CN107082577B - 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法 - Google Patents

一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法 Download PDF

Info

Publication number
CN107082577B
CN107082577B CN201710253962.1A CN201710253962A CN107082577B CN 107082577 B CN107082577 B CN 107082577B CN 201710253962 A CN201710253962 A CN 201710253962A CN 107082577 B CN107082577 B CN 107082577B
Authority
CN
China
Prior art keywords
film
crystalline state
hosrmnzn
doped
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710253962.1A
Other languages
English (en)
Other versions
CN107082577A (zh
Inventor
谈国强
郭美佑
杨玮
刘云
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Litong Information Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710253962.1A priority Critical patent/CN107082577B/zh
Publication of CN107082577A publication Critical patent/CN107082577A/zh
Application granted granted Critical
Publication of CN107082577B publication Critical patent/CN107082577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供了一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法,该复合膜包括复合在一起的Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3铁电膜和Zn1‑xMnxFe2O4磁性膜;先在基片上旋涂制备多层Zn1‑xMnxFe2O4磁性薄膜,然后在磁性薄膜上旋涂制备多层Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3膜,得到该复合薄膜。本发明采用溶胶凝胶工艺,用多种元素掺杂对铁电膜晶体结构进行调控改善薄膜的铁电性能,提高铁电测试和漏电流测试的抗击穿性能,同时用强磁性尖晶石结构的Zn1‑xMnxFe2O4作为磁性层,获得优异磁电耦合性能的复合薄膜。

Description

一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备 方法
技术领域
本发明属于功能材料领域,涉及在功能化的FTO/glass基板表面制备HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜,具体为多铁性Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3/Zn1- xMnxFe2O4复合薄膜。
背景技术
单相磁电多铁性材料至今还没能应用到实际中,主要是因为大部分单相材料的居里温度较低,在极低的温度下才有磁电效应,且磁电效应很微弱。尽管单相BiFeO3材料的居里温度和尼尔温度都在室温以上,但是由于BiFeO3的螺旋磁结构,使得BiFeO3呈G型反铁磁性,在低电场下仅表现出微弱的铁磁性,其较小的磁电耦合特性阻碍了其在多铁方面的实际应用。相反,多铁性磁电复合材料可具有室温下的强磁电效应,因而有实际应用价值。
虽然掺杂后的BiFeO3薄膜在性能上有明显的改善,但是对于薄膜的磁性能还有很大的提升空间。尖晶石型铁氧体的薄膜在光学性质、电学性质、磁学性质等众多方面展现出许多新型的特性。Zn1-xMnxFe2O4属于尖晶石型铁氧体是一种多功能半导体材料,是一种重要的磁性材料。目前,还没有关于多铁性Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3/Zn1-xMnxFe2O4复合薄膜及其制备方法的相关报道。
发明内容
本发明的目的在于提供一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法,该方法设备要求简单,实验条件容易达到,掺杂量容易控制,制得的薄膜为多铁性Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3/Zn1-xMnxFe2O4复合薄膜,能够有效提高BiFeO3薄膜的耐击穿性能,同时改善其铁电和铁磁性能。
为了实现上述目的,本发明采用如下技术方案:
一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜,该复合薄膜包括复合在一起的上层膜和下层膜,其中上层膜为Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜;下层膜为Zn1- xMnxFe2O4晶态膜,x=0.1~0.9;其中Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间群共存;Zn1-xMnxFe2O4晶态膜为立方相,尖晶石结构,空间群为Fd3-ms。
该复合薄膜在1kHz频率下,外加电压为80V,测试电场为1066kV/cm时,其剩余极化强度为85μC/cm2,矫顽场为581kV/cm。
该复合薄膜在外加电压为40V、533kV/cm测试电场下的漏电流密度为6.1×10-3A/cm2
所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,包括以下步骤:
步骤1:按摩尔比为(1-x):x:2将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,其中x=0.1~0.9;
步骤2:按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液B;
步骤3:采用旋涂法在洁净的FTO/glass基片上旋涂前驱液A,得到Zn1-xMnxFe2O4湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再在600~620℃下在空气中退火,得到晶态Zn1-xMnxFe2O4薄膜;
步骤4:待晶态Zn1-xMnxFe2O4薄膜冷却后,在晶态Zn1-xMnxFe2O4薄膜上重复步骤3,直至达到所需厚度,得到Zn1-xMnxFe2O4晶态膜;
步骤5:在Zn1-xMnxFe2O4晶态膜上旋涂前驱液B,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再在540~560℃下在空气中退火,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6:待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,直至达到所需厚度,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
所述前驱液A中Fe离子的浓度为0.1~0.3mol/L;前驱液B中金属离子的总浓度为0.2~0.4mol/L。
所述前驱液A和前驱液B中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。
所述步骤3进行前先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,再旋涂前驱液A;
所述步骤5进行前先对Zn1-xMnxFe2O4晶态膜进行紫外光照射处理,使Zn1-xMnxFe2O4晶态膜表面达到原子清洁度,再旋涂前驱液B。
所述步骤3和步骤5中匀胶时的匀胶转速为3800~4000r/min,匀胶时间为12~18s。
所述步骤3和步骤5中匀胶后的烘烤时间为8~10min。
所述步骤3中的退火时间为20~25min,步骤5中的退火时间为8~12min。
相对于现有技术,本发明具有以下有益效果:
本发明提供的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,先分别配制Zn1-xMnxFe2O4前驱液和Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3前驱液,再用旋涂法和层层退火的工艺基板上旋涂制备多层Zn1-xMnxFe2O4膜,然后在Zn1-xMnxFe2O4晶态膜上旋涂制备多层Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3膜,即得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。本发明选择镧系元素Ho和碱土元素Sr进行BiFeO3的A位掺杂,选择过渡金属Mn和Zn进行BiFeO3的B位掺杂,使原本近似呈钙钛矿结构的铁酸铋晶格扭曲,结构畸变加剧,同时由于Ho和Sr对Bi3+的进一步的替代,以及Mn元素在退火过程中的变价,可以有效的拟制Bi的挥发,减少薄膜中Fe2+和氧空位的含量,使晶格结构进一步发生畸变,从而增强薄膜在外加电场下的极化强度。此外,这种结构的畸变会抑制BiFeO3特殊的空间调制的螺旋磁结构,释放出部分潜在的宏观磁性,提高薄膜的铁磁性。另外Zn1-xMnxFe2O4属于尖晶石型铁氧体是一种多功能半导体材料,是一种重要的磁性材料。本发明结合以上两种材料的优点,采用2-2型复合形式,以Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3膜作为铁电层,以Zn1-xMnxFe2O4膜作为磁性层,得到同时具有优异铁电和铁磁性能的Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3/Zn1-xMnxFe2O4复合薄膜,提高了BiFeO3薄膜的抗击穿性能,解决了铁酸铋薄膜弱磁性的问题。本发明采用溶胶-凝胶工艺,相比于其他制备薄膜的方法,该方法设备要求简单,实验条件易于实现,成本低廉,反应容易进行,工艺过程温度低,制备过程及掺杂量容易控制,化学组分精确可控,适宜在大的表面和形状不规则的表面上制备薄膜,很容易均匀定量地掺入一些微量元素,可以在短时间内获得原子或分子水平的均匀性。
本发明制得的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜包括复合在一起的上层膜和下层膜,其中上层膜为Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜;下层膜为Zn1- xMnxFe2O4晶态膜,x=0.1~0.9。该复合薄膜致密度高、均匀性较好、晶粒尺寸均匀,本发明通过多种元素掺杂对BiFeO3薄膜晶体结构进行调控从而改善薄膜的铁电性能,提高抗击穿性能,同时采用强磁性尖晶石结构的Zn1-xMnxFe2O4作为磁性层,获得优异磁电耦合性能的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜,能够有效提高BiFeO3薄膜的耐击穿性能,同时改善其铁电和铁磁性能。
进一步的,本发明制得的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜在1kHz频率下,1066kV/cm测试电场下的剩余极化强度为85μC/cm2,矫顽场为581kV/cm。在40V外加电压及533kV/cm测试电场下的漏电流密度为6.1×10-3A/cm2,提高了复合薄膜在铁电测试和漏电流测试时的抗击穿性能。
附图说明
图1是本发明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的XRD图。
图2是本发明实施例2制备的Zn0.7Mn0.3Fe2O4晶态膜的XRD精修图;
图3是本发明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的SEM断面图。
图4是本发明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的漏电流图。
图5是本发明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的电滞回线图。
具体实施方式
下面结合附图和本发明优选的具体实施例对本发明做进一步描述,原料均为分析纯。
实施例1
步骤1,按摩尔比为0.9:0.1:2(x=0.1)将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,前驱液A中Fe离子的浓度为0.1mol/L,乙二醇甲醚与醋酸酐的体积比为2.5:1;
步骤2,按摩尔比为0.89:0.08:0.03:0.95:0.03:0.02将硝酸铋(过量5%)、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚与醋酸酐的混合溶液中,得到前驱液B,前驱液B中金属离子的总浓度为0.2mol/L,乙二醇甲醚与醋酸酐的体积比为2.5:1;
步骤3,将FTO/glass基片清洗干净后置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后采用旋涂法在FTO/glass基片上旋涂前驱液A,其匀胶转速为3800r/min,匀胶时间为18s,得到Zn0.9Mn0.1Fe2O4湿膜,湿膜在190℃下烘烤10min得干膜,再在600℃下在空气中退火24min,得到晶态Zn0.9Mn0.1Fe2O4薄膜;
步骤4,待晶态Zn0.9Mn0.1Fe2O4薄膜冷却后,在晶态Zn0.9Mn0.1Fe2O4薄膜上重复步骤3,重复4次,得到Zn0.9Mn0.1Fe2O4晶态膜;
步骤5,将Zn0.9Mn0.1Fe2O4晶态膜在紫外光下照射,使其表面达到原子清洁度,然后在Zn0.9Mn0.1Fe2O4晶态膜上旋涂前驱液B,其匀胶转速为3800r/min,匀胶时间为18s,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜在190℃下烘烤10min得干膜,再在540℃下在空气中退火12min,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6,待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,重复11次,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
实施例2
步骤1,按摩尔比为0.7:0.3:2(x=0.3)将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,前驱液A中Fe离子的浓度为0.2mol/L,乙二醇甲醚与醋酸酐的体积比为3:1;
步骤2,按摩尔比为0.89:0.08:0.03:0.95:0.03:0.02将硝酸铋(过量5%)、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚与醋酸酐的混合溶液中,得到前驱液B,前驱液B中金属离子的总浓度为0.3mol/L,乙二醇甲醚与醋酸酐的体积比为3:1;
步骤3,将FTO/glass基片清洗干净后置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后采用旋涂法在FTO/glass基片上旋涂前驱液A,其匀胶转速为3900r/min,匀胶时间为15s,得到Zn0.7Mn0.3Fe2O4湿膜,湿膜在200℃下烘烤得干膜9min,再在610℃下空气中退火25min,得到晶态Zn0.7Mn0.3Fe2O4薄膜;
步骤4,待晶态Zn0.7Mn0.3Fe2O4薄膜冷却后,在晶态Zn0.7Mn0.3Fe2O4薄膜上重复步骤3,重复5次,得到Zn0.7Mn0.3Fe2O4晶态膜;
步骤5,将Zn0.7Mn0.3Fe2O4晶态膜在紫外光下照射,使其表面达到原子清洁度,然后在Zn0.7Mn0.3Fe2O4晶态膜上旋涂前驱液B,其匀胶转速为3900r/min,匀胶时间为15s,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜在200℃下烘烤9min得干膜,再在550℃下空气中退火10min,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6,待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,重复12次,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
采用XRD测定HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的物相组成结构。用Radiant Multiferroic仪器测试HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的铁电性能。用Agilent B2900测试HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的漏电流特性。
对实施例2制得的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜进行以上测试,结果如图1、图2、图3、图4、图5和表1所示。
图1与JCPDS No.74-2016标准卡片吻合,从图中可知,实施例2制得的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜中的Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间群共存,且薄膜结晶性能良好,薄膜样品中没有其他杂质的出现。
采用XRD测定Zn0.7Mn0.3Fe2O4晶态膜的物相组成结构。采用Maud软件利用Rietveld原理对XRD数据做精修拟合处理结果如图2所示,基于XRD数据的精修结构参数如表1所示,误差因子控制在11.5%。从图中可知,制备的Zn0.7Mn0.3Fe2O4晶态膜具有立方相的尖晶石结构,空间点群为Fd3-ms,且薄膜结晶性能良好,薄膜样品中没有其他杂质的出现。
表1 Zn0.7Mn0.3Fe2O4晶态膜的XRD精修结构参数
图3表明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的总厚度为750nm,其中Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜厚度约为510nm,Zn0.7Mn0.3Fe2O4晶态膜厚度约为240nm。
图4表明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜在40V外加电压下,测试电场为533kV/cm时,漏电流密度为6.1×10-3A/cm2,说明提高了复合薄膜在铁电测试和漏电流测试时的抗击穿性能。
图5表明实施例2制备的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜在1kHz频率下,1066kV/cm测试电场下的剩余极化强度为85μC/cm2,矫顽场为581kV/cm。
实施例3
步骤1,按摩尔比为0.5:0.5:2(x=0.5)将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,前驱液A中Fe离子的浓度为0.3mol/L,乙二醇甲醚与醋酸酐的体积比为3.5:1;
步骤2,按摩尔比为0.89:0.08:0.03:0.95:0.03:0.02将硝酸铋(过量5%)、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚与醋酸酐的混合溶液中,得到前驱液B,前驱液B中金属离子的总浓度为0.4mol/L,乙二醇甲醚与醋酸酐的体积比为3.5:1;
步骤3,将FTO/glass基片清洗干净后置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后采用旋涂法在FTO/glass基片上旋涂前驱液A,其匀胶转速为4000r/min,匀胶时间为12s,得到Zn0.5Mn0.5Fe2O4湿膜,湿膜在210℃下烘烤8min得干膜,再在620℃下空气中退火20min,得到晶态Zn0.5Mn0.5Fe2O4薄膜;
步骤4,待晶态Zn0.5Mn0.5Fe2O4薄膜冷却后,在晶态Zn0.5Mn0.5Fe2O4薄膜上重复步骤3,重复6次,得到Zn0.5Mn0.5Fe2O4晶态膜;
步骤5,将Zn0.5Mn0.5Fe2O4晶态膜在紫外光下照射,使其表面达到原子清洁度,然后在Zn0.5Mn0.5Fe2O4晶态膜上旋涂前驱液B,其匀胶转速为4000r/min,匀胶时间为12s,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜在210℃下烘烤8min得干膜,再在560℃下空气中退火8min,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6,待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,重复13次,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
实施例4
步骤1,按摩尔比为0.3:0.7:2(x=0.7)将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,前驱液A中Fe离子的浓度为0.15mol/L,乙二醇甲醚与醋酸酐的体积比为2.8:1;
步骤2,按摩尔比为0.89:0.08:0.03:0.95:0.03:0.02将硝酸铋(过量5%)、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚与醋酸酐的混合溶液中,得到前驱液B,前驱液B中金属离子的总浓度为0.25mol/L,乙二醇甲醚与醋酸酐的体积比为2.8:1;
步骤3,将FTO/glass基片清洗干净后置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后采用旋涂法在FTO/glass基片上旋涂前驱液A,其匀胶转速为3850r/min,匀胶时间为16s,得到Zn0.3Mn0.7Fe2O4湿膜,湿膜在195℃下烘烤9.5min得干膜,再在605℃下空气中退火23min,得到晶态Zn0.3Mn0.7Fe2O4薄膜;
步骤4,待晶态Zn0.3Mn0.7Fe2O4薄膜冷却后,在晶态Zn0.3Mn0.7Fe2O4薄膜上重复步骤3,重复3次,得到Zn0.3Mn0.7Fe2O4晶态膜;
步骤5,将Zn0.3Mn0.7Fe2O4晶态膜在紫外光下照射,使其表面达到原子清洁度,然后在Zn0.3Mn0.7Fe2O4晶态膜上旋涂前驱液B,其匀胶转速为3850r/min,匀胶时间为16s,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜在195℃下烘烤9.5min得干膜,再在545℃下空气中退火11min,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6,待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,重复10次,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
实施例5
步骤1,按摩尔比为0.1:0.9:2(x=0.9)将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,前驱液A中Fe离子的浓度为0.25mol/L,乙二醇甲醚与醋酸酐的体积比为3.2:1;
步骤2,按摩尔比为0.89:0.08:0.03:0.95:0.03:0.02将硝酸铋(过量5%)、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚与醋酸酐的混合溶液中,得到前驱液B,前驱液B中金属离子的总浓度为0.35mol/L,乙二醇甲醚与醋酸酐的体积比为3.2:1;
步骤3,将FTO/glass基片清洗干净后置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后采用旋涂法在FTO/glass基片上旋涂前驱液A,其匀胶转速为3950r/min,匀胶时间为14s,得到Zn0.1Mn0.9Fe2O4湿膜,湿膜在205℃下烘烤8.5min得干膜,再在615℃下空气中退火22min,得到晶态Zn0.1Mn0.9Fe2O4薄膜;
步骤4,待晶态Zn0.1Mn0.9Fe2O4薄膜冷却后,在晶态Zn0.1Mn0.9Fe2O4薄膜上重复步骤3,重复7次,得到Zn0.1Mn0.9Fe2O4晶态膜;
步骤5,将Zn0.1Mn0.9Fe2O4晶态膜在紫外光下照射,使其表面达到原子清洁度,然后在Zn0.1Mn0.9Fe2O4晶态膜上旋涂前驱液B,其匀胶转速为3950r/min,匀胶时间为14s,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜在205℃下烘烤8.5min得干膜,再在555℃下空气中退火9min,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6,待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,重复14次,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (10)

1.一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜,其特征在于,该复合薄膜包括复合在一起的上层膜和下层膜,其中上层膜为Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜;下层膜为Zn1-xMnxFe2O4晶态膜,x=0.1~0.9;其中Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3晶态膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间群共存;Zn1-xMnxFe2O4晶态膜为立方相,尖晶石结构,空间群为Fd3-ms。
2.根据权利要求1所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜,其特征在于,该复合薄膜在1kHz频率下,外加电压为80V,测试电场为1066kV/cm时,其剩余极化强度为85μC/cm2,矫顽场为581kV/cm。
3.根据权利要求1所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜,其特征在于,该复合薄膜在外加电压为40V、533kV/cm测试电场下的漏电流密度为6.1×10-3A/cm2
4.权利要求1-3中任意一项所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,包括以下步骤:
步骤1:按摩尔比为(1-x):x:2将硝酸锌、硝酸锰和硝酸铁溶于乙二醇甲醚中,搅拌均匀后再加入醋酸酐,得到前驱液A,其中x=0.1~0.9;
步骤2:按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液B;
步骤3:采用旋涂法在洁净的FTO/glass基片上旋涂前驱液A,得到Zn1-xMnxFe2O4湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再在600~620℃下在空气中退火,得到晶态Zn1- xMnxFe2O4薄膜;
步骤4:待晶态Zn1-xMnxFe2O4薄膜冷却后,在晶态Zn1-xMnxFe2O4薄膜上重复步骤3,直至达到所需厚度,得到Zn1-xMnxFe2O4晶态膜;
步骤5:在Zn1-xMnxFe2O4晶态膜上旋涂前驱液B,得到Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再在540~560℃下在空气中退火,得到晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜;
步骤6:待晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜冷却后,在晶态Bi0.89Ho0.08Sr0.03Fe0.95Mn0.03Zn0.02O3薄膜上重复步骤5,直至达到所需厚度,得到HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜。
5.根据权利要求4所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,所述前驱液A中Fe离子的浓度为0.1~0.3mol/L;前驱液B中金属离子的总浓度为0.2~0.4mol/L。
6.根据权利要求4所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,所述前驱液A和前驱液B中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。
7.根据权利要求4所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,所述步骤3进行前先将FTO/glass基片清洗干净,然后在紫外光下照射,使FTO/glass基片表面达到原子清洁度,再旋涂前驱液A;
所述步骤5进行前先对Zn1-xMnxFe2O4晶态膜进行紫外光照射处理,使Zn1-xMnxFe2O4晶态膜表面达到原子清洁度,再旋涂前驱液B。
8.根据权利要求4所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,所述步骤3和步骤5中匀胶时的匀胶转速为3800~4000r/min,匀胶时间为12~18s。
9.根据权利要求4所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,所述步骤3和步骤5中匀胶后的烘烤时间为8~10min。
10.根据权利要求4所述的HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜的制备方法,其特征在于,所述步骤3中的退火时间为20~25min,步骤5中的退火时间为8~12min。
CN201710253962.1A 2017-04-18 2017-04-18 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法 Active CN107082577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710253962.1A CN107082577B (zh) 2017-04-18 2017-04-18 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710253962.1A CN107082577B (zh) 2017-04-18 2017-04-18 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107082577A CN107082577A (zh) 2017-08-22
CN107082577B true CN107082577B (zh) 2019-10-11

Family

ID=59612130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710253962.1A Active CN107082577B (zh) 2017-04-18 2017-04-18 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107082577B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538140A (zh) * 2014-12-11 2015-04-22 陕西科技大学 一种多铁性Bi1-xRExFe0.97-yMn0.03TMyO3/CoFe2O4复合膜及其制备方法
CN105837196A (zh) * 2016-03-29 2016-08-10 陕西科技大学 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538140A (zh) * 2014-12-11 2015-04-22 陕西科技大学 一种多铁性Bi1-xRExFe0.97-yMn0.03TMyO3/CoFe2O4复合膜及其制备方法
CN105837196A (zh) * 2016-03-29 2016-08-10 陕西科技大学 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN107082577A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
CN105837196A (zh) 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法
CN104445996B (zh) 一种多铁性Bi0.96‑xSr0.04RExFe0.94Mn0.04Cr0.02O3‑NiFe2O4 复合膜及其制备方法
CN105819848B (zh) 一种尖晶石型Co1-xMnxFe2O4铁磁性薄膜及其制备方法
CN105271798B (zh) 一种高铁磁性能和铁电性能的Bi0.9Er0.1Fe1‑xCoxO3薄膜及其制备方法
CN104478235B (zh) 一种多铁性Bi0.98‑xSr0.02RExFe0.97Mn0.03O3‑CuFe2O4 复合膜及其制备方法
CN107032631B (zh) 一种GdSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN105632756B (zh) 一种尖晶石型四方相CuFe2O4铁磁性薄膜及其制备方法
CN107117830A (zh) 一种LaSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN103771527B (zh) 一种低矫顽场的Bi0.92Dy0.08Fe1-xMnxO3铁电薄膜及其制备方法
CN105906221B (zh) 一种多铁性Bi0.83Pr0.15Sr0.02Fe0.97-xMn0.03CuxO3-CuFe2O4复合膜及其制备方法
CN104478228B (zh) 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法
CN107082577B (zh) 一种HoSrMnZn共掺铁酸铋/Mn掺铁酸锌复合薄膜及其制备方法
CN104575907B (zh) 一种Bi1‑xRExFe1‑yTMyO3/CoFe2O4 多铁性复合膜及其制备方法
CN105859152B (zh) 一种高磁性Bi0.96Sr0.04FeO3基/CoFe2O4复合薄膜及其制备方法
CN107082576B (zh) 一种HoSrMnNi共掺铁酸铋多铁薄膜及其制备方法
CN104478229B (zh) 一种Bi1-xRExFe0.96Co0.02Mn0.02O3 铁电薄膜及其制备方法
CN103601249B (zh) 一种高剩余极化强度和高介电常数BiFe0.96-yMn0.04CryO3 铁电薄膜及其制备方法
CN103739019B (zh) 一种高剩余极化强度的BiFe1-xMnxO3铁电薄膜及其制备方法
CN107140848B (zh) 一种GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107021649B (zh) 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN104538139B (zh) 一种Bi1‑xRExFeO3/CoFe2O4 多铁性复合膜及其制备方法
CN107140849B (zh) 一种LaSrMnCo/GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN105859273A (zh) 一种2-2型BiFeO3-CuFe2O4复合薄膜及其制备方法
CN104478230A (zh) 一种多铁性Bi0.92-xHo0.08AExFe0.97Mn0.03O3 薄膜及其制备方法
CN107245704B (zh) 一种HoSrMnNi/HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231115

Address after: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000

Patentee after: Shenzhen Litong Information Technology Co.,Ltd.

Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right