CN106587995A - 一种磁场低温热处理制备多铁性复合陶瓷材料的方法 - Google Patents

一种磁场低温热处理制备多铁性复合陶瓷材料的方法 Download PDF

Info

Publication number
CN106587995A
CN106587995A CN201611249654.3A CN201611249654A CN106587995A CN 106587995 A CN106587995 A CN 106587995A CN 201611249654 A CN201611249654 A CN 201611249654A CN 106587995 A CN106587995 A CN 106587995A
Authority
CN
China
Prior art keywords
magnetic field
heat treatment
composite ceramic
batio
bafe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611249654.3A
Other languages
English (en)
Other versions
CN106587995B (zh
Inventor
蒲永平
董子靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaozhou Fengxi White Tower Porcelain No.5 Factory
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201611249654.3A priority Critical patent/CN106587995B/zh
Publication of CN106587995A publication Critical patent/CN106587995A/zh
Application granted granted Critical
Publication of CN106587995B publication Critical patent/CN106587995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明一种磁场低温热处理制备多铁性复合陶瓷材料的方法,该方法利用外加磁场来热处理BaTiO3‑BaFe12O19复合陶瓷,从而改善其多铁性能,包括步骤:利用水热或微波水热方法制备好纳米BaTiO3和BaFe12O19粉体,将二者按照(1‑x)BaTiO3‑xBaFe12O19的比例混合均匀、制备得到BaTiO3‑BaFe12O19坯体样品A;把坯体样品A至于微波烧结炉中烧结、随炉冷却后得到BaTiO3‑BaFe12O19复合陶瓷B;将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中进行低温热处理,在磁通线圈电流10~14A、温度400~450℃下保温60~90min后得到具有优异多铁性的复合陶瓷合材料。本发明在陶瓷的制备过程中,仅添加了一步低温的磁场热处理工艺,就使得材料的最大磁化强度提高约80%,最大极化强度提高约11%,不仅制备成本低、操作简单、磁场热处理后无需快速淬火、工艺环保无污染。

Description

一种磁场低温热处理制备多铁性复合陶瓷材料的方法
技术领域:
本发明属于信息功能材料技术领域,具体涉及一种磁场低温热处理制备多铁性复合陶瓷材料的方法。
背景技术:
多铁性材料(multiferroics)是指材料中包含两种及两种以上铁的基本性能,这些铁的基本性能包括铁电性(反铁电性),铁磁性(反铁磁性、亚铁磁性)和铁弹性。在实际应用中,由于铁电极化需要空的3d轨道,而铁磁性需要般充满的3d电子轨道,因此一种材料同时具有铁电性和铁磁性是非常困难的。为了得到具有优异性能的多铁性材料,合成多铁性复合材料是一种有效的方法。多铁性复合材料同时具有铁电和铁磁等多种性能,这种材料的物理性能往往由微观中电畴和磁畴结构和反转决定。作为一种重要的电子陶瓷材料,BaTiO3-BaFe12O19多铁性复合材料作为一种重要的电子陶瓷材料广泛应用于出传感器、多态储器、铁电压电器件等。为了能够获得性能优异的多铁性复合材料,研究学者在材料制备过程中采用了许多方法去优化材料性能。中国专利200810112290.3“一种多铁性材料的强磁场制备方法”和专利201310136091.7“一种Bi2Fe4O9多铁陶瓷材料及其制备方法”公开了在强磁场下热处理BiFeO3陶瓷的工艺方法,两种方法均通过外加磁场的工艺制备出同时具有高宏观磁矩与饱和极化强度、磁电耦合系数的多铁性陶瓷。然而,这两种工艺在强磁场处理过程中有的需要快速淬火、热处理温度过高、时间过长(400~880℃,1~6h),有的则需要再增加一步高温退火的过程(650~850℃)。而这些过程如果控制不当,都会引起晶粒尺寸的增加,进而影响材料的铁电、铁磁性能。
发明内容:
本发明的目的在于克服现有技术中的不足,提供了一种磁场低温热处理制备多铁性复合陶瓷材料的方法,以同时提高BaTiO3-BaFe12O19复合材料的铁电性、铁磁性,该方法操作简单,热处理温度低、制备的复合陶瓷晶粒尺寸小、陶瓷片密度较高、多铁性能优异。
为达到上述目的,本发明采用如下技术方案来实现:
一种磁场低温热处理制备多铁性复合陶瓷材料的方法,包括以下步骤:
1)将采用水热或微波水热方法制备的纳米BaTiO3和BaFe12O19粉体按照(1-x)BaTiO3-xBaFe12O19的比例混合均匀,得到BaTiO3-BaFe12O19坯体样品A,其中x=0.1~0.4;
2)将坯体样品A压成圆片状;
3)成型后的圆片状坯体样品A置于微波烧结炉中,在1060~1100℃烧结45~180s,得到BaTiO3-BaFe12O19复合陶瓷B;
4)将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中进行低温热处理,随炉冷却后得到具有优异多铁性的复合陶瓷材料。
本发明进一步的改进在于,步骤2)中,利用压机在120~150MPa下,将坯体样品A压成圆片状。
本发明进一步的改进在于,步骤4)中,对所得BaTiO3-BaFe12O19复合陶瓷B进行低温磁场处理,其处理制度为在室温即开始通入氮气气氛,且氮气流量为0.04~0.07m3/min。
本发明进一步的改进在于,步骤4)中,对所得BaTiO3-BaFe12O19复合陶瓷B进行低温磁场处理,其处理制度为在磁通线圈电流10~14A、以4~8℃/min的速度从室温升温至400~450℃并保温60~90min,之后随炉冷却至室温。
本发明具有如下的有益效果:
本发明提供的一种磁场低温热处理制备多铁性复合陶瓷材料的方法,当材料处于外加磁场中时,磁场作用力pm会作用在两个相邻晶粒的晶界处,如下式所示:
其中χ1和是χ2晶粒1、2的极化率,ω1和ω2是两个晶粒间的磁场自由能密度,μ0是磁常数。根据式(1)所示,外加磁场对铁电畴的畴壁有很大影响[L.H.Yin,B.C.Zhao,J.Fang,R.R.Zhang,X.W.Tang,W.H.Song,J.M.Dai,Y.P.Sun,Improved leakage current andferromagnetic properties in magnetic field annealed BiFeO3-based ceramics,JSolid State Chem.194(2012)194–198.]。因此对多铁性材料进行不同的外加磁场热处理,就会得到不同数量和种类的铁电畴壁,从而改善材料的铁电性。另一方面,磁畴的畴壁和晶界也会相互作用[S.Huang,Y.Qiu,S.L.Yuan,Enhanced magnetization and electricpolarization in Bi2Fe4O9ceramics by magneticfield pre-sintering,MaterLett.160(2015)323–326.]所以外加磁场热处理同样会对材料的铁磁性有影响。综上所述,合理的调控磁场热处理工艺,会对材料的多铁性能有一定改善。
概括来说,本发明具有以下几点优点:
1、本发明提供的制备方法,低温磁场热处理后无需快速淬火或者二次退火,避免了在磁场热处理过程中由于热处理温度过高、时间过长或者二次高温退火所引起的晶粒尺寸的增加,进而优化了材料的铁电、铁磁性能。
2、陶瓷制备过程中采用微波烧结结合短时间内磁场低温热处理工艺,使得制备成本较低、工艺控制简单、反应周期很短,在较低温度下烧结即得均匀致密的陶瓷材料,大幅提高了材料的多铁性能,复合材料最大磁化强度提高约80%,最大极化强度提高约11%。
附图说明:
图1是陶瓷样品在磁场低温热处理时的示意图。
图2是本发明在实施例1-4条件下所制备的BaTiO3-BaFe12O19复合陶瓷的XRD图谱。
图3为本发明在实施例4条件下所制备0.7BaTiO3-0.3BaFe12O19复合陶瓷的扫描电镜(SEM)照片。
图4为本发明在实施例4条件下所制备0.7BaTiO3-0.3BaFe12O19复合陶瓷样品(B)和未进行磁场热处理的0.7BaTiO3-0.3BaFe12O19复合陶瓷(B0)的P-E loop对比图。
图5为本发明在实施例4条件下所制备0.7BaTiO3-0.3BaFe12O19复合陶瓷样品(B)和未进行磁场热处理的0.7BaTiO3-0.3BaFe12O19复合陶瓷(B0)的磁滞回线对比图。
具体实施方式:
下面结合附图和实施例对本发明作进一步说明。
实施例1:
1)将采用水热或微波水热方法制备的纳米BaTiO3和BaFe12O19粉体按照0.9BaTiO3-0.1BaFe12O19的比例混合均匀,得到0.7BaTiO3-0.3BaFe12O19坯体样品A;
2)利用压机在150MPa下,把坯体样品A压成圆片状;
3)成型后的圆片坯体样品A置于微波烧结炉中,在1090℃烧结100s,得到0.9BaTiO3-0.1BaFe12O19复合陶瓷B;
4)将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中(如图1所示)进行低温热处理,在室温即开始通入氮气气氛,氮气流量为0.07m3/min。控制磁通线圈电流为10.5A、以4℃/min的速度从室温升温至450℃并保温90min,随炉冷却后得到具有优异多铁性的复合陶瓷合材料。
实施例2:
1)将采用水热或微波水热方法制备的纳米BaTiO3和BaFe12O19粉体按照0.8BaTiO3-0.2BaFe12O19的比例混合均匀,得到0.7BaTiO3-0.3BaFe12O19坯体样品A;
2)利用压机在140MPa下,把坯体样品A压成圆片状;
3)成型后的圆片坯体样品A置于微波烧结炉中,在1080℃烧结120s,得到0.8BaTiO3-0.2BaFe12O19复合陶瓷B;
4)将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中(如图1所示)进行低温热处理,在室温即开始通入氮气气氛,氮气流量为0.06m3/min。控制磁通线圈电流为12A、以5℃/min的速度从室温升温至430℃并保温80min,随炉冷却后得到具有优异多铁性的复合陶瓷合材料。
实施例3:
1)将采用水热或微波水热方法制备的纳米BaTiO3和BaFe12O19粉体按照0.6BaTiO3-0.4BaFe12O19的比例混合均匀,得到0.7BaTiO3-0.3BaFe12O19坯体样品A;
2)利用压机在130MPa下,把坯体样品A压成圆片状;
3)成型后的圆片坯体样品A置于微波烧结炉中,在1060℃烧结180s,得到0.6BaTiO3-0.4BaFe12O19复合陶瓷B;
4)将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中(如图1所示)进行低温热处理,在室温即开始通入氮气气氛,氮气流量为0.04m3/min。控制磁通线圈电流为14A、以7℃/min的速度从室温升温至400℃并保温60min,随炉冷却后得到具有优异多铁性的复合陶瓷合材料。
实施例4:
1)将采用水热或微波水热方法制备的纳米BaTiO3和BaFe12O19粉体按照0.7BaTiO3-0.3BaFe12O19的比例混合均匀,得到0.7BaTiO3-0.3BaFe12O19坯体样品A;
2)利用压机在120MPa下,把坯体样品A压成圆片状;
3)成型后的圆片坯体样品A置于微波烧结炉中,在1100℃烧结45s,得到0.7BaTiO3-0.3BaFe12O19复合陶瓷B;
4)将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中(如图1所示)进行低温热处理,在室温即开始通入氮气气氛,氮气流量为0.05m3/min。控制磁通线圈电流为13.5A、以8℃/min的速度从室温升温至440℃并保温70min,随炉冷却后得到具有优异多铁性的复合陶瓷合材料。
图1是陶瓷样品在磁场低温热处理时的示意图。图中可以看出,当给炉膛内的磁通线圈通上电流I时,炉膛内就会产生自下而上的磁场,样品垂直放置于磁场方向进行低温热处理,如图所示。
图2是本发明在实施例1-4条件下所制备的BaTiO3-BaFe12O19复合陶瓷的XRD图谱。从图中可以看出,复合陶瓷的主晶相为典型钙钛矿结构的BaTiO3和六角磁铅石结构的BaFe12O19。XRD衍射图谱表明BaTiO3-BaFe12O19复合陶瓷两相能够很好共存,衍射峰强,狭窄尖锐,衍射峰的位置与BaTiO3和BaFe12O19的标准卡片一致,晶粒结晶度高。
图3为本发明在实施例4条件下所制备0.7BaTiO3-0.3BaFe12O19复合陶瓷的扫描电镜(SEM)照片。由图3可以看出,制得的复合陶瓷晶粒尺寸分布均匀,陶瓷致密度较高、无明显气孔。
图4为本发明在实施例4条件下所制备0.7BaTiO3-0.3BaFe12O19复合陶瓷样品(B)和未进行磁场热处理的0.7BaTiO3-0.3BaFe12O19复合陶瓷(B0)的P-E loop对比图。从图中可以看出样品均表现出良好的铁电性,但采用本发明工艺制备的复合陶瓷样品具有更优异的铁电性,其最大极化强度由7.3mC/cm2增大到8.1mC/cm2,提高了约11%。
图5为本发明在实施例4条件下所制备0.7BaTiO3-0.3BaFe12O19复合陶瓷样品(B)和未进行磁场热处理的0.7BaTiO3-0.3BaFe12O19复合陶瓷(B0)的磁滞回线对比图。从图中可以明显看出采用本发明工艺制备的复合陶瓷样品具有更大的饱和磁化强度和剩余磁化强度,B样品的最大磁化强度(40.4emu/g)较B0样品(22.5emu/g)提高了将近80%。
以上所述仅为本发明的一部分实施方式,不是全部或唯一的实施方式,本领域通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (4)

1.一种磁场低温热处理制备多铁性复合陶瓷材料的方法,其特征在于,包括以下步骤:
1)将采用水热或微波水热方法制备的纳米BaTiO3和BaFe12O19粉体按照(1-x)BaTiO3-xBaFe12O19的比例混合均匀,得到BaTiO3-BaFe12O19坯体样品A,其中x=0.1~0.4;
2)将坯体样品A压成圆片状;
3)成型后的圆片状坯体样品A置于微波烧结炉中,在1060~1100℃烧结45~180s,得到BaTiO3-BaFe12O19复合陶瓷B;
4)将所得的复合陶瓷B置于氮气气氛的磁场烧结炉中进行低温热处理,随炉冷却后得到具有优异多铁性的复合陶瓷材料。
2.根据权利要求1所述的方法,其特征在于,步骤2)中,利用压机在120~150MPa下,将坯体样品A压成圆片状。
3.根据权利要求1所述的方法,其特征在于,步骤4)中,对所得BaTiO3-BaFe12O19复合陶瓷B进行低温磁场处理,其处理制度为在室温即开始通入氮气气氛,且氮气流量为0.04~0.07m3/min。
4.根据权利要求1所述的方法,其特征在于,步骤4)中,对所得BaTiO3-BaFe12O19复合陶瓷B进行低温磁场处理,其处理制度为在磁通线圈电流10~14A、以4~8℃/min的速度从室温升温至400~450℃并保温60~90min,之后随炉冷却至室温。
CN201611249654.3A 2016-12-29 2016-12-29 一种磁场低温热处理制备多铁性复合陶瓷材料的方法 Active CN106587995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611249654.3A CN106587995B (zh) 2016-12-29 2016-12-29 一种磁场低温热处理制备多铁性复合陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611249654.3A CN106587995B (zh) 2016-12-29 2016-12-29 一种磁场低温热处理制备多铁性复合陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN106587995A true CN106587995A (zh) 2017-04-26
CN106587995B CN106587995B (zh) 2019-12-03

Family

ID=58604171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611249654.3A Active CN106587995B (zh) 2016-12-29 2016-12-29 一种磁场低温热处理制备多铁性复合陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN106587995B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023313A (zh) * 2018-09-20 2018-12-18 山东建筑大学 一种提高BiFeO3薄膜磁电耦合效应的退火方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279841A (zh) * 2008-05-22 2008-10-08 中国科学院电工研究所 一种多铁性材料的强磁场制备方法
CN101624283A (zh) * 2008-07-07 2010-01-13 电子科技大学 一种BaFe12O19与BaTiO3多层纳米复合薄膜/粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279841A (zh) * 2008-05-22 2008-10-08 中国科学院电工研究所 一种多铁性材料的强磁场制备方法
CN101624283A (zh) * 2008-07-07 2010-01-13 电子科技大学 一种BaFe12O19与BaTiO3多层纳米复合薄膜/粉体的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZIJING DONG ET AL.: "Oxygen-vacancy-related conduct behavior and ferromagnetism of 0.7BaTiO3-0.3BaFe12O19 multiferroic composites", 《MATERIALS LETTERS》 *
宋月清等: "《人造金刚石工具手册》", 31 January 2014, 冶金工业出版社 *
罗道源: "BaFe12O19、BaTiO3及其复合体系的制备与微波性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ι辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023313A (zh) * 2018-09-20 2018-12-18 山东建筑大学 一种提高BiFeO3薄膜磁电耦合效应的退火方法
CN109023313B (zh) * 2018-09-20 2020-06-19 山东建筑大学 一种提高BiFeO3薄膜磁电耦合效应的退火方法

Also Published As

Publication number Publication date
CN106587995B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Shrotri et al. Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method
Kumar et al. Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique
Iqbal et al. Enhancement of electrical resistivity of Sr0. 5Ba0. 5Fe12O19 nanomaterials by doping with lanthanum and nickel
CN104817319B (zh) 磁性料粉
Bai et al. Enhanced ferroelectricity and magnetism of quenched (1− x) BiFeO 3-x BaTiO 3 ceramics
CN106565228B (zh) 一种铕、锆共掺铁酸铋多铁陶瓷及其制备方法
CN105601265A (zh) 一种m型锶铁氧体磁性材料及其制备方法
Nlebedim et al. Influence of vacuum sintering on microstructure and magnetic properties of magnetostrictive cobalt ferrite
Shisode et al. Investigations of magnetic and ferroelectric properties of multiferroic Sr-doped bismuth ferrite
CN108503349A (zh) 一种耐大电流低温烧结NiCuZn铁氧体材料及其制备方法
Liu et al. Large remanent polarization and enhanced magnetic properties in non-quenched Bi (Fe, Ga) O3-(Ba, Ca)(Zr, Ti) O3 multiferroic ceramics
CN106630992B (zh) 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法
CN103725951A (zh) 一种微波烧结制备纳米晶软磁材料的方法
Yuping et al. Effect of K2CO3 addition on the microstructure and magnetic properties of Sr-Ferrites
CN104591721B (zh) 单相多铁性m‑型铅铁氧体陶瓷材料及其制备方法
CN106587995B (zh) 一种磁场低温热处理制备多铁性复合陶瓷材料的方法
CN104446449B (zh) 一种BIT‑Fe多铁性铁电体陶瓷的制备方法
Date et al. Structural, magnetic and Mössbauer studies on nickel‐zinc ferrites synthesized via a precipitation route
CN109206131A (zh) 一种稀土掺杂的m型锶铁氧体磁性材料及其制备方法
CN113185267A (zh) 一种钴掺杂钙钛矿陶瓷及其制备方法
CN107032776A (zh) 单相多铁性m‑型锶铁氧体陶瓷及其制备方法
Jena et al. Evidence for dielectric suppression in non-magnetic modified multiferroic bismuth ferrite
CN106542826A (zh) 一种磁性碳化硅材料及其制备方法
Zahi et al. Preparation of Ni–Zn–Cu ferrite particles by sol–gel technique
CN106699168A (zh) 一种多铁性复合陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240207

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Wanzhida Technology Co.,Ltd.

Country or region after: China

Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240515

Address after: No. 27, Baitashui Circuit, Fengxi District, Chaozhou City, Guangdong Province, 521000 (Shabadi)

Patentee after: Chaozhou Fengxi White Tower Porcelain No.5 Factory

Country or region after: China

Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Wanzhida Technology Co.,Ltd.

Country or region before: China