CN104478228B - 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法 - Google Patents
一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法 Download PDFInfo
- Publication number
- CN104478228B CN104478228B CN201410764332.7A CN201410764332A CN104478228B CN 104478228 B CN104478228 B CN 104478228B CN 201410764332 A CN201410764332 A CN 201410764332A CN 104478228 B CN104478228 B CN 104478228B
- Authority
- CN
- China
- Prior art keywords
- film
- thin film
- ferroelectric thin
- nitrate
- spin coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供了一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3铁电薄膜及其制备方法,用硝酸铋、硝酸镨、硝酸AE、硝酸铁和硝酸锰制备Bi0.85‑ xPr0.15AExFe0.97Mn0.03O3前驱液;AE为Sr、Ca或Ba,x=0.02~0.05,在基板上旋涂上述前驱液,再经匀胶、烘干、退火,得Bi0.85‑xPr0.15AExFe0.97Mn0.03O3铁电薄膜。本发明设备要求简单,实验条件容易达到,掺杂量容易控制,能大幅度提高薄膜的铁电性能,制得的Bi0.85‑ xPr0.15AExFe0.97Mn0.03O3铁电薄膜均匀性好,漏电流小,矫顽场低,并具有较高的剩余极化强度。
Description
技术领域
本发明属于功能材料领域,具体涉及一种Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜及其制备方法。
背景技术
BiFeO3(BFO)是一种典型的单相多铁性材料,在室温下同时具有铁电性和铁磁性,具有高的居里温度(TC~1103K)和尼尔温度(TN~640K)。BFO中铁电性和磁性共存,使得材料具有磁电耦合效应,即在该材料中电场可以诱导磁化,磁场可以诱导极化。这一特性,在磁读电写的新型记忆元件方面有着诱人的应用前景。例如磁电变换转换器、光开关、光全息存储及传感器等等。
信息存入是依赖于极化的方向,利用铁电体的正负剩余极化状态(±Pr)存储信息,信息的读取时利用极化翻转的电流。这就要求铁电存储器的存储介质,即铁电薄膜的剩余极化要大,这样才能在小面积的电容器上获得大的极化翻转电流;矫顽场足够小,能够满足铁电存储器的低电压运行。
目前用于制备BiFeO3薄膜的方法有很多,但是制备的BiFeO3薄膜漏电流较高,矫顽场较大,磁性较弱,而且只有在一定的厚度和高压下才能观察到饱和的P-E电滞回线。因此为了满足未来微电子器件的要求,降低BiFeO3-基薄膜的漏电流、矫顽场和厚度,以及提高薄膜的铁电和铁磁性能是目前亟待解决的几个关键问题。
发明内容
本发明的目的在于提供一种Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜及其制备 方法,能够提高BiFeO3薄膜的剩余极化值,降低矫顽场。
为了实现上述目的,本发明采用如下技术方案:
一种Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜,其化学式为Bi0.85- xPr0.15AExFe0.97Mn0.03O3,其中AE为Sr、Ca或Ba,x=0.02~0.05。
其晶型为三方结构,空间群为R-3m:R,晶胞参数α=β=γ=89.7177°。
其在200kV/cm外加电场下的漏电流密度为2.98×10-4A/cm2;在1kHz频率及690kV/cm测试电场下的剩余极化强度为82μC/cm2,矫顽场为290kV/cm;在1kHz频率下的介电常数为290;在室温下的饱和磁化强度为1.97emu/cm3。
一种Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜的制备方法,包括以下步骤:
步骤1,按摩尔比为0.9-x:0.15:x:0.97:0.03将硝酸铋、硝酸镨、硝酸AE、硝酸铁和硝酸锰溶于溶剂中,得到Bi0.85-xPr0.15AExFe0.97Mn0.03O3前驱液,其中AE为Sr、Ca或Ba,x=0.02~0.05,Bi0.85-xPr0.15AExFe0.97Mn0.03O3前驱液中金属离子的总浓度为0.25~0.35mol/L,溶剂为乙二醇甲醚和醋酸酐的混合液;
步骤2,采用旋涂法在FTO/glass基片上旋涂Bi0.85-xPr0.15AExFe0.97Mn0.03O3前驱液,得湿膜,湿膜经匀胶后在180~210℃烘烤,得干膜,干膜在540~550℃退火,得到Bi0.85- xPr0.15AExFe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.85-xPr0.15AExFe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜。
所述溶剂中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。
所述步骤2在进行前先对FTO/glass基片进行清洗,然后在紫外光下照射处理,使FTO/glass基片表面达到原子清洁度,再旋涂Bi0.85-xPr0.15AExFe0.97Mn0.03O3 前驱液。
所述步骤2中的匀胶转速为3800~4100r/min,匀胶时间为12~15s。
所述步骤2中的烘烤时间为8~12min。
所述步骤2的退火时间为7~9min。
相对于现有技术,本发明具有以下有益效果:
1.本发明提供的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜的制备方法,选择碱土元素AE和稀土元素Pr进行A位掺杂,选择过渡金属Mn进行B位掺杂。由于碱土金属元素AE的离子半径相近于Bi3+,Mn2+半径小于Fe3+,掺杂后,碱土金属元素和Mn都可以固熔进入晶格,可以使原本近似呈钙钛矿结构的铁酸铋晶格扭曲,结构畸变加剧,同时由于Pr3+对Bi3+的进一步的替代,以及Mn元素在退火过程中的变价,可以有效的拟制Bi的挥发,减少薄膜中Fe2+和氧空位的含量,从而增强薄膜在外加电场下的极化强度,同时释放出其宏观磁性,提高薄膜的铁电性和铁磁性。本发明通过碱土元素AE、稀土元素Pr和过渡金属元素Mn三元素共掺杂BiFeO3,形成具有优异铁电性能的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜。
2.目前用于制备BiFeO3薄膜的方法有很多,如化学气相沉积法(CVD)、磁控溅射法(rf magnetron sputtering)、金属有机物沉积法(MOD)、金属有机物化学气相沉积法(MOCVD)、液相沉积法(LPD)、分子束外延法(MBE)、脉冲激光沉积法(PLD)、溶胶-凝胶法(Sol-Gel)等。相比其他方法,Sol-Gel方法由于设备简单,反应容易进行,反应温度较低,易操作,适宜在大的表面和形状不规则的表面上制备薄膜,易实现分子水平上的均匀掺杂,以及化学组分精确可控等优点而被广泛用来制备铁电材料。本发明中采用溶胶凝胶法,通过稀土元素Pr, 碱土元素AE和过渡金属元素Mn三元素共掺杂BiFeO3,在FTO基板上制备Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜。本发明设备要求简单,实验条件容易达到,掺杂量容易控制,制得的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜均匀性好,并具有较低的漏电流密度,较大的剩余极化强度,较高的抗击穿电场,较小的矫顽场,以及较为优异的铁电和铁磁性能。
3.本发明提供的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜,在原本近似呈钙钛矿结构的铁酸铋晶格中掺杂碱土元素AE,稀土元素Pr和过渡金属元素Mn,使铁酸铋晶格扭曲,结构畸变加剧,能够减少氧空位的含量,抑制Fe3+向Fe2+转变,从而减少薄膜中的缺陷,减小薄膜的漏导电流,有效提高薄膜的磁电性能,使本发明制得的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜具有较高的抗击穿电场、较低的漏电流密度、较大的剩余极化强度、较小的矫顽场以及优异的铁电性能和铁磁性能。
附图说明
图1是本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜的XRD图;
图2是本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜的SEM图;
图3是本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜的介电常数图;
图4是本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜的漏电流密度图;
图5是本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜的电滞回线图;
图6是本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜的磁滞回线图。
具体实施方式
下面结合附图和本发明优选的具体实施例对本发明作进一步详细说明。
本发明提供的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜,其中AE为Sr、Ca或 Ba,x=0.02~0.05,其晶型为三方结构,空间群为R-3m:R,晶胞参数 α=β=γ=89.7177°。
实施例1
步骤1,按摩尔比为0.88:0.15:0.02:0.97:0.03将硝酸铋、硝酸镨、硝酸锶、硝酸铁和硝酸锰溶于溶剂中(AE=Sr,x=0.02,硝酸铋过量5%),得到金属离子总浓度为0.3mol/L的稳定的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3前驱液;其中溶剂是体积比为3:1的乙二醇甲醚和醋酸酐的混合液;
步骤2,选FTO/glass基片为基底,将基片依次置于洗涤剂、丙酮、乙醇中,分别用超声波清洗10min,然后用蒸馏水清洗基片并用氮气吹干;再置于60℃的烘箱中烘烤5min,之后取出静置至室温;最后将基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。采用旋涂法在洁净的FTO/glass基片上旋涂Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3前驱液,得湿膜,匀胶速度为4000r/min,匀胶时间为13s,匀胶结束后,在200℃下烘烤9min,得干膜,干膜再于550℃的温度下在空气中层层退火7min,得Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜。
采用XRD测定Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜的物相组成结构,用FE-SEM测定Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜的微观形貌。在晶态Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜表面离子溅射制备Au电极,然后在295℃下保温进行电极退火处理。再用AgilentE4980A精密LCR测试仪测试Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜的介电性能,用AgilentB2900测试Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜的漏导电流特性;用TF2000铁电测试系统测试Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜的铁电性能,用超导量子干涉磁测试系统测试Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜的磁性能。结果如图1、图2、图3、图4、图5和图6所示。
图1与PDF72-2112标准卡片吻合,从图1中可知,本发明实施例1制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜具有扭曲的钙钛矿结构,没有杂质出现。
图2表明本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜结构致密,晶粒尺寸分布均匀,晶粒发育良好。
图3表明本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜在1kHz频率下的介电常数为290。
图4表明本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜在200kV/cm外加电场下的漏电流密度为2.98×10-4A/cm2。
图5表明本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜在1kHz频率,690kV/cm测试电场下的剩余极化强度为82μC/cm2,矫顽场为290kV/cm。
图6表明本发明制备的Bi0.83Pr0.15Sr0.02Fe0.97Mn0.03O3铁电薄膜室温下的饱和磁化强度为1.97emu/cm3。
实施例2
步骤1,按摩尔比为0.87:0.15:0.03:0.97:0.03将硝酸铋、硝酸镨、硝酸锶、硝酸铁和硝酸锰溶于溶剂中(AE=Sr,x=0.03,硝酸铋过量5%),得到金属离子总浓度为0.25mol/L的稳定的Bi0.82Pr0.15Sr0.03Fe0.97Mn0.03O3前驱液;其中溶剂是体积比为2.5:1的乙二醇甲醚和醋酸酐的混合液;
步骤2,选FTO/glass基片为基底,将基片依次置于洗涤剂、丙酮、乙醇中,分别用超声波清洗10min,然后用蒸馏水清洗基片并用氮气吹干;再置于60℃的 烘箱中烘烤5min,之后取出静置至室温;最后将基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。采用旋涂法在洁净的FTO/glass基片上旋涂Bi0.82Pr0.15Sr0.03Fe0.97Mn0.03O3前驱液,得湿膜,匀胶速度为3800r/min,匀胶时间为15s,匀胶结束后,在180℃下烘烤12min,得干膜,干膜再于540℃的温度下在空气中层层退火9min,得Bi0.82Pr0.15Sr0.03Fe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.82Pr0.15Sr0.03Fe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.82Pr0.15Sr0.03Fe0.97Mn0.03O3铁电薄膜。
实施例3
步骤1,按摩尔比为0.86:0.15:0.04:0.97:0.03将硝酸铋、硝酸镨、硝酸钙、硝酸铁和硝酸锰溶于溶剂中(AE=Ca,x=0.04,硝酸铋过量5%),得到金属离子总浓度为0.35mol/L的稳定的Bi0.81Pr0.15Ca0.04Fe0.97Mn0.03O3前驱液;其中溶剂是体积比为3.5:1的乙二醇甲醚和醋酸酐的混合液;
步骤2,选FTO/glass基片为基底,将基片依次置于洗涤剂、丙酮、乙醇中,分别用超声波清洗10min,然后用蒸馏水清洗基片并用氮气吹干;再置于60℃的烘箱中烘烤5min,之后取出静置至室温;最后将基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。采用旋涂法在洁净的FTO/glass基片上旋涂Bi0.81Pr0.15Ca0.04Fe0.97Mn0.03O3前驱液,得湿膜,匀胶速度为3900r/min,匀胶时间为14.5s,匀胶结束后,在190℃下烘烤11min,得干膜,干膜再于545℃的温度下在空气中层层退火8min,得Bi0.81Pr0.15Ca0.04Fe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.81Pr0.15Ca0.04Fe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.81Pr0.15Ca0.04Fe0.97Mn0.03O3铁电薄膜。
实施例4
步骤1,按摩尔比为0.85:0.15:0.05:0.97:0.03将硝酸铋、硝酸镨、硝酸钙、硝酸铁和硝酸锰溶于溶剂中(AE=Ca,x=0.05,硝酸铋过量5%),得到金属离子总浓度为0.28mol/L的稳定的Bi0.8Pr0.15Ca0.05Fe0.97Mn0.03O3前驱液;其中溶剂是体积比为2.8:1的乙二醇甲醚和醋酸酐的混合液;
步骤2,选FTO/glass基片为基底,将基片依次置于洗涤剂、丙酮、乙醇中,分别用超声波清洗10min,然后用蒸馏水清洗基片并用氮气吹干;再置于60℃的烘箱中烘烤5min,之后取出静置至室温;最后将基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。采用旋涂法在洁净的FTO/glass基片上旋涂Bi0.8Pr0.15Ca0.05Fe0.97Mn0.03O3前驱液,得湿膜,匀胶速度为4100r/min,匀胶时间为12s,匀胶结束后,在210℃下烘烤8min,得干膜,干膜再于542℃的温度下在空气中层层退火8.5min,得Bi0.8Pr0.15Ca0.05Fe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.8Pr0.15Ca0.05Fe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.8Pr0.15Ca0.05Fe0.97Mn0.03O3铁电薄膜。
实施例5
步骤1,按摩尔比为0.865:0.15:0.035:0.97:0.03将硝酸铋、硝酸镨、硝酸钡、硝酸铁和硝酸锰溶于溶剂中(AE=Ba,x=0.035,硝酸铋过量5%),得到金属离子总浓度为0.32mol/L的稳定的Bi0.815Pr0.15Ba0.035Fe0.97Mn0.03O3前驱液;其中溶剂是体积比为3.2:1的乙二醇甲醚和醋酸酐的混合液;
步骤2,选FTO/glass基片为基底,将基片依次置于洗涤剂、丙酮、乙醇中,分别用超声波清洗10min,然后用蒸馏水清洗基片并用氮气吹干;再置于60℃的烘箱中烘烤5min,之后取出静置至室温;最后将基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。采用旋涂法在洁净的FTO/glass基片上旋 涂Bi0.815Pr0.15Ba0.035Fe0.97Mn0.03O3前驱液,得湿膜,匀胶速度为4000r/min,匀胶时间为14s,匀胶结束后,在200℃下烘烤10min,得干膜,干膜再于548℃的温度下在空气中层层退火7.5min,得Bi0.815Pr0.15Ba0.035Fe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.815Pr0.15Ba0.035Fe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.815Pr0.15Ba0.035Fe0.97Mn0.03O3铁电薄膜。
本发明设备要求简单,实验条件容易达到,制备的薄膜均匀性较好,掺杂量容易控制,能够大幅度提高薄膜的剩余极化值,减小薄膜的矫顽场强。
以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。
Claims (2)
1.一种Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜,其特征在于:其化学式为Bi0.85- xPr0.15AExFe0.97Mn0.03O3,其中AE为Sr、Ca或Ba,x=0.02~0.05;其晶型为三方结构,空间群为R-3m:R,晶胞参数α=β=γ=89.7177°;其在200kV/cm外加电场下的漏电流密度为2.98×10-4A/cm2;在1kHz频率及690kV/cm测试电场下的剩余极化强度为82μC/cm2,矫顽场为290kV/cm;在1kHz频率下的介电常数为290;在室温下的饱和磁化强度为1.97emu/cm3。
2.权利要求1所述的Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜的制备方法,其特征在于,包括以下步骤:
步骤1,按摩尔比为0.9-x:0.15:x:0.97:0.03将硝酸铋、硝酸镨、硝酸AE、硝酸铁和硝酸锰溶于溶剂中,得到Bi0.85-xPr0.15AExFe0.97Mn0.03O3前驱液,其中AE为Sr、Ca或Ba,x=0.02~0.05,Bi0.85-xPr0.15AExFe0.97Mn0.03O3前驱液中金属离子的总浓度为0.25~0.35mol/L,溶剂为体积比为(2.5~3.5):1的乙二醇甲醚和醋酸酐的混合液;
步骤2,先对FTO/glass基片进行清洗,然后在紫外光下照射处理,使FTO/glass基片表面达到原子清洁度,再采用旋涂法在FTO/glass基片上旋涂Bi0.85-xPr0.15AExFe0.97Mn0.03O3前驱液,得湿膜,湿膜经3800~4100r/min的匀胶转速匀胶12~15s后在180~210℃烘烤8~12min,得干膜,干膜在540~550℃退火7~9min,得到Bi0.85-xPr0.15AExFe0.97Mn0.03O3薄膜;
步骤3,冷却后,在Bi0.85-xPr0.15AExFe0.97Mn0.03O3薄膜上重复步骤2,直至达到所需厚度,得到Bi0.85-xPr0.15AExFe0.97Mn0.03O3铁电薄膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410764332.7A CN104478228B (zh) | 2014-12-11 | 2014-12-11 | 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410764332.7A CN104478228B (zh) | 2014-12-11 | 2014-12-11 | 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104478228A CN104478228A (zh) | 2015-04-01 |
CN104478228B true CN104478228B (zh) | 2017-06-06 |
Family
ID=52752868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410764332.7A Active CN104478228B (zh) | 2014-12-11 | 2014-12-11 | 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104478228B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107910030B (zh) * | 2017-10-26 | 2020-11-06 | 湘潭大学 | 一种柔性bnt铁电薄膜的制备方法 |
CN109273255B (zh) * | 2018-09-18 | 2021-04-23 | 陕西科技大学 | 一种高铁磁性的lsmo薄膜及其制备方法 |
CN117832562B (zh) * | 2024-03-06 | 2024-05-14 | 成都岷山绿氢能源有限公司 | 一种锶掺杂的中温sofc阴极材料及其制备方法和应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102531405A (zh) * | 2011-12-19 | 2012-07-04 | 陕西科技大学 | FTO/glass 基板表面Sm 掺杂BiFeO3铁电薄膜的制备方法 |
CN103044018A (zh) * | 2012-11-28 | 2013-04-17 | 陕西科技大学 | 一种溶胶-凝胶法制备Bi0.85Sm0.15Fe1‐xCrxO3 铁电薄膜的方法 |
-
2014
- 2014-12-11 CN CN201410764332.7A patent/CN104478228B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN104478228A (zh) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104445996B (zh) | 一种多铁性Bi0.96‑xSr0.04RExFe0.94Mn0.04Cr0.02O3‑NiFe2O4 复合膜及其制备方法 | |
CN105271798B (zh) | 一种高铁磁性能和铁电性能的Bi0.9Er0.1Fe1‑xCoxO3薄膜及其制备方法 | |
CN104478234B (zh) | 一种Bi0.90Er0.10Fe0.96Co0.02Mn0.02O3/Mn1-xCoxFe2O4 复合膜及其制备方法 | |
CN105837196A (zh) | 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法 | |
CN104538140B (zh) | 一种多铁性Bi1‑xRExFe0.97‑yMn0.03TMyO3/CoFe2O4复合膜及其制备方法 | |
CN104478235B (zh) | 一种多铁性Bi0.98‑xSr0.02RExFe0.97Mn0.03O3‑CuFe2O4 复合膜及其制备方法 | |
CN103044018A (zh) | 一种溶胶-凝胶法制备Bi0.85Sm0.15Fe1‐xCrxO3 铁电薄膜的方法 | |
CN104478228B (zh) | 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法 | |
CN103723770B (zh) | 一种高介电常数的Bi0.92Ho0.08Fe1-XMnXO3 铁电薄膜及其制备方法 | |
CN103708562B (zh) | 一种高剩余极化强度的Bi0.90Ho0.10Fe1-xMnxO3铁电薄膜及其制备方法 | |
CN103771527B (zh) | 一种低矫顽场的Bi0.92Dy0.08Fe1-xMnxO3铁电薄膜及其制备方法 | |
CN104478229B (zh) | 一种Bi1-xRExFe0.96Co0.02Mn0.02O3 铁电薄膜及其制备方法 | |
CN104476832B (zh) | 一种叠层状BiFe0.97-xMn0.03TMxO3/CoFe2O4 多铁性复合膜及其制备方法 | |
CN105906221B (zh) | 一种多铁性Bi0.83Pr0.15Sr0.02Fe0.97-xMn0.03CuxO3-CuFe2O4复合膜及其制备方法 | |
CN104478236A (zh) | 一种Bi0.92Ho0.08Fe0.97Mn0.03O3-Zn1-xNixFe2O4 多铁性复合膜及其制备方法 | |
CN104575907B (zh) | 一种Bi1‑xRExFe1‑yTMyO3/CoFe2O4 多铁性复合膜及其制备方法 | |
CN103771528B (zh) | 一种高介电常数的Bi1-XHoXFeO3铁电薄膜及其制备方法 | |
CN103663564B (zh) | 一种高介电常数的Bi0.90Dy0.10Fe1-XMnXO3铁电薄膜及其制备方法 | |
CN104478230A (zh) | 一种多铁性Bi0.92-xHo0.08AExFe0.97Mn0.03O3 薄膜及其制备方法 | |
CN103601247A (zh) | 一种高剩余极化强度和低漏电流密度Bi1-xSmxFe0.94Mn0.04Cr0.02O3铁电薄膜及其制备方法 | |
CN104538139B (zh) | 一种Bi1‑xRExFeO3/CoFe2O4 多铁性复合膜及其制备方法 | |
CN107082576A (zh) | 一种HoSrMnNi共掺铁酸铋多铁薄膜及其制备方法 | |
CN103739019B (zh) | 一种高剩余极化强度的BiFe1-xMnxO3铁电薄膜及其制备方法 | |
CN103626236B (zh) | 一种B位Mn和Ni共掺杂高剩余极化强度的BiFeO3 薄膜及其制备方法 | |
CN103601249B (zh) | 一种高剩余极化强度和高介电常数BiFe0.96-yMn0.04CryO3 铁电薄膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |