CN105837199B - 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法 - Google Patents

一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法 Download PDF

Info

Publication number
CN105837199B
CN105837199B CN201610202154.8A CN201610202154A CN105837199B CN 105837199 B CN105837199 B CN 105837199B CN 201610202154 A CN201610202154 A CN 201610202154A CN 105837199 B CN105837199 B CN 105837199B
Authority
CN
China
Prior art keywords
thin films
film
iron thin
spin coating
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610202154.8A
Other languages
English (en)
Other versions
CN105837199A (zh
Inventor
谈国强
乐忠威
杨玮
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610202154.8A priority Critical patent/CN105837199B/zh
Publication of CN105837199A publication Critical patent/CN105837199A/zh
Application granted granted Critical
Publication of CN105837199B publication Critical patent/CN105837199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供了一种Bi0.96Sr0.04Fe0.98‑ xMnxCo0.02O3多铁薄膜及其制备方法。以硝酸盐和醋酸锰等为原料,乙二醇甲醚和醋酸酐为溶剂。在基片上采用旋涂法和逐层退火的工艺制备了Bi0.96Sr0.04Fe0.98‑xMnxCo0.02O3多铁薄膜。本发明采用溶胶-凝胶工艺,设备要求简单,适宜在大的表面和形状不规则的表面上制备薄膜,制备的薄膜均匀性较好,且化学组分精确可控。通过离子掺杂,有效地提高了薄膜的铁电和铁磁性能。该薄膜在最大测试电场为700kV/cm的电场下,剩余极化强度为102~170μC/cm2,矫顽场为290~463kV/cm;室温下,该薄膜的饱和磁化值为2.85~3.8emu/cm3,剩余磁化值为0.38~0.5emu/cm3

Description

一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法
技术领域
本发明属于功能材料领域,具体涉及一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法。
背景技术
近年来,随着信息存储、传感器以及微机电系统发展的需求,铁电材料日益成为产业界、科技界、学术界和军事界的研究热点。BiFeO3(BFO)具有ABO3型钙钛矿结构,它作为一种无铅环保铁电材料,理论剩余极化值高达100μC/cm2,具有优异的铁电、压电以及铁磁性能,非常有希望替代PZT应用于未来的微电子器件,具有广泛的应用前景。
然而,BiFeO3薄膜中存在着严重的漏电现象和较大的矫顽场。此外,BiFeO3薄膜中存在弱铁磁性,使其难以满足新一代存储器件和其它多功能器件所需要强磁电耦合。因此,控制漏电流、降低矫顽场以及提高材料的铁磁性能成为了改善BiFeO3性能的决定性因素和BiFeO3能否大范围使用的关键性问题。目前解决这些问题的方法主要是在A位、B位上进行掺杂以及和磁性薄膜进行复合。大量研究结果表明,A位的掺杂可以有效地减少BiFeO3中存在的氧空位,从而使其漏电流减小,铁电性能提高,同时由于离子半径的差异,BiFeO3的G-型反铁磁螺旋结构也会被破环,会导致在一个螺旋周期内出现净磁矩,宏观上表现出一定的铁磁性。在 B位上掺杂主要选用磁性的离子如Mn、Co、Cr等和非磁性高价阳离子如Nb等部分替代BiFeO3的B位Fe3+离子。一方面,高价的阳离子掺杂可减少铁酸链中的氧空位,从而降低Fe2+离子的浓度,达到降低其漏电流、增大电阻、得到饱和的电滞回线的目的。另一方面,选择磁性离子掺杂是因为钙钦矿型锰氧化物、钴氧化物以及铬氧化物大多不是反铁磁性就是铁磁性的,那么由这些磁性离子部分取代Fe3+离子就有可能增强BFO材料的铁磁性。
目前,还未见采用溶胶-凝胶法在Bi位、Fe位上进行掺杂制备Bi0.96Sr0.04Fe0.98- xMnxCo0.02O3薄膜,以改善BiFeO3薄膜的铁电性能的相关报道。
发明内容
本发明的目的在于提供一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法,该方法制得的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜具有较好的铁电和铁磁性能。
为了实现上述目的,本发明采用如下技术方案:
一种Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3多铁薄膜,其结构式为Bi0.96Sr0.04Fe0.98- xMnxCr0.02O3, x=0.01~0.10;该薄膜属于三方结构,空间群为R3c:H,晶胞参数a=b=5.5810,c=13.8757。
在1kHz的测试频率下,该薄膜的介电常数为310~410;在250kV/cm的电场下,该薄膜的漏电流密度为4.90×10-6~3.23×10-5A/cm2;当测试频率为1kHz,最大测试电场为700kV/cm 时,该薄膜的剩余极化强度为102~170μC/cm2,矫顽场为290~463kV/cm;室温下,该薄膜的饱和磁化值为2.85~3.8emu/cm3,剩余磁化值为0.38~0.5emu/cm3
一种Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3多铁薄膜的制备方法,包括以下步骤:
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按摩尔比为1.01:0.04:0.98-x:x:0.02溶于乙二醇甲醚中,x=0.01~0.10,搅拌均匀后再加入醋酸酐,得到Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3前驱液;
步骤2:采用旋涂法在基片上旋涂Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3前驱液,得到Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3湿膜,Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3湿膜经匀胶后在180~220℃下烘烤得干膜,再于520~560℃下在空气中退火,得到晶态Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3薄膜;
步骤3:待晶态Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3薄膜冷却后,在其上重复步骤2,直至达到所需厚度,即得到Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3多铁薄膜。
所述的Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3前驱液中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1, Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3前驱液中金属离子的总浓度为0.1~0.3mol/L。
所述步骤2在进行前,先将基片表面清洗干净,然后在紫外光下照射处理,使基片表面达到原子清洁度。
所述步骤2中匀胶时的匀胶转速为3600~4000r/min,匀胶时间为10~15s。
所述步骤2中匀胶后的烘烤时间为6~10min。
所述步骤2中的退火时间为20~25min。
所述的Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3多铁薄膜由10~15层晶态Bi0.96Sr0.04Fe0.98- xMnxCr0.02O3薄膜构成。
相对于现有技术,本发明具有以下有益效果:
1、本发明提供的Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3多铁薄膜的制备方法,选择碱土金属Sr对 BiFeO3进行A位掺杂,过渡金属Cr和Mn对BiFeO3进行B位掺杂,在其共同作用下,有效地提高了薄膜的介电、铁电和铁磁性能。在A位上掺杂二价碱金属离子可以补偿氧空位造成的电荷不平衡,有效地抑制Fe3+离子的价态波动;在B位上掺杂过渡金属离子,能够减少在退火过程中的Fe3+向Fe2+转换,较好的抑制氧空位的产生。
2、本发明采用溶胶-凝胶法制备Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜,相比于其他制备薄膜的方法,该方法对设备要求简单,适宜在大的表面和形状不规则的表面上制备薄膜,制备的薄膜均匀性较好,且掺杂量容易控制,化学组分精确可控。并且通过A/B位的三离子共掺杂,有效地提高了薄膜的铁电和铁磁性能,还有效的降低了薄膜的漏电流密度。
3、本发明提供的Bi0.96Sr0.04Fe0.98-xMnxCr0.02O3多铁薄膜属于三方结构,空间群为R3c:H,该薄膜的均匀性较好,其A位掺杂了碱土金属Sr,B位掺杂了过度金属Cr和Mn,并且掺杂提高了其介电、铁电和铁磁性能。
附图说明
图1是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的XRD图;
图2是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的SEM图;
图3是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的介电常数和介电损耗与测试频率的关系图;
图4是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的漏电流密度;
图5是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的电滞回线;
图6是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的磁滞回线。
具体实施方式
下面结合本发明较优的实施例和附图对本发明做进一步详细说明。
实施例1
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.97:0.01:0.02(x=0.01,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.3mol/L的Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3湿膜匀胶,匀胶转速为3800r/min,匀胶时间为15s,匀胶结束后,在200℃温度下烘烤8min得干膜,再在540℃温度下空气中层层退火22min,得到晶态 Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 7Mn0.01Co0.02O3薄膜上重复步骤2,重复14次,得到Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜。
用XRD测试Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的物相组成结构。用SEM测定Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的微观形貌界面接触情况。用P-PMF1114-372铁电分析仪测试Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的铁电性能,测试频率为1kHz,最大测试电场为700kV/cm时,Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的剩余极化值为140μC/cm2,矫顽场为360kV/cm。用Agilent E4980A精密LCR表测试Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的介电性能,测试频率为1kHz时,Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的介电常数为310。用Agilent B2900测试Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的漏导电流特性,电场为250kV/cm 时,Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的漏电流密度为1.48×10-5A/cm2
实施例2
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.96:0.02:0.02(x=0.02,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.3mol/L的Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3湿膜匀胶,匀胶转速为3800r/min,匀胶时间为15s,匀胶结束后,在200℃温度下烘烤8min得干膜,再在540℃温度下空气中层层退火22min,得到晶态 Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 6Mn0.02Co0.02O3薄膜上重复步骤2,重复14次,得到Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜。
用XRD测试Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的物相组成结构。用SEM测定Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的微观形貌界面接触情况。用P-PMF1114-372铁电分析仪测试Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的铁电性能,测试频率为1kHz,最大测试电场为700kV/cm时,Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的剩余极化值为155μC/cm2,矫顽场为330kV/cm。用Agilent E4980A精密LCR表测试Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的介电性能,测试频率为1kHz时,Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的介电常数为340。用Agilent B2900测试Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的漏导电流特性,电场为250kV/cm 时,Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的漏电流密度为7.12×10-6A/cm2。用SQUIDMPMS-XL-7测试Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜室温下的铁磁性能,室温下, Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的饱和磁化值为2.85emu/cm3,剩余磁化值为0.4 emu/cm3
实施例3
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.95:0.03:0.02(x=0.03,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.3mol/L的Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3湿膜匀胶,匀胶转速为3800r/min,匀胶时间为15s,匀胶结束后,在200℃温度下烘烤8min得干膜,再在540℃温度下空气中层层退火22min,得到晶态 Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 5Mn0.03Co0.02O3薄膜上重复步骤2,重复14次,得到Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜。
用XRD测试Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的物相组成结构。用SEM测定Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的微观形貌界面接触情况。用P-PMF1114-372铁电分析仪测试Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的铁电性能,测试频率为1kHz,最大测试电场为700kV/cm时,Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的剩余极化值为102μC/cm2,矫顽场为463kV/cm。用Agilent E4980A精密LCR表测试Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的介电性能,测试频率为1kHz时,Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的介电常数为320。用Agilent B2900测试Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的漏导电流特性,电场为250kV/cm 时,Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的漏电流密度为4.90×10-6A/cm2。用SQUIDMPMS-XL-7测试Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜室温下的铁磁性能,室温下, Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的饱和磁化值为2.99emu/cm3,剩余磁化值为0.38 emu/cm3
实施例4
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.94:0.04:0.02(x=0.04,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.3mol/L的Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3湿膜匀胶,匀胶转速为3800r/min,匀胶时间为15s,匀胶结束后,在200℃温度下烘烤8min得干膜,再在540℃温度下空气中层层退火22min,得到晶态 Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 4Mn0.04Co0.02O3薄膜上重复步骤2,重复14次,得到Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜。
用XRD测试Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的物相组成结构。用SEM测定Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的微观形貌界面接触情况。用P-PMF1114-372铁电分析仪测试Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的铁电性能,测试频率为1kHz,最大测试电场为700kV/cm时,Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的剩余极化值为148μC/cm2,矫顽场为290kV/cm。用Agilent E4980A精密LCR表测试Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的介电性能,测试频率为1kHz时,Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的介电常数为366。用Agilent B2900测试Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的漏导电流特性,电场为250kV/cm 时,Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的漏电流密度为2.03×10-5A/cm2。用SQUIDMPMS-XL-7测试Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜室温下的铁磁性能,室温下, Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的饱和磁化值为3.8emu/cm3,剩余磁化值为0.5 emu/cm3
实施例5
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.93:0.05:0.02(x=0.05,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.3mol/L的Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3湿膜匀胶,匀胶转速为3800r/min,匀胶时间为15s,匀胶结束后,在200℃温度下烘烤8min得干膜,再在540℃温度下空气中层层退火22min,得到晶态 Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 3Mn0.05Co0.02O3薄膜上重复步骤2,重复14次,得到Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜。
用XRD测试Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的物相组成结构。用SEM测定Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的微观形貌界面接触情况。用P-PMF1114-372铁电分析仪测试Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的铁电性能,测试频率为1kHz,最大测试电场为700kV/cm时,Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的剩余极化值为170μC/cm2,矫顽场为301kV/cm。用Agilent E4980A精密LCR表测试Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的介电性能,测试频率为1kHz时,Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的介电常数为410。用Agilent B2900测试Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的漏导电流特性,电场为250kV/cm 时,Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的漏电流密度为3.23×10-5A/cm2
实施例6
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.92:0.06:0.02(x=0.06,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.1mol/L的Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比2.5:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3湿膜匀胶,匀胶转速为3600r/min,匀胶时间为14s,匀胶结束后,在180℃温度下烘烤10min得干膜,再在520℃温度下空气中层层退火25min,得到晶态 Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 2Mn0.06Co0.02O3薄膜上重复步骤2,重复9次,得到Bi0.96Sr0.04Fe0.92Mn0.06Co0.02O3多铁薄膜。
实施例7
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.91:0.07:0.02(x=0.07,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.15mol/L的Bi0.96Sr0.04Fe0.9 1Mn0.07Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比2.8:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.91Mn0.07Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.91Mn0.07Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.91Mn0.07Co0.02O3湿膜匀胶,匀胶转速为3700r/min,匀胶时间为13s,匀胶结束后,在190℃温度下烘烤9min得干膜,再在530℃温度下空气中层层退火24min,得到晶态 Bi0.96Sr0.04Fe0.91Mn0.07Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.91Mn0.07Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 1Mn0.07Co0.02O3薄膜上重复步骤2,重复10次,得到Bi0.96Sr0.04Fe0.91Mn0.07Co0.02O3多铁薄膜。
实施例8
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.90:0.08:0.02(x=0.08,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.2mol/L的Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3.2:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3湿膜匀胶,匀胶转速为3900r/min,匀胶时间为12s,匀胶结束后,在210℃温度下烘烤7min得干膜,再在550℃温度下空气中层层退火21min,得到晶态 Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.9 0Mn0.08Co0.02O3薄膜上重复步骤2,重复11次,得到Bi0.96Sr0.04Fe0.90Mn0.08Co0.02O3多铁薄膜。
实施例9
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.89:0.09:0.02(x=0.09,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.25mol/L的Bi0.96Sr0.04Fe0.8 9Mn0.09Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比3.5:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.89Mn0.09Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.89Mn0.09Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.89Mn0.09Co0.02O3湿膜匀胶,匀胶转速为4000r/min,匀胶时间为10s,匀胶结束后,在220℃温度下烘烤6min得干膜,再在560℃温度下空气中层层退火20min,得到晶态 Bi0.96Sr0.04Fe0.89Mn0.09Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.89Mn0.09Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.8 9Mn0.09Co0.02O3薄膜上重复步骤2,重复12次,得到Bi0.96Sr0.04Fe0.89Mn0.09Co0.02O3多铁薄膜。
实施例10
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O 按照摩尔比为1.01:0.04:0.88:0.10:0.02(x=0.10,Bi过量5%)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.28mol/L的Bi0.96Sr0.04Fe0.8 8Mn0.10Co0.02O3前驱液,其中乙二醇甲醚和醋酸酐的体积比2.9:1;
步骤2:将FTO/glass基片切割成实验所需的尺寸,然后依次用洗洁精、丙酮、无水乙醇超声震荡10min清洗,每次超声后再用去离子水冲洗,最后封存在无水乙醇中备用;将处理好的备用FTO/glass基片用去离子水洗净后用N2吹干,再用紫外光照射仪照射洁净的FTO/glass 基片40min;使其表面达到原子清洁度。采用旋涂法在FTO/glass基片上旋涂Bi0.96Sr0.04Fe0.88Mn0.10Co0.02O3前驱液,制备Bi0.96Sr0.04Fe0.88Mn0.10Co0.02O3湿膜,对 Bi0.96Sr0.04Fe0.88Mn0.10Co0.02O3湿膜匀胶,匀胶转速为3850r/min,匀胶时间为11s,匀胶结束后,在205℃温度下烘烤7.5min得干膜,再在545℃温度下空气中层层退火23min,得到晶态 Bi0.9 6Sr0.04Fe0.88Mn0.10Co0.02O3薄膜;
步骤3,待晶态Bi0.96Sr0.04Fe0.88Mn0.10Co0.02O3薄膜冷却后,在晶态 Bi0.96Sr0.04Fe0.8 8Mn0.10Co0.02O3薄膜上重复步骤2,重复13次,得到Bi0.96Sr0.04Fe0.88Mn0.10Co0.02O3多铁薄膜。
用XRD测试Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的物相组成结构。用SEM测定Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的微观形貌界面接触情况。用P-PMF1114-372铁电分析仪测试Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的铁电性能。用Agilent E4980A精密LCR表测试 Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的介电性能。用Agilent B2900测试Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的漏导电流特性。用SQUID MPMS-XL-7测试Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜室温下的铁磁性能。通过对本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜进行以上测试,结果如图1~6所示。
图1是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的XRD图;其中x=0.00为 Bi0.96Sr0.04Fe0.98Co0.02O3薄膜,是按照本发明的方法,在步骤1中不掺杂Mn制得的(图3、4、5同)。从图1中可知,Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3属于三方结构,空间群为R3c:H,晶胞参数a=b=5.5810,c=13.8757,没有杂质出现。
图2是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的SEM图,其中(a)、(b)、(c)、(d)分别为实施例2-5制得的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的SEM图;可以看出本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜表面平整,晶粒尺寸均匀,Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的厚度约为500nm。
图3是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的介电常数和介电损耗与测试频率的关系图;从图3中可以看出,当测试频率为1kHz时,Bi0.96Sr0.04Fe0.97Mn0.01Co0.0 2O3多铁薄膜的介电常数为310,Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的介电常数为340,Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的介电常数为320,Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的介电常数为366,Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的介电常数为410,而Bi0.96Sr0.04Fe0.98Co0.02O3薄膜的介电常数为240。
图4是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的漏电流密度;从图4中可以看出,当电场为250kV/cm时,实施例1制备的Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的漏电流密度为1.48×10-5A/cm2,实施例2制备的Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的漏电流密度为7.12×10-6A/cm2,实施例3制备的Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的漏电流密度为 4.90×10-6A/cm2,实施例4制备的Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的漏电流密度为 2.03×10-5A/cm2,实施例5制备的Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的漏电流密度为 3.23×10-5A/cm2,而Bi0.96Sr0.04Fe0.98Co0.02O3薄膜的漏电流密度为2.56×10-5A/cm2
图5是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的电滞回线;从图5中可以看出,测试频率为1kHz,最大测试电场为700kV/cm时,Bi0.96Sr0.04Fe0.97Mn0.01Co0.02O3多铁薄膜的剩余极化值为140μC/cm2,矫顽场为360kV/cm;Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的剩余极化值为155μC/cm2,矫顽场为330kV/cm;Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的剩余极化值为102μC/cm2,矫顽场为463kV/cm;Bi0.96Sr0.04Fe0.94Mn0.04Co0.02O3多铁薄膜的剩余极化值为148μC/cm2,矫顽场为290kV/cm;Bi0.96Sr0.04Fe0.93Mn0.05Co0.02O3多铁薄膜的剩余极化值为170μC/cm2,矫顽场为301kV/cm;而Bi0.96Sr0.04Fe0.98Co0.02O3薄膜的剩余极化值为154 μC/cm2,矫顽场为450kV/cm。可以看出在测试频率为1kHz,在最大测试电场小于700kV/cm 时,Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜出现了反铁电性。
图6是本发明制备的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的磁滞回线,从图6中可以看出,室温下,实施例2制备的Bi0.96Sr0.04Fe0.96Mn0.02Co0.02O3多铁薄膜的饱和磁化值为2.85 emu/cm3,剩余磁化值为0.4emu/cm3;实施例3制备的Bi0.96Sr0.04Fe0.95Mn0.03Co0.02O3多铁薄膜的饱和磁化值为2.99emu/cm3,剩余磁化值为0.38emu/cm3;实施例4制备的 Bi0.96Sr0.0 4Fe0.94Mn0.04Co0.02O3多铁薄膜的饱和磁化值为3.8emu/cm3,剩余磁化值为0.5 emu/cm3
本发明提供了一种溶胶-凝胶法制备Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的方法。以硝酸铋、硝酸锶、硝酸铁、醋酸锰、硝酸钴为原料(硝酸铋过量5%),按照摩尔比为1.01:0.04:0.98-x:x:0.02(x=0.01~0.10)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐搅拌90min,得到金属离子总浓度为0.3mol/L的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3前驱液。其中乙二醇甲醚和醋酸酐的体积比3:1。然后在洁净的FTO基片上采用旋涂法和逐层退火的工艺制备致密度高晶粒尺寸均匀的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜。在采用本发明的方法对BiFeO3进行掺杂时,A位Bi元素可以用抗磁性的碱土金属元素Sr(或者Ca、Pb、Ba)来替代,B位Fe元素用过渡族元素Mn和Co共同替代。本发明采用溶胶-凝胶工艺,设备要求简单,适宜在大的表面和形状不规则的表面上制备薄膜,制备的薄膜均匀性较好,且化学组分精确可控。通过离子掺杂,有效地提高了薄膜的铁电和铁磁性能,还有效的降低了薄膜的漏电流密度。
以上所述仅为本发明的一种实施方式,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (5)

1.一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的制备方法,其特征在于,包括以下步骤:
步骤1:将Bi(NO3)3·5H2O、Sr(NO3)2、Fe(NO3)3·9H2O、C6H9MnO6·2H2O、Co(NO3)2·6H2O按摩尔比为1.01:0.04:0.98-x:x:0.02溶于乙二醇甲醚中,x=0.01~0.10,搅拌均匀后再加入醋酸酐,得到Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3前驱液;
步骤2:采用旋涂法在基片上旋涂Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3前驱液,得到Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3湿膜,Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3湿膜经匀胶后在180~220℃下烘烤得干膜,再于520~560℃下在空气中退火,得到晶态Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3薄膜;
步骤3:待晶态Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3薄膜冷却后,在其上重复步骤2,直至达到所需厚度,即得到Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜;
所述步骤2中匀胶后的烘烤时间为6~10min;
所述步骤2中的退火时间为20~25min。
2.根据权利要求1所述的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的制备方法,其特征在于:所述的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3前驱液中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1,Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3前驱液中金属离子的总浓度为0.1~0.3mol/L。
3.根据权利要求1所述的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的制备方法,其特征在于:所述步骤2在进行前,先将基片表面清洗干净,然后在紫外光下照射处理,使基片表面达到原子清洁度。
4.根据权利要求1所述的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的制备方法,其特征在于:所述步骤2中匀胶时的匀胶转速为3600~4000r/min,匀胶时间为10~15s。
5.根据权利要求1所述的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜的制备方法,其特征在于:所述的Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜由10~15层晶态Bi0.96Sr0.04Fe0.98- xMnxCo0.02O3薄膜构成。
CN201610202154.8A 2016-03-31 2016-03-31 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法 Active CN105837199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610202154.8A CN105837199B (zh) 2016-03-31 2016-03-31 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610202154.8A CN105837199B (zh) 2016-03-31 2016-03-31 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105837199A CN105837199A (zh) 2016-08-10
CN105837199B true CN105837199B (zh) 2019-01-25

Family

ID=56596511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610202154.8A Active CN105837199B (zh) 2016-03-31 2016-03-31 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN105837199B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111126B (zh) * 2018-09-18 2021-10-29 陕西科技大学 一种Mn掺杂调控电阻开关效应的复合薄膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476832A (zh) * 2014-12-11 2015-04-01 陕西科技大学 一种叠层状BiFe0.97-xMn0.03TMxO3/CoFe2O4多铁性复合膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044018A (zh) * 2012-11-28 2013-04-17 陕西科技大学 一种溶胶-凝胶法制备Bi0.85Sm0.15Fe1‐xCrxO3 铁电薄膜的方法
CN104445996B (zh) * 2014-12-11 2017-04-26 陕西科技大学 一种多铁性Bi0.96‑xSr0.04RExFe0.94Mn0.04Cr0.02O3‑NiFe2O4 复合膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476832A (zh) * 2014-12-11 2015-04-01 陕西科技大学 一种叠层状BiFe0.97-xMn0.03TMxO3/CoFe2O4多铁性复合膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Enhanced multiferroic and dielectric properties of Sr2+-doped BiFe0.94(Mn0.04Cr0.02)O3 thin films;Guoqiang Tan et al.;《J Mater Sci: Mater Electron》;20140723;第25卷;第4363-4368页

Also Published As

Publication number Publication date
CN105837199A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105837196A (zh) 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法
CN105271798B (zh) 一种高铁磁性能和铁电性能的Bi0.9Er0.1Fe1‑xCoxO3薄膜及其制备方法
CN103073064A (zh) 溶胶凝胶法制备Gd和Co共掺杂的高剩余极化强度的BiFeO3薄膜的方法
CN104445996A (zh) 一种多铁性Bi0.96-xSr0.04RExFe0.94Mn0.04Cr0.02O3-NiFe2O4 复合膜及其制备方法
CN104478234A (zh) 一种Bi0.90Er0.10Fe0.96Co0.02Mn0.02O3/Mn1-xCoxFe2O4 复合膜及其制备方法
CN107032631B (zh) 一种GdSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN107117830B (zh) 一种LaSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN104478235A (zh) 一种多铁性Bi0.98-xSr0.02RExFe0.97Mn0.03O3-CuFe2O4 复合膜及其制备方法
CN103723770A (zh) 一种高介电常数的Bi0.92Ho0.08Fe1-XMnXO3 铁电薄膜及其制备方法
CN103708562A (zh) 一种高剩余极化强度的Bi0.90Ho0.10Fe1-XMnXO3 铁电薄膜及其制备方法
CN105837199B (zh) 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法
CN105906221B (zh) 一种多铁性Bi0.83Pr0.15Sr0.02Fe0.97-xMn0.03CuxO3-CuFe2O4复合膜及其制备方法
CN104478228B (zh) 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法
CN107082576B (zh) 一种HoSrMnNi共掺铁酸铋多铁薄膜及其制备方法
CN105859152B (zh) 一种高磁性Bi0.96Sr0.04FeO3基/CoFe2O4复合薄膜及其制备方法
CN104478229A (zh) 一种Bi1-xRExFe0.96Co0.02Mn0.02O3铁电薄膜及其制备方法
CN103739019B (zh) 一种高剩余极化强度的BiFe1-xMnxO3铁电薄膜及其制备方法
CN104478230A (zh) 一种多铁性Bi0.92-xHo0.08AExFe0.97Mn0.03O3 薄膜及其制备方法
CN103663564B (zh) 一种高介电常数的Bi0.90Dy0.10Fe1-XMnXO3铁电薄膜及其制备方法
CN103601249B (zh) 一种高剩余极化强度和高介电常数BiFe0.96-yMn0.04CryO3 铁电薄膜及其制备方法
CN107140848B (zh) 一种GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107140849B (zh) 一种LaSrMnCo/GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107021649B (zh) 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107098395B (zh) 一种HoSrMnZn共掺三方铁酸铋超晶格薄膜及其制备方法
CN107245704B (zh) 一种HoSrMnNi/HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant