CN109019533A - 一种双金属氮化物Co3W3N及其制备方法与应用 - Google Patents

一种双金属氮化物Co3W3N及其制备方法与应用 Download PDF

Info

Publication number
CN109019533A
CN109019533A CN201810789563.1A CN201810789563A CN109019533A CN 109019533 A CN109019533 A CN 109019533A CN 201810789563 A CN201810789563 A CN 201810789563A CN 109019533 A CN109019533 A CN 109019533A
Authority
CN
China
Prior art keywords
cobalt
nitride
bimetallic nitride
salt
bimetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810789563.1A
Other languages
English (en)
Other versions
CN109019533B (zh
Inventor
何建平
郭虎
姜澄
王涛
宋力
范晓莉
龚浩
夏伟
黄现礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810789563.1A priority Critical patent/CN109019533B/zh
Publication of CN109019533A publication Critical patent/CN109019533A/zh
Application granted granted Critical
Publication of CN109019533B publication Critical patent/CN109019533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种双金属氮化物Co3W3N及其制备方法与应用,该Co3W3N通过将等摩尔比的钴盐和钨盐采用水热反应后,氮化合成制得;其应用于电化学催化领域。本发明的双金属氮化物Co3W3N为金属间充型化合物,兼具共价化合物、离子晶体和过渡金属的性质,不仅氧还原催化活性、氮还原催化活性高,催化活性接近商业Pt/C,且物相纯,稳定性强,耐甲醇性能优;同时其制法简单,有效、可控,操作方便,成本低廉,产量大,能够有效避免双金属氮化物受热分解以形成金属单质和金属氮化物的混合材料,从而导致循环稳定性差,颗粒容易团聚。

Description

一种双金属氮化物Co3W3N及其制备方法与应用
技术领域
本发明属于双金属氮化物领域,尤其涉及一种双金属氮化物Co3W3N及其制备方法与应用。
背景技术
随着全球人口的持续增长,能源、环境和粮食危机日益严重,有效地利用能源和寻找新的可再生能源尤为重要。燃油汽车是目前大气污染的主要途径之一,而工业合成氨所消耗的能源又占全球总能耗的4-5%,因此需要寻求新的技术来缓解上述问题。目前具有应用前景的技术有燃料电池-氧还原(ORR)和电催化合成氨(NRR)等。然而上述的催化反应主要于以铂系为主的贵金属催化剂,铂系为主的贵金属催化剂昂贵的价格限制了上述技术的进一步发展,因此寻求一种具有高催化活性和低成本的阴极催化剂来促进ORR、NRR技术商业化。
过渡金属氮化物为金属间充型化合物,兼具共价化合物、离子晶体和过渡金属的性质[Catalysis today,2004,93:819-826]。过渡金属氮化物导电性好、耐烧结、抗腐蚀,具有成为理想催化材料的物理性能,其表面性质和催化性能类似于Pt和Rh等贵金属元素,在氨的合成与分解、加氢脱硫(HDS)、加氢脱氮(HDN)等涉氢反应中都表现了良好的催化性能,被誉为“类铂催化剂”[J.Mater.Chem.A,2017,5,18967]。此外,过渡金属氮化物具有优异的氧还原性能,Zhong等制备的Mo2N/C复合材料在0.5M H2SO4中的电子转移数为3.8,具有较高的催化选择性[Electrochem.Commun.,2006,8(5):707-712.]。目前采用的过渡金属氮化物主要为单金属氮化物,然而,相比于贵金属系的催化活性,单金属氮化物的催化活性活性较差。
因此,现亟需一种催化活性高且成本低的过渡金属氮化物材料。
发明内容
发明目的:本发明的第一目的是提供一种催化活性高、稳定性强且物相纯的双金属氮化物Co3W3N;
本发明的第二目的是提供该双金属氮化物Co3W3N的制备方法;
本发明的第三目的是提供该双金属氮化物的应用。
技术方案:本发明的双金属氮化物Co3W3N,其通过将等摩尔比的钴盐和钨盐采用水热反应后,氮化合成制得。
本发明通过水热再氮化的方法合成双金属氮化物Co3W3N,工艺简单,能够有效避免双金属氮化物受热分解以形成金属单质和金属氮化物的混合材料,从而导致循环稳定性差,颗粒容易团聚;且制备的双金属氮化物Co3W3N催化活性高,物相纯,稳定性强,耐甲醇性能优。优选的,钴盐可为氯化钴、硫酸钴、硝酸钴或乙酰丙酮钴。钨盐可为钨酸钠、偏钨酸铵或六氯化钨。
本发明制备双金属氮化物Co3W3N的方法,包括如下步骤:
(1)将等摩尔比的钴盐和钨盐分别配制成钴盐水溶液和钨盐水溶液,将钴盐水溶液缓慢滴加于钨盐水溶液中搅拌混匀,在120~200℃条件下反应8~24h后,过滤蒸干制得CoWO4
(2)将CoWO4预热处理后,与氨气充分混合并升温至600~1000℃,保温反应1~5h,制得双金属氮化物Co3W3N。
进一步说,步骤(1)中,配制的钴盐水溶液中钴盐的浓度为0.1~2mol/L。钨盐水溶液中钨盐的浓度为0.1~2mol/L。
更进一步说,步骤(2)中预热处理的温度可为150~300℃;预热处理的时间可为1~4h;升温速率可为1~10℃/min。
本发明的双金属氮化物Co3W3N应用于电化学催化。
有益效果:与现有技术相比,本发明的显著优点为:该双金属氮化物Co3W3N为金属间充型化合物,兼具共价化合物、离子晶体和过渡金属的性质,不仅氧还原催化活性、氮还原催化活性高,催化活性接近商业Pt/C,且物相纯,稳定性强,耐甲醇性能优;同时其制法简单,有效、可控,操作方便,成本低廉,产量大,能够有效避免双金属氮化物受热分解以形成金属单质和金属氮化物的混合材料,从而导致循环稳定性差,颗粒容易团聚。
附图说明
图1为本发明预热处理后的双过渡金属氧化物CoWO4的XRD图;
图2为本发明Co3W3N的电镜图;
图3是本发明双金属氮化物Co3W3N的XRD图;
图4是本发明双金属氮化物Co3W3N的耐甲醇测试对比图;
图5是本发明双金属氮化物Co3W3N在碱性条件下不同转速的氧还原线性扫描图;
图6是本发明双金属氮化物Co3W3N的10000次的循环前后性能对比图;
图7是本发明双金属氮化物Co3W3N在酸性条件下不同电位的氮还原性能柱状图;
图8是本发明双金属氮化物Co3W3N在酸性条件下不同电位的氮还原法拉第效率柱状图;
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步详细说明。
实施例1
(1)将等摩尔比例的六氯化钨和氯化钴分别配制成六氯化钨水溶液和氯化钴水溶液,后将氯化钴水溶液缓慢滴加于六氯化钨水溶液中,充分搅拌2h,制得混合溶液;其中,六氯化钨水溶液中六氯化钨的浓度为1mol/L,氯化钴水溶液中氯化钴的浓度为1mol/L;
(2)将上述混合溶液转移至反应釜中,在120℃条件下水热反应24h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在150℃、空气氛围下预热处理2h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至600℃,保温热处理1h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为1℃/min。
将该实施例制备的CoWO4和Co3W3N进行检测,获得的结果如图1至图4所示。通过图1可知,前驱体CoWO4为纯相的CoWO4,即只有在制备出纯相的前驱体后,再进行氮化处理,从而能够有效避免双金属氮化物无法顺利生成或者生成的氮化物的物相不纯,含有杂质等问题。且通过图2及图3可知,本发明制备的Co3W3N为纯相,不含其它杂质金属。通过图4可知,该实施例制备的双金属氮化物Co3W3N的耐甲醇性能优越。
实施例2
(1)将等摩尔比例的六氯化钨和硫酸钴分别配制成六氯化钨水溶液和硫酸钴水溶液,后将硫酸钴水溶液缓慢滴加于六氯化钨水溶液中,充分搅拌2h,制得混合溶液;其中,六氯化钨水溶液中六氯化钨的浓度为0.5mol/L,硫酸钴水溶液中硫酸钴的浓度为0.5mol/L;
(2)将上述混合溶液转移至反应釜中,在160℃下水热反应12h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在160℃、空气氛围下预热处理2h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至650℃,保温热处理3h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为5℃/min。
实施例3
(1)将等摩尔比例的钨酸钠和乙酰丙酮钴分别配制成钨酸钠水溶液和乙酰丙酮钴水溶液,后将乙酰丙酮钴水溶液缓慢滴加于钨酸钠水溶液中,充分搅拌2h,制得混合溶液;其中,钨酸钠溶液中钨酸钠的浓度为1.5mol/L,乙酰丙酮钴水溶液中乙酰丙酮钴的浓度为1.5mol/L;
(2)将上述混合溶液转移至反应釜中,在140℃条件下水热反应16h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在180℃、空气氛围下预热处理2h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至700℃,保温热处理5h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为1℃/min。
实施例4
(1)将等摩尔比例的偏钨酸铵和乙酰丙酮钴分别配制成偏钨酸铵水溶液和乙酰丙酮钴水溶液,后将乙酰丙酮钴水溶液缓慢滴加于偏钨酸铵水溶液中,充分搅拌2h,制得混合溶液;其中,偏钨酸铵水溶液中偏钨酸铵的浓度为0.1mol/L,乙酰丙酮钴水溶液中乙酰丙酮钴的浓度为0.1mol/L;
(2)将上述混合溶液转移至反应釜中,在180℃条件下水热反应8h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在200℃、空气氛围下预热处理2h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至750℃,保温热处理2h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为5℃/min。
实施例5
(1)将等摩尔比例的钨酸钠和硝酸钴分别配制成钨酸钠水溶液和硝酸钴水溶液,后将硝酸钴水溶液缓慢滴加于钨酸钠水溶液中,充分搅拌2h,制得混合溶液;其中,钨酸钠溶液中钨酸钠的浓度为2mol/L,硝酸钴水溶液中硝酸钴的浓度为2mol/L;
(2)将上述混合溶液转移至反应釜中,在160℃条件下水热反应12h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在300℃、空气氛围下预热处理1h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至800℃,保温热处理2h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为1℃/min。
实施例6
(1)将等摩尔比例的偏钨酸铵和硝酸钴分别配制成偏钨酸铵水溶液和硝酸钴水溶液,后将硝酸钴水溶液缓慢滴加于偏钨酸铵水溶液中,充分搅拌2h,制得混合溶液;其中,偏钨酸铵水溶液中偏钨酸铵的浓度为1.8mol/L,硝酸钴水溶液中硝酸钴的浓度为1.8mol/L;
(2)将上述混合溶液转移至反应釜中,在180℃条件下水热反应18h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在200℃、空气氛围下预热处理2h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至720℃,保温热处理3h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为10℃/min。
实施例7
(1)将等摩尔比例的偏钨酸铵和硝酸钴分别配制成偏钨酸铵水溶液和硝酸钴水溶液,后将硝酸钴水溶液缓慢滴加于偏钨酸铵水溶液中,充分搅拌2h,制得混合溶液;其中,偏钨酸铵水溶液中偏钨酸铵的浓度为1.8mol/L,硝酸钴水溶液中硝酸钴的浓度为1.8mol/L;
(2)将上述混合溶液转移至反应釜中,在200℃条件下水热反应8h后,水洗过滤、室温蒸干,制得双过渡金属氧化物CoWO4,随后将该CoWO4在300℃、空气氛围下预热处理4h;
(3)将上述预热处理后的CoWO4,置于氨气气氛管式炉中,随炉升温至1000℃,保温热处理1h,最后随炉冷却至室温,制得双过渡金属氮化物;其中,升温速率为10℃/min。
Co3W3N的应用:
本发明制备的纯相Co3W3N应用于电化学催化,并将实施例1制备的Co3W3N分别进行氧还原催化活性和氨还原催化活性性能测试,具体如下所示:
性能检测1:氧还原催化活性
氧还原曲线在美国PINE公司MSR型号的旋转圆盘电极上测得。涂覆有催化剂材料的玻碳电极为工作电极,以饱和甘汞电极为参比电极,以铂丝电极为对电极,在饱和氧气气氛下,于0.1mol L-1KOH溶液中测试复合材料的氧还原性能,扫描速率为5mV s-1,获得的结果如图5和图6所示。
通过图5可知,本发明的Co3W3N的氧还原起始电位为-0.10V,电位为-0.8V时的电流密度是4.27mA cm-2,通过K-L曲线计算转移电子数,Co3W3N催化氧还原反应的转移电子数为3.79,性能十分接近于商业Pt/C。且通过图6可知,在经过10000次的循环后,材料的性能衰减较小,该双金属氮化物具有优越的循环稳定性。
性能检测2:氨还原催化活性
将实施例1制备的双金属氮化物进行氨还原催化活性检测,获得的结果如图7及图8所示。该检测中Co3W3N的电催化合成氨性能以产生的氨的量来确定,氨的定量检测按国家环境保护标准(HJ 535-2009)来定量检测。通过图7和图8可知,Co3W3N在0.6V、0.7V、0.8V三种电位下测试时以0.6V时催化效率最高,产氨效率为1.717ug h-1cm-2,此时的电催化法拉第效率为0.4%。由此可知,其具有优良的氮还原催化活性和较好的稳定性。
通过上述实施例可知,本发明的双金属氮化物Co3W3N不仅氧还原催化活性、氨还原催化活性高,催化活性接近商业Pt/C,且物相纯,稳定性强,耐甲醇性能优。

Claims (10)

1.一种双金属氮化物Co3W3N,其特征在于:该Co3W3N通过将等摩尔比的钴盐和钨盐采用水热反应后,氮化合成制得。
2.根据权利要求1所述的双金属氮化物Co3W3N,其特征在于:所述钴盐为氯化钴、硫酸钴、硝酸钴或乙酰丙酮钴。
3.根据权利要求1所述的双金属氮化物Co3W3N,其特征在于:所述钨盐为钨酸钠、偏钨酸铵或六氯化钨。
4.一种制备权利要求1所述的双金属氮化物Co3W3N的方法,其特征在于包括如下步骤:
(1)将等摩尔比的钴盐和钨盐分别配制成钴盐水溶液和钨盐水溶液,随后将钴盐水溶液缓慢滴加于钨盐水溶液中搅拌混匀,在120~200℃条件下水热反应8~24h后,过滤蒸干制得CoWO4
(2)将CoWO4预热处理后,与氨气充分混合并升温至600~1000℃,保温反应1~5h,制得双金属氮化物Co3W3N。
5.根据权利要求4所述的制备双金属氮化物Co3W3N的方法,其特征在于:步骤(1)中,所述钴盐水溶液中钴盐的浓度为0.1~2mol/L。
6.根据权利要求4所述的制备双金属氮化物Co3W3N的方法,其特征在于:步骤(1)中,所述钨盐水溶液中钨盐的浓度为0.1~2mol/L。
7.根据权利要求4所述的制备双金属氮化物Co3W3N的方法,其特征在于:步骤(2)中,所述预热处理的温度为150~300℃。
8.根据权利要求4所述的制备双金属氮化物Co3W3N的方法,其特征在于:步骤(2)中,所述预热处理的时间为1~4h。
9.根据权利要求4所述的制备双金属氮化物Co3W3N的方法,其特征在于:步骤(2)中,所述升温速率为1~10℃/min。
10.权利要求1所述的双金属氮化物Co3W3N应用于电化学催化领域。
CN201810789563.1A 2018-07-18 2018-07-18 一种双金属氮化物Co3W3N及其制备方法与应用 Active CN109019533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810789563.1A CN109019533B (zh) 2018-07-18 2018-07-18 一种双金属氮化物Co3W3N及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810789563.1A CN109019533B (zh) 2018-07-18 2018-07-18 一种双金属氮化物Co3W3N及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109019533A true CN109019533A (zh) 2018-12-18
CN109019533B CN109019533B (zh) 2021-01-05

Family

ID=64643210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810789563.1A Active CN109019533B (zh) 2018-07-18 2018-07-18 一种双金属氮化物Co3W3N及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109019533B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642304A (zh) * 2019-10-09 2020-01-03 上海师范大学 一种超级电容器用三金属氮化物材料及其制备方法
CN111416091A (zh) * 2020-03-13 2020-07-14 上海电力大学 一种双金属氮化物改性隔膜及其制备方法和应用
CN113224326A (zh) * 2021-04-16 2021-08-06 南京理工大学 Co-Mo双金属氮化物氧还原催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1157798A (zh) * 1996-02-02 1997-08-27 中国科学院大连化学物理研究所 大比表面双组元过渡金属氮化物及其合成
US8493711B2 (en) * 2008-01-17 2013-07-23 Fraser W. SEYMOUR Monolithic electrode, related material, process for production, and use thereof
CN104353478A (zh) * 2014-12-01 2015-02-18 吉林大学 一种碳包覆的钴钨双金属碳化物、制备方法及其应用
CN106179392A (zh) * 2016-07-19 2016-12-07 温州大学 一种铁离子掺杂的钨酸钴纳米棒电催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1157798A (zh) * 1996-02-02 1997-08-27 中国科学院大连化学物理研究所 大比表面双组元过渡金属氮化物及其合成
US8493711B2 (en) * 2008-01-17 2013-07-23 Fraser W. SEYMOUR Monolithic electrode, related material, process for production, and use thereof
CN104353478A (zh) * 2014-12-01 2015-02-18 吉林大学 一种碳包覆的钴钨双金属碳化物、制备方法及其应用
CN106179392A (zh) * 2016-07-19 2016-12-07 温州大学 一种铁离子掺杂的钨酸钴纳米棒电催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.S WEIL 等: "Synthesis and structural investigation of a new ternary transition metal nitride", <JOURNAL OF ALLOYS AND COMPOUNDS> *
潘旭晨: "钨基化合物/有序介孔碳氮复合材料的制备及性能研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642304A (zh) * 2019-10-09 2020-01-03 上海师范大学 一种超级电容器用三金属氮化物材料及其制备方法
CN110642304B (zh) * 2019-10-09 2021-12-31 上海师范大学 一种超级电容器用三金属氮化物材料及其制备方法
CN111416091A (zh) * 2020-03-13 2020-07-14 上海电力大学 一种双金属氮化物改性隔膜及其制备方法和应用
CN113224326A (zh) * 2021-04-16 2021-08-06 南京理工大学 Co-Mo双金属氮化物氧还原催化剂及其制备方法和应用
CN113224326B (zh) * 2021-04-16 2022-04-08 南京理工大学 Co-Mo双金属氮化物氧还原催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN109019533B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN108736031B (zh) 一种自支撑PtCo合金纳米颗粒催化剂及其制备方法与应用
CN110064406B (zh) 一种碱性溶液析氢电催化剂V2O3-NiPt及其制备方法和应用
AU2021100865A4 (en) Preparation and application of a series non-copper catalyst for preparing methane by electrocatalytic carbon dioxide
CN106967997B (zh) 一种高效自支撑催化电极及其制备方法和应用
CN105688971B (zh) 一种基于硼氮共掺杂纳米金刚石的电化学还原co2催化剂、制备方法及其应用
CN108311154A (zh) 一种用于co2甲烷化新型镍基催化剂的改性及制备方法
CN109019533A (zh) 一种双金属氮化物Co3W3N及其制备方法与应用
CN112553652B (zh) 一种碱性溶液析氢电催化剂NiVRu三元合金及其制备方法和应用
CN108940328A (zh) 纳米片-纳米棒耦合三维复合材料Ni-Co改性碳化钼电催化制氢催化剂及其制备方法
CN109082683A (zh) 二元复合金属氮化物纳米线全分解水电催化剂及合成方法
CN110339845B (zh) 一种二硫化钼花状纳米球的制备方法及析氢应用
CN110560075B (zh) 一种核壳结构的纳米Cu-Eu合金催化剂及其制备方法和应用
CN109759066B (zh) 一种硼掺杂石墨烯负载的钴镍双金属氧化物析氧催化剂的制备方法
CN109967094A (zh) 一种单原子铂掺杂的纳米多孔金属化合物催化剂、制备方法及应用
CN108048868A (zh) 一种氮化钼纳米棒电极材料及其制备方法和应用
CN110280288A (zh) 一种新型过渡金属-氮共掺杂碳材料氧还原/氧析出双功能催化剂的制备方法
CN106450354A (zh) 一种氮掺杂石墨烯负载钴氧还原反应电催化剂的水热合成方法
CN112542592A (zh) 一种杂原子掺杂钴钼双元金属碳化物纳米复合材料及其制备方法和应用
CN111151272A (zh) 钴、铁掺杂的二硫化钼基材料及其制备方法与电催化析氢用途
CN114797936B (zh) 一种co2还原催化剂、应用及其制备方法
CN106847545B (zh) 一种掺杂氧化铈电极及其制备方法和应用
CN104409741A (zh) 一种炭载氧化钯氧还原反应电催化剂及其制备方法
CN107519879A (zh) 一类二元、三元过渡金属氢化物及其制备方法和应用
CN107937936A (zh) 一种稀土元素掺杂的钛基介孔二氧化钛载铂催化剂材料及其制备方法和应用
CN109638306B (zh) 一种用于氨催化氧化的电催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant