界面结构,可以显著提高界面的电学性质。通过利用超晶格薄膜的应力或应变、层间耦合等物理效应,可得到高性能或单一结构材料不具有的物理性能。铁电超晶格薄膜结构材料因其具有比单体材料更多的优越性能而受到越来越多的关注,在介电、铁电、铁磁性能上有优越的表现。
目前,还没有关于Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3/Bi0.91La0.06Sr0.03Fe0.94Mn0.0 4Co0.02O3超晶格薄膜及其制备方法的相关报道。
发明内容
本发明的目的在于提供一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法,该方法设备要求简单,实验条件容易达到,掺杂量容易控制,制得的LaSrMnCo共掺铁酸铋超晶格薄膜为Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3/Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3超晶格薄膜,可改善BiFeO3基薄膜的多铁性能。
为了实现上述目的,本发明采用如下技术方案:
一种LaSrMnCo共掺铁酸铋超晶格薄膜,所述LaSrMnCo共掺铁酸铋超晶格薄膜由若干层相互间隔排列的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜依次叠加构成。
所述晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的结构为三方结构,空间群为体积分数23.34%的R3c:H和体积分数76.66%的R3m:R共存;晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的结构为三方结构,空间群为体积分数23.89%的R3c:H和体积分数76.11%的R3m:R共存。
所述晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的层数分别为5~10层,每层晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的厚度为30~40nm。
所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,包括以下步骤:
步骤1:按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02将硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液A;
按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02将硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液B;
步骤2:将前驱液A旋涂在FTO/glass基片上,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.0 2O3湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再于540~550℃下在空气中退火,得到晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再于540~550℃下在空气中退火,即在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和步骤3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,如此循环直到达到所需厚度,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
所述步骤1中前驱液A和前驱液B中金属离子的总浓度为0.2~0.4mol/L。
所述前驱液A和前驱液B中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。
所述步骤2进行前先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度。
所述步骤2和步骤3中匀胶时的匀胶转速为3600~4200r/min,匀胶时间为12~18s。
所述步骤2和步骤3中匀胶后的烘烤时间为6~9min。
所述步骤2和步骤3中的退火时间为6~10min。
相对于现有技术,本发明具有以下有益效果:
本发明提供的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料,按一定的摩尔比分别溶于乙二醇甲醚和醋酸酐的混合溶液中,得到两种La浓度不同的稳定的前驱液A和前驱液B;先用前驱液A在基板上进行旋涂,退火制备出一层晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,在此薄膜的基础上再用前驱液B进行旋涂,退火制备出第二层晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,如此类推,重复旋涂前驱液A和前驱液B并层层退火,交替制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。本发明采用溶胶-凝胶工艺,通过碱土元素Sr,稀土元素La和过渡金属元素Mn和Co四元素共掺杂制备LaSrMnCo共掺铁酸铋超晶格薄膜。相比于其他制备薄膜的方法,本发明设备要求简单,实验条件容易达到,成本低廉,反应容易进行,工艺过程温度低,制备过程及掺杂量容易控制,适宜在大的表面和形状不规则的表面上制备薄膜,很容易均匀定量地掺入一些微量元素,可以在短时间内获得原子或分子水平的均匀性,该方法制得的LaSrMnCo共掺铁酸铋超晶格薄膜均匀性较好,且化学组分精确可控。
本发明通过溶胶-凝胶法制备出一种逐层交替生长的LaSrMnCo共掺铁酸铋超晶格薄膜,铁电超晶格是在控制材料的结构、成份、层厚(nm尺度下)、叠层周期等条件的基础上,由两种或两种以上性能不同的薄膜材料交替生长得到的外延铁电多层膜,由于组成超晶格的薄膜材料晶格参数的不同,整个结构会产生一定的外延应变,从而影响各层以及整个超晶格体系的性能。利用这种现象可以改善原有薄膜的性能或得到单一薄膜不具有的新功能,因此铁电超晶格材料具有重要的应用前景。超晶格薄膜可以将相关功能材料各自优异的性质通过界面有机的耦合,通过利用超晶格薄膜的应力或应变、层间耦合等物理效应,可得到高性能或单一结构材料不具有的多铁性能;通过改变界面化学环境来控制界面结构,可以显著提高界面的电学性质;铁电超晶格薄膜相比于原有的铁电薄膜,能够获得大的介电常数、增强的铁电特性等;另外,超晶格薄膜内部的界面效应能够阻碍电子或者空穴在电场作用下的传递,进一步提高超晶格薄膜的绝缘性,并进一步减小漏电流密度,改善薄膜的多铁性能。
本发明制备的LaSrMnCo共掺铁酸铋超晶格薄膜是由两种不同La掺杂浓度的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜相互交替制备从而形成的超晶格结构,比单一结构的BiFeO3薄膜具有更加优越的多铁性能,可改善BiFeO3基薄膜的多铁性能。
进一步的,本发明采用晶体结构类似的菱方钙钛矿结构的不同组分铁酸铋薄膜组建超晶格薄膜,即用结构为三方结构,空间群为R3c:H(23.34%)和R3m:R(76.66%)共存的Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和用结构为三方结构,空间群为R3c:H(23.89%)和R3m:R(76.11%)共存的Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜交替组合构建出LaSrMnCo共掺铁酸铋超晶格薄膜,即Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3/Bi0.91La0.06Sr0.03Fe0.94Mn0.0 4Co0.02O3超晶格薄膜,可以提高BiFeO3基薄膜的多铁性能。
附图说明
图1是本发明实施例3制备的LaSrMnCo共掺铁酸铋超晶格薄膜中晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的XRD精修图;
图2是本发明实施例3制备的LaSrMnCo共掺铁酸铋超晶格薄膜中晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的XRD精修图。
具体实施方式
下面结合附图和本发明优选的具体实施例对本发明做进一步描述,原料均为分析纯。
实施例1
步骤1:以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02溶于体积比为3.2:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.2mol/L的稳定的前驱液A;
以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02溶于体积比为3.2:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.2mol/L的稳定的前驱液B;
步骤2:先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜在210℃下烘烤6min得干膜,再在550℃下在空气中退火6min,即得晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为4000r/min,匀胶时间为14s,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.0 2O3湿膜,湿膜在210℃下烘烤6min得干膜,再在550℃下在空气中退火6min,即在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,直到制备出各5层每层30~40nm厚的相互间隔的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
实施例2
步骤1:以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02溶于体积比为2.8:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.25mol/L的稳定的前驱液A;
以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02溶于体积比为2.8:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.25mol/L的稳定的前驱液B;
步骤2:先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为3900r/min,匀胶时间为16s,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜在190℃下烘烤9min得干膜,再在540℃下在空气中退火7min,即得晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为3900r/min,匀胶时间为16s,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.0 2O3湿膜,湿膜在190℃下烘烤9min得干膜,再在540℃下在空气中退火7min,即在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,直到制备出各6层每层30~40nm厚的相互间隔的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
实施例3
步骤1:以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02溶于体积比为3:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.3mol/L的稳定的前驱液A;
以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02溶于体积比为3:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.3mol/L的稳定的前驱液B;
步骤2:先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为3800r/min,匀胶时间为15s,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜在200℃下烘烤7.5min得干膜,再在545℃下在空气中退火8min,即得晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为3800r/min,匀胶时间为15s,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.0 2O3湿膜,湿膜在200℃下烘烤7.5min得干膜,再在545℃下在空气中退火8min,即在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,直到制备出各7层每层30~40nm厚的相互间隔的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
采用X-射线衍射仪测定LaSrMnCo共掺铁酸铋超晶格薄膜的物相组成结构。SEM测定LaSrMnCo共掺铁酸铋超晶格薄膜的微观形貌。用Radiant Multiferroic铁电分析仪测试LaSrMnCo共掺铁酸铋超晶格薄膜的铁电性能,用Agilent E4980A精密LCR表测试LaSrMnCo共掺铁酸铋超晶格薄膜的介电性能,用Agilent B2900测试LaSrMnCo共掺铁酸铋超晶格薄膜的漏导电流特性。
图1和图2分别为LaSrMnCo共掺铁酸铋超晶格薄膜中Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的XRD精修图,由图1可知,LaSrMnCo共掺铁酸铋超晶格薄膜中Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜结构为三方结构,空间群为R3c:H(23.34%)和R3m:R(76.66%)共存;由图2可知,LaSrMnCo共掺铁酸铋超晶格薄膜中Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜结构为三方结构,空间群为R3c:H(23.89%)和R3m:R(76.11%)共存。两种薄膜晶体结构相同,薄膜结晶性能良好,且薄膜样品中没有其他杂质出现。
实施例4
步骤1:以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02溶于体积比为3.5:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.35mol/L的稳定的前驱液A;
以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02溶于体积比为3.5:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.35mol/L的稳定的前驱液B;
步骤2:先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为3600r/min,匀胶时间为18s,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜在195℃下烘烤8min得干膜,再在542℃下在空气中退火9min,即得晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为3600r/min,匀胶时间为18s,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.0 2O3湿膜,湿膜在195℃下烘烤8min得干膜,再在542℃下在空气中退火9min,即在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,直到制备出各8层每层30~40nm厚的相互间隔的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
实施例5
步骤1:以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02溶于体积比为2.5:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.4mol/L的稳定的前驱液A;
以硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02溶于体积比为2.5:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.4mol/L的稳定的前驱液B;
步骤2:先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为4200r/min,匀胶时间为12s,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜在205℃下烘烤7min得干膜,再在548℃下在空气中退火10min,即得晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为4200r/min,匀胶时间为12s,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.0 2O3湿膜,湿膜在205℃下烘烤7min得干膜,再在548℃下在空气中退火10min,即在晶态Bi0.9 4La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,直到制备出各10层每层30~40nm厚的相互间隔的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (10)

1.一种LaSrMnCo共掺铁酸铋超晶格薄膜,其特征在于,所述LaSrMnCo共掺铁酸铋超晶格薄膜由若干层相互间隔排列的晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜依次叠加构成。
2.根据权利要求1所述的LaSrMnCo共掺铁酸铋超晶格薄膜,其特征在于,所述晶态Bi0.9 4La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的结构为三方结构,空间群为体积分数23.34%的R3c:H和体积分数76.66%的R3m:R共存;晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的结构为三方结构,空间群为体积分数23.89%的R3c:H和体积分数76.11%的R3m:R共存。
3.根据权利要求1所述的LaSrMnCo共掺铁酸铋超晶格薄膜,其特征在于,所述晶态Bi0.9 4La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的层数分别为5~10层,每层晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜和晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜的厚度为30~40nm。
4.权利要求1-3中任意一项所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,包括以下步骤:
步骤1:按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02将硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液A;
按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02将硝酸铋、硝酸镧、硝酸锶、硝酸铁、醋酸锰和硝酸钴溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液B;
步骤2:将前驱液A旋涂在FTO/glass基片上,得到Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再于540~550℃下在空气中退火,得到晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤3:将晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜冷却至室温,在其表面旋涂前驱液B,得到Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再于540~550℃下在空气中退火,即在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜;
步骤4:重复步骤2和步骤3,即在晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,再在晶态Bi0.94La0.03Sr0.03Fe0.94Mn0.04Co0.02O3薄膜上制备出晶态Bi0.91La0.06Sr0.03Fe0.94Mn0.04Co0.02O3薄膜,如此循环直到达到所需厚度,即得到LaSrMnCo共掺铁酸铋超晶格薄膜。
5.根据权利要求4所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤1中前驱液A和前驱液B中金属离子的总浓度为0.2~0.4mol/L。
6.根据权利要求4所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,所述前驱液A和前驱液B中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。
7.根据权利要求4所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2进行前先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度。
8.根据权利要求4所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2和步骤3中匀胶时的匀胶转速为3600~4200r/min,匀胶时间为12~18s。
9.根据权利要求4所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2和步骤3中匀胶后的烘烤时间为6~9min。
10.根据权利要求4所述的LaSrMnCo共掺铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2和步骤3中的退火时间为6~10min。
CN201710253946.2A 2017-04-18 2017-04-18 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法 Active CN107021649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710253946.2A CN107021649B (zh) 2017-04-18 2017-04-18 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710253946.2A CN107021649B (zh) 2017-04-18 2017-04-18 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107021649A CN107021649A (zh) 2017-08-08
CN107021649B true CN107021649B (zh) 2019-06-07

Family

ID=59527535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710253946.2A Active CN107021649B (zh) 2017-04-18 2017-04-18 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107021649B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020010559A1 (zh) * 2018-07-12 2020-01-16 深圳先进技术研究院 B位掺杂铋铁氧体固溶体薄膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734725A (zh) * 2009-12-04 2010-06-16 华东师范大学 一种稀土/碱土金属及过渡金属掺杂铁酸铋纳米多铁材料及其制备方法
CN102180704A (zh) * 2011-03-04 2011-09-14 桂林电子科技大学 一种Si衬底Bi3TiNbO9-Bi4Ti3O12自然超晶格铁电薄膜的制备方法
KR20130143395A (ko) * 2012-06-21 2013-12-31 창원대학교 산학협력단 아연과 티타늄을 첨가한 BiFeO3 박막의 제조방법
CN103601250A (zh) * 2013-11-04 2014-02-26 陕西科技大学 一种逐层交替掺杂低漏电流BiFeO3 薄膜及其制备方法
CN104445996A (zh) * 2014-12-11 2015-03-25 陕西科技大学 一种多铁性Bi0.96-xSr0.04RExFe0.94Mn0.04Cr0.02O3-NiFe2O4 复合膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734725A (zh) * 2009-12-04 2010-06-16 华东师范大学 一种稀土/碱土金属及过渡金属掺杂铁酸铋纳米多铁材料及其制备方法
CN102180704A (zh) * 2011-03-04 2011-09-14 桂林电子科技大学 一种Si衬底Bi3TiNbO9-Bi4Ti3O12自然超晶格铁电薄膜的制备方法
KR20130143395A (ko) * 2012-06-21 2013-12-31 창원대학교 산학협력단 아연과 티타늄을 첨가한 BiFeO3 박막의 제조방법
CN103601250A (zh) * 2013-11-04 2014-02-26 陕西科技大学 一种逐层交替掺杂低漏电流BiFeO3 薄膜及其制备方法
CN104445996A (zh) * 2014-12-11 2015-03-25 陕西科技大学 一种多铁性Bi0.96-xSr0.04RExFe0.94Mn0.04Cr0.02O3-NiFe2O4 复合膜及其制备方法

Also Published As

Publication number Publication date
CN107021649A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN105837196A (zh) 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法
CN104478235B (zh) 一种多铁性Bi0.98‑xSr0.02RExFe0.97Mn0.03O3‑CuFe2O4 复合膜及其制备方法
CN107032631B (zh) 一种GdSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN107117830B (zh) 一种LaSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN105632756B (zh) 一种尖晶石型四方相CuFe2O4铁磁性薄膜及其制备方法
CN107021649B (zh) 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107140848B (zh) 一种GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN103130281A (zh) 一种掺杂多铁性BiFeO3薄膜的化学制备方法
CN105906221B (zh) 一种多铁性Bi0.83Pr0.15Sr0.02Fe0.97-xMn0.03CuxO3-CuFe2O4复合膜及其制备方法
CN107140849B (zh) 一种LaSrMnCo/GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN105859152B (zh) 一种高磁性Bi0.96Sr0.04FeO3基/CoFe2O4复合薄膜及其制备方法
CN104478229B (zh) 一种Bi1-xRExFe0.96Co0.02Mn0.02O3 铁电薄膜及其制备方法
CN107032632B (zh) 一种HoSrMnNi共掺铁酸铋超晶格薄膜及其制备方法
CN104478228B (zh) 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法
CN107082578B (zh) 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法
CN107245704B (zh) 一种HoSrMnNi/HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法
CN107162437B (zh) 一种HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法
CN109111127B (zh) 一种具有电阻开关效应的blsfmc/cmfo薄膜及其制备方法
CN104575907B (zh) 一种Bi1‑xRExFe1‑yTMyO3/CoFe2O4 多铁性复合膜及其制备方法
CN107082576B (zh) 一种HoSrMnNi共掺铁酸铋多铁薄膜及其制备方法
CN107098395B (zh) 一种HoSrMnZn共掺三方铁酸铋超晶格薄膜及其制备方法
CN103739019B (zh) 一种高剩余极化强度的BiFe1-xMnxO3铁电薄膜及其制备方法
CN105837199B (zh) 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法
CN109467318B (zh) 一种bgsfmc/cnfo多铁性复合薄膜及其制备方法
CN107082577B (zh) 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240723

Address after: 810, 8th Floor, Building 10, Courtyard 1, Tianxing Street, Fangshan District, Beijing, 102400

Patentee after: Beijing Zhichanhui Technology Co.,Ltd.

Country or region after: China

Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China