CN107519879A - 一类二元、三元过渡金属氢化物及其制备方法和应用 - Google Patents

一类二元、三元过渡金属氢化物及其制备方法和应用 Download PDF

Info

Publication number
CN107519879A
CN107519879A CN201710779360.XA CN201710779360A CN107519879A CN 107519879 A CN107519879 A CN 107519879A CN 201710779360 A CN201710779360 A CN 201710779360A CN 107519879 A CN107519879 A CN 107519879A
Authority
CN
China
Prior art keywords
catalyst
preparation
electrode
transition metal
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710779360.XA
Other languages
English (en)
Inventor
程寒松
杨泽惠
杨明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Hydrogen Energy Co Ltd
Original Assignee
Wuhan Hydrogen Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Hydrogen Energy Co Ltd filed Critical Wuhan Hydrogen Energy Co Ltd
Priority to CN201710779360.XA priority Critical patent/CN107519879A/zh
Publication of CN107519879A publication Critical patent/CN107519879A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一类二元、三元过渡金属氢化物和制备方法及其作为高效稳定的电催化析氢催化剂的应用,催化剂的分子式为HxMaRbYcO3,其中M、R、Y为两种或三种不同的过渡金属,x值为0.01~1,a+b+c=1。M、R、Y为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、锆、铌、钼、铑、锇、钨、钽、铱中的任意两种或三种元素。本发明HxMaRbYcO3作为电解水催化剂,其在酸性电解液中的电化学性能与商业化的碳载铂催化剂性能相当,并且HxMaRbYcO3具有极高的稳定性,且制备工艺简单,容易放大,因此,能够作为碳载铂催化剂的替代品,有效的降低制氢成本。

Description

一类二元、三元过渡金属氢化物及其制备方法和应用
技术领域
本发明属于催化剂领域,特别涉及到二元、三元过渡金属氢化物和制备方法及其在电催化析氢中的应用。
背景技术
氢能是21世纪最理想的绿色能源,具有清洁、高效的优质特点。目前氢能的制备技术主要有三种,即化石燃料制氢,水分解制氢和生物质原料制氢。其中,电解水制氢技术因其工艺简单、无污染、产品纯度高、应用性强的技术特点成为世界各国的研究重点。利用可再生能源水作为最基本的原料进行水的电解制氢,目前电解水制氢所制的的产量占氢气总产量的5%,所制备的氢气的纯度为99.999%。电解水制氢时,在阴极,水分子分解为氢氧根离子(OH-)和氢离子(H+),氢离子得到一个电子生成氢原子,两个氢原子结合进一步生成氢分子(H2);氢氧根离子(OH-)则电场力作用下,穿过电解质膜,从阴极到达阳极,在阳极失去电子生成水分子和氧分子。但由于阴极析氢过电位的存在,水的电解效率较低,导致该工艺耗能巨大。目前工业上使用的电解水产氢催化剂是多以铂为代表的贵金属材料,价格昂贵且资源匮乏,因而开发低成本、高效能的电解水产氢催化剂是能源、催化和材料领域的研究热点。
近年来,磷化镍(Ni2P)作为优异的电催化析氢催化剂受到了众多科研工作者的关注。Rodriguez课题组对Ni2P的电催化析氢活性进行了DFT理论计算,发现Ni2P的(001)晶面具有一定的氢吸附能力,具有能够替代铂成为一种高效的析氢催化剂的潜力,然而此类磷化物导电率极低,需要添加炭黑作为导体传递电子,长时间运行导致催化剂稳定性差。近年来,金属硫化物(MoS2和WS2)在电催化析氢领域的研究也成为了一个热门话题,自等通过DFT计算发现MoS2也可能具备良好的电催化析氢性能,并预测其催化活性位点集中基面的边缘,由于活性位点较少,因此金属硫化物的电催化析氢性能与商业化碳载铂相差较大,因而开发高效稳定的电化学析氢催化剂仍然是制氢技术的研究的热点之一。
发明人程寒松教授及其团队通过长期的探索和研究,发现了一类过渡金属氧化物具有良好的加/脱氢性能,且循环寿命高,此类材料加氢后变成电子导体。电化学析氢原理与加氢脱氧(HDO)、加氢脱氮(HDN)和加氢脱硫(HDS)类似,因此此类材料完全可成为高效稳定的电化学析氢催化剂。
发明内容
本发明的目的是针对现有技术的缺陷,提供一类高效稳定的电解水制氢催化剂,既二元、三元过渡金属氢化物,并提供上述催化剂的制备方法以及应用。
为了实现上述目的,本发明采用以下技术方案:一类二元、三元过渡金属氢化物,所述催化剂的分子式为HxMaRbYcO3,其中M、R、Y为三种不同的过渡金属,x值为0.01~1,0≤a<1、0≤b<1、0≤c<1且a+b+c=1。
进一步的,M、R、Y为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、锆、铌、钼、铑、锇、钨、钽、铱中的任意三种元素。
二元、三元过渡金属氢化物的制备方法,采用以下步骤制备而成:
(1)称取两种或三种过渡金属酸铵盐与聚乙二醇搅拌混合,将混合容易加热搅拌,搅拌后滴加10%的稀硝酸调节溶液pH至1~3;
(2)将混合液装进水热反应釜进行水热反应;
(3)水热反应结束,抽滤并用超纯水和乙醇洗涤反应物至中性,60℃充分干燥;
(4)将干燥物在高温下煅烧,煅烧时间控制1~5h,得到金属氧化物产物;
(5)将产物装入高温高压反应釜内,进行加热反应,得到HxMaRbYcO3
进一步的,步骤1的金属酸铵盐与聚乙二醇的质量比为1:2。
进一步的,步骤1的搅拌温度为50~70℃,搅拌时间控制在24~72h。
进一步的,步骤2的水热反应条件为150~250℃下反应48~62h。
进一步的,步骤5的反应条件为150~500℃、3MPa氢压下加热反应2~5h。
二元、三元过渡金属氢化物用于电催化制氢的方法,使用三电极体系,工作电极为碳纸电极,对电极为碳棒,参比电极为饱和的甘汞电极,电解液,可以为酸性、碱性或中性,所述碳纸电极采用HxMaRbYcO3为催化剂,催化剂分散于溶液中均匀的喷涂在碳纸表面上,并自然干燥。
现行工业电解水制氢催化剂采用贵金属催化剂(碳载铂),由于贵金属的使用大大的提高了制氢的成本。HxMaRbYcO3作为电解水催化剂,其在酸性电解液中的电化学性能与商业化的碳载铂催化剂性能相当,并且HxMaRbYcO3具有极高的稳定性,且制备工艺简单,容易放大,因此,能够作为碳载铂催化剂的替代品,有效的降低制氢成本。此类二元、三元过渡金属氢化物作为电解水制氢催化剂也未曾见报道。
附图说明
图1是实施例2催化剂(b)及商业碳载铂催化剂(a)的LSV曲线图。
图2是实施例2催化剂耐久性图。
具体实施方式
下面结合具体实施例和附图对本发明做进一步的说明。
实施例1
(1)称取10g硝酸钴和10g硝酸镍,然后与40g聚乙二醇搅拌混合,60℃搅拌48h;搅拌后滴加质量比10%的稀硝酸调节溶液pH至2;
(2)将混合液装进水热反应釜,200℃下水热反应48h;
(3)水热反应结束,抽滤并用超纯水和乙醇洗涤反应物至中性,60℃充分干燥;
(4)将干燥物在高温下煅烧2h,得到双金属氧化物产物;
(5)将产物装入高温高压反应釜内,150℃、3MPa氢压,加热反应2h,得到H0.3Co0.5Ni0.5O3
实施例2
1、H0.3Fe0.33Co0.33Ni0.33O3的制备
(1)称取10g硝酸钴、10g硝酸镍和13.2g硝酸铁,然后与聚乙二醇搅拌混合,60℃搅拌48h;搅拌后滴加质量比10%的稀硝酸调节溶液pH至2;
(2)将混合液装进水热反应釜,200℃下水热反应48h;
(3)水热反应结束,抽滤并用超纯水和乙醇洗涤反应物至中性,60℃充分干燥;
(4)将干燥物在高温下煅烧2h,得到三金属氧化物产物;
(5)将产物装入高温高压反应釜内,150℃、3MPa氢压,加热反应2h,得到H0.3Fe0.33Co0.33Ni0.33O3
2、H0.3Fe0.33Co0.33Ni0.33O3催化剂溶液的制备方法
称取2.0mg H0.3Fe0.33Co0.33Ni0.33O3催化剂(以下简称催化剂),分散于1mL的无水乙醇中,加入11.2μL的5.0%wt Nafion溶液,超声1h,使催化剂分散均匀。
3、电极的喷涂方法
(1)碳纸处理:用手术刀裁剪1.0cm*1.0cm大小的碳纸,然后依次由丙酮、去离子水和乙醇超声1h,以去除碳纸上的杂质等污染物。
(2)电极的喷涂:将处理好的碳纸固定住,将超声好的催化剂溶液倒入喷枪漏斗中,调节好喷出的流速,使其呈现为雾状,均匀的喷涂在碳纸的各个部位,使其均匀分布在碳纸上。将制备好的碳纸,自然干燥,以待后续测试。
4、催化剂的活化
电极的测试:在电极上取一个小孔,将直径为0.2mm金线穿入其中,固定住碳纸,制备好测试的电极。
使用三电极体系,工作电极为制备好的碳纸电极;对电极为碳棒;参比电极为饱和的甘汞电极;电解液为0.5M H2SO4溶液;
CV活化:使用Gamry电化学工作站,测试前对0.5M H2SO4溶液,通入N2半个小时,测试过程中不断的通入N2。采用循环伏安法(Cyclic voltammetry,CV)模式,测试区间为0-1.2V vs.RHE,扫速为50mV s-1,循环13圈。使电极达到稳定状态。
5、线性扫描伏安法(LSV)测试
活化稳定后的电极,采用Linear sweep voltammetry(LSV)模式,如图1所示,测试区间为-0.6-0V vs.SCE,扫速为2mV s-1,获取催化剂LSV曲线,过电位是催化剂性能指标之一,过电位为0V vs.RHE与10mA cm-2时实测电位的差值,如图1所示,催化剂在10mA cm-2时的过电位为55mV,与商业化碳载铂催化剂(30mV)相差不大。
6、耐久性测试
采用Cyclic voltammetry(CV)模式,测试区间为-0.2-0.2V vs.RHE,扫速为100mVs-1,循环不同的圈数,然后测定LSV曲线,如图2所示,催化剂在循环20000圈后,在10mA cm-2的过电位未出现衰减,展现出良好的稳定性。
虽然本发明已以较佳实施例公开如上,但实施例和附图并不是用来限定本发明,任何熟悉此技艺者,在不脱离本发明之精神和范围内,自当可作各种变化或润饰,但同样在本发明的保护范围之内。因此本发明的保护范围应当以本申请的权利要求保护范围所界定的为准。

Claims (8)

1.一类二元、三元过渡金属氢化物,其特征在于:所述催化剂的分子式为HxMaRbYcO3,其中M、R、Y为三种不同的过渡金属,x值为0.01~1,0≤a<1、0≤b<1、0≤c<1且a+b+c=1。
2.根据权利要求1所述的二元、三元过渡金属催化剂,其特征在于:所述M、R、Y为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、锆、铌、钼、铑、锇、钨、钽、铱中的任意三种元素。
3.一种根据权利要求1或2所述的二元、三元过渡金属催化剂的制备方法,其特征在于采用以下步骤制备而成:
(1)称取两种或三种过渡金属酸铵盐与聚乙二醇搅拌混合,将混合容易加热搅拌,搅拌后滴加10%的稀硝酸调节溶液pH至1~3;
(2)将混合液装进水热反应釜进行水热反应;
(3)水热反应结束,抽滤并用超纯水和乙醇洗涤反应物至中性,60℃充分干燥;
(4)将干燥物在高温下煅烧,煅烧时间控制1~5h,得到金属氧化物产物;
(5)将产物装入高温高压反应釜内,进行加热反应,得到HxMaRbYcO3
4.根据权利要求3所述的制备方法,其特征在于:所述步骤1的金属酸铵盐与聚乙二醇的质量比为1:2。
5.根据权利要求3所述的制备方法,其特征在于:所述步骤1的搅拌温度为50~70℃,搅拌时间控制在24~72h。
6.根据权利要求3所述的制备方法,其特征在于:所述步骤2的水热反应条件为150~250℃下反应48~62h。
7.根据权利要求3所述的制备方法,其特征在于:所述步骤5的反应条件为150~500℃、3MPa氢压下加热反应2~5h。
8.一种根据权利要求1或2所述的二元、三元过渡金属氢化物用于电催化制氢的方法,其特征在于:使用三电极体系,工作电极为碳纸电极,对电极为碳棒,参比电极为饱和的甘汞电极,电解液为酸性、碱性或中性;所述碳纸电极采用HxMaRbYcO3为催化剂,催化剂分散于溶液中均匀的喷涂在碳纸表面上,并自然干燥。
CN201710779360.XA 2017-09-01 2017-09-01 一类二元、三元过渡金属氢化物及其制备方法和应用 Pending CN107519879A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710779360.XA CN107519879A (zh) 2017-09-01 2017-09-01 一类二元、三元过渡金属氢化物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710779360.XA CN107519879A (zh) 2017-09-01 2017-09-01 一类二元、三元过渡金属氢化物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN107519879A true CN107519879A (zh) 2017-12-29

Family

ID=60683305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710779360.XA Pending CN107519879A (zh) 2017-09-01 2017-09-01 一类二元、三元过渡金属氢化物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107519879A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479809A (zh) * 2018-03-28 2018-09-04 中南大学 一种MnS/Ni3S4复合材料及其制备方法和应用
CN111834640A (zh) * 2019-04-15 2020-10-27 武汉氢阳能源有限公司 一种高效稳定的有机物电催化氧化催化剂及其制备方法和应用
CN111834642A (zh) * 2019-04-15 2020-10-27 武汉氢阳能源有限公司 一种有机物电催化氧化催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742927A1 (fr) * 1995-12-21 1997-06-27 Leclanche Sa Piles miniatures etanches alcalines sans mercure et methode de fabrication de ces piles
EP1629558A1 (en) * 2003-03-26 2006-03-01 Osram Sylvania Inc. Tungsten-based electrocatalyst and fuel cell containing same
CN102216496A (zh) * 2008-12-02 2011-10-12 德诺拉工业有限公司 适用作析氢阴极的电极
CN104437467A (zh) * 2014-10-27 2015-03-25 杭州聚力氢能科技有限公司 加氢催化剂及其应用、脱氢催化剂及其应用
CN105189342A (zh) * 2013-01-10 2015-12-23 科学研究国家中心 用于制备氢气的方法
CN106381506A (zh) * 2016-10-18 2017-02-08 西安交通大学 一种层状镍铁氢氧化物电极的制备方法
CN106544694A (zh) * 2016-11-30 2017-03-29 中国科学技术大学 金属复合材料、其制备方法及应用、制氢电解槽

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742927A1 (fr) * 1995-12-21 1997-06-27 Leclanche Sa Piles miniatures etanches alcalines sans mercure et methode de fabrication de ces piles
EP1629558A1 (en) * 2003-03-26 2006-03-01 Osram Sylvania Inc. Tungsten-based electrocatalyst and fuel cell containing same
CN102216496A (zh) * 2008-12-02 2011-10-12 德诺拉工业有限公司 适用作析氢阴极的电极
CN105189342A (zh) * 2013-01-10 2015-12-23 科学研究国家中心 用于制备氢气的方法
CN104437467A (zh) * 2014-10-27 2015-03-25 杭州聚力氢能科技有限公司 加氢催化剂及其应用、脱氢催化剂及其应用
CN106381506A (zh) * 2016-10-18 2017-02-08 西安交通大学 一种层状镍铁氢氧化物电极的制备方法
CN106544694A (zh) * 2016-11-30 2017-03-29 中国科学技术大学 金属复合材料、其制备方法及应用、制氢电解槽

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. KUMAR ET AL: "New ternary Fe, Co, and Mo mixed oxide electrocatalysts for oxygen evolution", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
SINA HE ET AL.: ""Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles"", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *
XIANG XIE ET AL: ""Incorporation of tantalum ions enhances the electrocatalytic activityof hexagonal WO3nanowires for hydrogen evolution reaction"", 《ELECTROCHIMICA ACTA》 *
马正先等: "《纳米氧化锌制备原理与技术》", 30 June 2009, 中国轻工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479809A (zh) * 2018-03-28 2018-09-04 中南大学 一种MnS/Ni3S4复合材料及其制备方法和应用
CN111834640A (zh) * 2019-04-15 2020-10-27 武汉氢阳能源有限公司 一种高效稳定的有机物电催化氧化催化剂及其制备方法和应用
CN111834642A (zh) * 2019-04-15 2020-10-27 武汉氢阳能源有限公司 一种有机物电催化氧化催化剂及其制备方法和应用
CN111834642B (zh) * 2019-04-15 2021-12-17 武汉氢阳能源有限公司 一种有机物电催化氧化催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107904614B (zh) 一种Ni3S2@Ni-Fe LDH析氧电催化电极及其制备方法与应用
CN101649465B (zh) 一种基于双极膜技术同时制备糠醇和糠酸的方法
CN106011911A (zh) 一种部分硫化提高金属氢氧化物析氧电极性能的方法
CN108707923A (zh) 一种以泡沫镍为载体的镍铁氢氧化物/还原氧化石墨烯电化学析氧催化剂及其制备方法
CN104862758B (zh) 一种分解水产氢用NiS/Ni(OH)2电催化剂的制备方法
CN106967997B (zh) 一种高效自支撑催化电极及其制备方法和应用
CN105951117B (zh) 一种低成本生产高纯度过氧化氢和氢气的电解方法
CN109576730B (zh) 一种铁修饰的四氧化三钴纳米片阵列电极的制备方法及应用
CN112410799B (zh) 氢气的生产方法
CN105177621B (zh) 一种钼氧簇修饰的二硫化三镍微米空心球催化剂及其应用
CN109852992A (zh) 一种高效电催化全分解水纳米片阵列电极及其制备方法和应用
CN106807379A (zh) 一种花球状镍/钴氧化物析氧催化剂及其制备方法和应用
CN107973282A (zh) 一种碳材料及其制备方法与应用于电催化生产双氧水
CN107519879A (zh) 一类二元、三元过渡金属氢化物及其制备方法和应用
CN110404564B (zh) 一种双功能全解水电催化剂及其制备方法与应用
CN110479320A (zh) 一种高效双功能分解水电催化剂及其制备方法
CN113337846B (zh) 一种负载型表面部分硫化的层状金属氢氧化物电催化剂及其制备方法与应用
CN109208028A (zh) 一种分解水性能改善的氮、磷化物的制备方法
CN110280269A (zh) 一种银纳米颗粒负载的钴基花瓣状复合材料及其制备方法和应用
CN111468120A (zh) 一种由CoFeNiOX组成的分层空心纳米笼电催化剂及其制备方法与应用
CN111001414A (zh) 结构可控的空心钴酸镍纳米线/片状氧化锰核壳阵列材料及制备方法
Rizk et al. Dual-functioning porous catalysts: robust electro-oxidation of small organic molecules and water electrolysis using bimetallic Ni/Cu foams
CN101783406B (zh) 阴极、包括该阴极的膜电极和阴极制备方法
Wang et al. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting
CN109950558A (zh) 一种高效稳定的双功能催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171229

RJ01 Rejection of invention patent application after publication