CN108949918A - 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法 - Google Patents

通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法 Download PDF

Info

Publication number
CN108949918A
CN108949918A CN201810637034.XA CN201810637034A CN108949918A CN 108949918 A CN108949918 A CN 108949918A CN 201810637034 A CN201810637034 A CN 201810637034A CN 108949918 A CN108949918 A CN 108949918A
Authority
CN
China
Prior art keywords
magnesium
hcr
chain
reaction
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810637034.XA
Other languages
English (en)
Inventor
许文涛
罗云波
黄昆仑
杜再慧
田晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201810637034.XA priority Critical patent/CN108949918A/zh
Publication of CN108949918A publication Critical patent/CN108949918A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种通用隔断超快扩增的镁、钠切割型功能核酸可视化检测方法。本发明通过巧妙地设计引物、模板及探针,使得在镁、钠离子存在下可对模板进行超快扩增,并使扩增产物在适宜环境中形成G四链体。进一步利用G四链体的类过氧化物酶活性进行显色,解决了传统PCR产物难于可视化检测的难题,实现了对镁、钠离子的快速、可视化检测。不仅如此,本发明提供的方法对镁、钠离子具有高特异、高灵敏的特点,检测结果更加客观、准确。

Description

通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法
技术领域
本发明涉及生物传感器技术领域,具体地说,涉及一种通用隔断超快扩增的镁、钠切割型功能核酸可视化检测方法。
背景技术
钠是一种金属元素,化学符号是Na,原子序数是11,原子量是22.9898,属第IA族,是碱金属元素的代表,质地柔软,能与水反应生成氢氧化钠,放出氢气,化学性质较活泼。钠元素以盐的形式广泛的分布于陆地和海洋中,钠也是人体肌肉组织和神经组织中的重要成分之一。人体中钠的摄取主要是通过食物食盐摄取,缺了它就会饮食无味,还觉得软弱无力;但若长期摄入过多,则很容易影响健康,诱发疾病,例如使尿液中的蛋白质含量升高,引起肾上腺和脑组织释放一种使细胞兴奋性增加的因子,导致动脉收缩,血压升高。血压升高是导致心血管疾病的主要原因,大约62%的中风和49%的冠状动脉心脏病的主要病因是高血压。
目前,国内外检测钠离子含量的方法很多,如离子色谱法、火焰原子发射光谱法、火焰原子收法、流动注射技术和离子选择性电极相结合的方法等。应用这些方法测定钠离子含量的研究成果也有相应的报导,但操作繁琐、耗时长,而且需要专业的人员进行操作。因此,研究出简单快速、成本低廉、可准确定量的检测方法十分必要。
镁,化学符号是Mg,原子序数是12,原子量是24,属第IIA族,是一种银白色有金属光泽的金属,在自然界中分布较广。中国营养学会建议,成年男性每天约需镁350毫克,成年女性约为300毫克,孕妇以及喂奶期女性约为450毫克,2-3岁儿童为150毫克,3-6岁为200毫克。可耐受最高摄入量(UL)定为700mg/d。镁是人体细胞内的主要阳离子,浓集于线粒体中,仅次于钾和磷,在细胞外液仅次于钠和钙居第三位,是体内多种细胞基本生化反应的必需物质。镁是一种参与生物体正常生命活动及新陈代谢过程必不可少的元素。镁缺乏在临床上主要表现为情绪不安、易激动、手足抽搐、反射亢进等,正常情况下,由于肾的调节作用,口服过量的镁一般不会发生镁中毒。当肾功能不全时,大量口服镁可引起镁中毒,表现为腹痛、腹泻、呕吐、烦渴、疲乏无力,严重者出现呼吸困难、紫绀、瞳孔散大等。
常见的镁离子的检测方法主要有原子光谱法,包括原子吸收光谱、电感耦合等离子体发射光谱法和焚光光谱法,可见分光光度法,流动注射化学发光法和微分电位溶出法等,但是这些检测方法都需要昂贵的仪器和经过专业培训的操作人员,样品前处理也比较繁琐,不具有普遍适用性。
发明内容
本发明的目的是提供一种切割型快速检测镁、钠离子的系统。
本发明的另一目的是提供一种通用隔断超快扩增的镁、钠切割型功能核酸可视化检测方法。
为了实现本发明目的,发明人根据镁离子和钠离子的特异性核酶,设计通用隔断引物对其进行超快聚合酶链式反应(super Polymerase Chain Reaction,sPCR),结合富G序列在K+存在条件下形成具有类过氧化物酶活性的G四链体,构建了一种新型的基于隔断引物的镁离子、钠离子切割型功能核酸比色传感器。
第一方面,本发明提供一种快速检测镁、钠离子的系统,包括:(1)切割体系,(2)sPCR扩增体系,(3)HCR体系,(4)包含ABTS显色液的检测体系。
所述检测体系用于对待测样品依次经由所述切割体系、sPCR扩增体系和HCR体系进行反应后所得产物进行显色检测;
其中,所述切割体系包括底物链I和酶链I以及底物链II和酶链II:
底物链I:5′-CTCTATCTATrA-GGAAGTACCGCCGC-3′
酶链I:5′-GCGGCGGTACCAGGTCAAAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGATAGAG-3′
其中,rA表示核糖核酸;-表示钠离子切割位点;
底物链II:5′-GTCACGAGTCACTATrA-GGAAGATGGCGAAA-3′
酶链II:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
其中,rA表示核糖核酸;-表示镁离子切割位点;
所述sPCR扩增体系包括:正向隔断引物I、反向引物I、正向隔断引物II、反向引物II、模板:
正向隔断引物I:5′-AGACGAAGCACTGGTTGAAACTCC-隔断物-GGAGTTTCAACCAGTGCTTCGTCTTCATCGCACCGTCAAAGGAACC-3′
反向引物I:5′-GGAAGTACCGCCGCGGAGGGA-3′
正向隔断引物II:5′-AGTCTAGGATTCGGCGTCCCTTAA-隔断物-TTAAGGGACGCCGAATCCTAGACTTCATCGCACCGTCAAAGGAACC-3′
反向引物II:5′-GGAAGATGGCGAAATTCGGGGC-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCTCCCTCCGCGGCGGTACTTCC-3′;
所述HCR体系包括4条探针:
探针1:5′-AGGGCGGGTGGGTGGAGTTTCAACCAGTGCTTCGTCTCCCCAGACGAAGCACTGGTTGATGGGT-3′
探针2:5′-TGGGTAGACGAAGCACTGGTTGAAACTCCTCAACCAGTGCTTCGTCTGGGGTGGGTAGGGCGGG-3′
探针3:5′-AGGGCGGGTGGGTTAAGGGACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTCGGGT-3′
探针4:5′-GGGTAGTCTAGGATTCGGCGTCCCTTAAGACGCCGAATCCTAGACTACTTTGAGGGCGGGTGGG-3′。
其中,所述正向隔断引物中的隔断物为聚六乙二醇。其它能够阻止PCR延伸的隔断结构也可用于本发明。
所述DNA聚合酶为Ex Taq DNA聚合酶,所述缓冲液为10×Ex Taq Buffer,二者与所述dNTP均购自赛默飞科技(Thermo Scientific Life Technologies)。
本发明所述的检测体系包括:酶活缓冲液,氯高铁血红素溶液。
其中,所述酶活缓冲液为:100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4。
所述氯高铁血红素溶液为20mM的氯高铁血红素原液与上述酶活缓冲液按照2μL:1mL的比例混合后的氯高铁血红素稀释溶液。
本发明还提供前述系统在检测镁、钠离子方面中的应用,所述检测可表现为定性检测或定量检测。
第二方面,本发明提供了一种基于前述系统的通用隔断超快扩增镁、钠切割型功能核酸可视化定性检测方法,包括如下步骤:
S1、向所述切割体系中加入待测样品,进行切割反应;
S2、将S1所得切割产物加入所述sPCR扩增体系中进行超快聚合酶链式反应,得sPCR产物;
S3、将所述sPCR产物加入所述HCR体系中进行HCR反应,得HCR产物;
S4、利用所述检测体系对所述HCR产物进行检测。
S1具体如下:将底物链与酶链按等摩尔比例混合,用缓冲液稀释至浓度1μM-2μM,85℃-95℃加热15min,然后降温至25-37℃,得到核酶液;向35μL所述核酶液中加入待测样品溶液,形成40μL体系,于36-38℃孵育4-6min,然后加入4-6μL终止液,得到切割产物。
进一步地,所述检测体系包括酶活缓冲液和氯高铁血红素稀释溶液,将酶活缓冲液、氯高铁血红素稀释溶液和HCR产物按体积比为8:1:1混匀(总体积为100μL),在35-38℃条件下反应20-40min,加入与前述混合物等体积的ABTS显色液,混匀,35-38℃避光孵育,肉眼进行监测。
第三方面,本发明提供了一种基于前述系统的通用隔断超快扩增镁、钠切割型功能核酸可视化定量检测方法,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的镁、钠离子溶液,构建具有不同镁、钠离子浓度的切割体系,sPCR扩增、HCR反应与检测步骤与前述定性检测的步骤相同;
以镁、钠离子浓度为横坐标,以OD415值为纵坐标,绘制标准曲线;
SII、按照前述定性检测方法对待测样品进行检测,将测得的OD415值代入标准曲线,计算得到待测样品中镁、钠离子的含量,实现对镁、钠离子的定量检测。
本发明提供一种通用隔断超快扩增的镁、钠切割型功能核酸可视化检测方法,具体如下:
A)设计钠离子特异性核酶,包括底物链I和酶链I,将底物链I与酶链I进行杂交形成具有特异性钠离子切割活性的核酶I,当钠离子存在的条件下发生切割反应,切割下来的核酸片段作为反向引物I(即目标引发分子),与正向隔断引物I一起对模板进行PCR扩增反应,所得PCR产物I的一端带有一段单链核酸序列;所述PCR产物I在K+存在条件下,形成G四链体,催化H2O2和ABTS显色,进而完成对钠离子的快速可视化检测;或者
通过PCR产物I促发HCR反应,使得HCR产物I在K+存在条件下形成G四链体,催化H2O2和ABTS显色,进而完成对钠离子的快速可视化检测;
所述底物链I和酶链I的碱基序列如下:
底物链I:5′-CTCTATCTATrA-GGAAGTACCGCCGC-3′
酶链I:5′-GCGGCGGTACCAGGTCAAAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGATAGAG-3′
其中,rA表示核糖核酸;-表示钠离子切割位点;
所述正向隔断引物I的5′端具有发夹结构,两段反向互补碱基序列之间至少设有一阻断物,所述阻断物可阻断PCR延伸;
B)设计镁离子特异性核酶,包括底物链II和酶链II,将底物链II与酶链II进行杂交形成具有特异性镁离子切割活性的核酶II,当镁离子存在的条件下发生切割反应,切割下来的核酸片段作为反向引物II(即目标引发分子),与正向隔断引物II一起对模板进行PCR扩增反应,所得PCR产物II的一端带有一段单链核酸序列;所述PCR产物II在K+存在条件下,形成G四链体,催化H2O2和ABTS显色,进而完成对镁离子的快速可视化检测;或者
通过PCR产物II促发HCR反应,使得HCR产物II在K+存在条件下形成G四链体,催化H2O2和ABTS显色,进而完成对镁离子的快速可视化检测;
所述底物链II和酶链II的碱基序列如下:
底物链II:5′-GTCACGAGTCACTATrA-GGAAGATGGCGAAA-3′
酶链II:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
其中,rA表示核糖核酸;-表示镁离子切割位点;
所述正向隔断引物II的5′端具有发夹结构,两段反向互补碱基序列之间至少设有一阻断物,所述阻断物可阻断PCR延伸;
其中,步骤A)和步骤B)中涉及的切割反应可以在各自独立的体系中进行,也可以在同一体系中进行;步骤A)和步骤B)中涉及的PCR扩增反应可以在各自独立的体系中进行,也可以在同一体系中进行;步骤A)和步骤B)中涉及的显色反应可以在各自独立的体系中进行,也可以在同一体系中进行;步骤A)和步骤B)中涉及的HCR反应可以在各自独立的体系中进行,也可以在同一体系中进行。
本发明中,显色液可用TMB替代。
优选地,所述正向隔断引物I和/或正向隔断引物II的发夹结构上具有富G碱基序列。当所述正向隔断引物的发夹结构上设计有富G碱基序列时,则无需借助HCR反应,即可实现对钠离子的快速可视化检测。
前述的方法,对于钠离子检测,HCR的反应体系中至少含有一条带发夹结构的探针,所述发夹结构的碱基组成与所述正向隔断引物I发夹结构的碱基序列基本相同,使得所述PCR产物I能够促发HCR反应。
对于镁离子检测,HCR的反应体系中至少含有一条带发夹结构的探针,所述发夹结构的碱基组成与所述正向隔断引物II发夹结构的碱基序列基本相同,使得所述PCR产物II能够促发HCR反应。
优选地,对于钠离子检测,所述底物链I的3′端添加有一段可增加所述反向引物I与模板结合Tm值的碱基序列,使得PCR退火温度控制在50-60℃。优选所添加的序列为GGAGGGA。
对于镁离子检测,所述底物链II的3′端添加有一段可增加所述反向引物II与模板结合Tm值的碱基序列,使得PCR退火温度控制在50-60℃。优选所添加的序列为TTCGGGGC。
优选地,所述阻断物为聚六乙二醇。
前述的方法,钠离子检测中所用的底物链I、酶链I、正向隔断引物I、反向引物I、模板和2条探针的碱基序列如下:
底物链I:5′-CTCTATCTATrA-GGAAGTACCGCCGCGGAGGGA-3′
酶链I:5′-GCGGCGGTACCAGGTCAAAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGATAGAG-3′
正向隔断引物I:5′-AGACGAAGCACTGGTTGAAACTCC-聚六乙二醇-GGAGTTTCAACCAGTGCTTCGTCTTCATCGCACCGTCAAAGGAACC-3′
反向引物I:5′-GGAAGTACCGCCGCGGAGGGA-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCTCCCTCCGCGGCGGTACTTCC-3′
探针1:5′-AGGGCGGGTGGGTGGAGTTTCAACCAGTGCTTCGTCTCCCCAGACGAAGCACTGGTTGATGGGT-3′
探针2:5′-TGGGTAGACGAAGCACTGGTTGAAACTCCTCAACCAGTGCTTCGTCTGGGGTGGGTAGGGCGGG-3′
其中,rA表示核糖核酸;-表示钠离子切割位点。
镁离子检测中所用的底物链II、酶链II、正向隔断引物II、反向引物II、模板和2条探针的碱基序列如下:
底物链II:5′-GTCACGAGTCACTATrA-GGAAGATGGCGAAATTCGGGGC-3′
酶链II:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
正向隔断引物II:5′-AGTCTAGGATTCGGCGTCCCTTAA-聚六乙二醇-TTAAGGGACGCCGAATCCTAGACTTCATCGCACCGTCAAAGGAACC-3′
反向引物II:5′-GGAAGATGGCGAAATTCGGGGC-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCTCCCTCCGCGGCGGTACTTCC-3′
探针3:5′-AGGGCGGGTGGGTTAAGGGACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTCGGGT-3′
探针4:5′-GGGTAGTCTAGGATTCGGCGTCCCTTAAGACGCCGAATCCTAGACTACTTTGAGGGCGGGTGGG-3′
其中,rA表示核糖核酸;-表示镁离子切割位点。
本发明还提供与上述方法配套的检测试剂盒,所述试剂盒至少包括以下成分:底物链I和II、酶链I和II、正向隔断引物I和II、模板、探针1、探针2、探针3和探针4等。
本发明试剂盒的检测分析原理:首先将底物链与酶链进行杂交形成具有特异性金属离子切割活性的核酶,当金属离子存在的条件下发生切割反应,切割下来的核酸片段可以与模板结合进行PCR延伸,由于引物的隔断作用阻碍了聚合酶的延伸,使得PCR产物是带有促发HCR的特定序列,HCR产物在适宜的缓冲条件下(缓冲液中含有K+)形成G四链体,催化H2O2和ABTS显色,进而完成对金属离子的快速可视化检测。
具体检测方法如下:
①单独检测钠离子:
A1)核酶I的构建:将底物链I与酶链I按等摩尔比例混合,用缓冲液I稀释至浓度1μM-2μM,85-95℃加热15min,然后缓慢降至25-37℃(大约耗时45min),即得核酶液I;
A2)切割反应:向35μL上述核酶液I中加入待测样品溶液,形成40μL体系,于37℃孵育4-6min,然后加入4-6μL终止液,得到切割产物I;
A3)超速PCR反应:配制由正向隔断引物I、切割产物I、模板、DNA聚合酶、dNTP、反应缓冲液和ddH2O组成的PCR反应体系,设置如下反应程序:90-95℃2s,55-60℃3s,30-40个循环,进行PCR反应,得到PCR产物I;
A4)HCR反应:构建由探针1、探针2、PCR产物I和自组装缓冲液组成的HCR反应体系,于37℃反应30-60min,得到HCR产物I;
A5)显色反应:将80μL酶活缓冲液、10μL氯高铁血红素溶液与10μL HCR产物I混合,于37℃反应30min,加入100μL ABTS显色液,混匀,37℃避光孵育10min,根据加入显色液前后溶液颜色的变化来判断待测样品中是否含有钠离子以及钠离子浓度的高低;可通过肉眼直接观察溶液颜色的变化,或利用酶标仪测定溶液的OD值变化。
②单独检测镁离子:
B1)核酶II的构建:将底物链II与酶链II按等摩尔比例混合,用缓冲液II稀释至浓度1μM-2μM,85-95℃加热15min,然后缓慢降至25-37℃(大约耗时45min),即得核酶液II;
B2)切割反应:向35μL上述核酶液II中加入待测样品溶液,形成40μL体系,于37℃孵育4-6min,然后加入4-6μL终止液,得到切割产物II;
B3)超速PCR反应:配制由正向隔断引物II、切割产物II、模板、DNA聚合酶、dNTP、反应缓冲液和ddH2O组成的PCR反应体系,设置如下反应程序:90-95℃2s,55-60℃3s,30-40个循环,进行PCR反应,得到PCR产物II;
B4)HCR反应:构建由探针1、探针2、PCR产物II和自组装缓冲液组成的HCR反应体系,于37℃反应30-60min,得到HCR产物II;
B5)显色反应:将80μL酶活缓冲液、10μL氯高铁血红素溶液与10μL HCR产物II混合,于37℃反应30min,加入100μL ABTS显色液,混匀,37℃避光孵育5-10min,根据加入显色液前后溶液颜色的变化来判断待测样品中是否含有镁离子以及镁离子浓度的高低;可通过肉眼直接观察溶液颜色的变化,或利用酶标仪测定溶液的OD值变化。
③钠离子和镁离子双重检测:
S1)核酶I及核酶II的构建:将底物链I与酶链I按等摩尔比例混合,用缓冲液I稀释至浓度1μM-2μM;将底物链II与酶链II按等摩尔比例混合,用缓冲液II稀释至浓度1μM-2μM,85-95℃加热15min,然后缓慢降至25-37℃(大约耗时45min),即得核酶液;
S2)切割反应:向35μL上述核酶液中加入待测样品溶液,形成40μL体系,于37℃孵育4-6min,然后加入4-6μL终止液,得到切割产物;
S3)双重超速PCR反应:配制由正向隔断引物I、正向隔断引物II、切割产物、模板、DNA聚合酶、dNTP、反应缓冲液和ddH2O组成的PCR反应体系,设置如下反应程序:90-95℃2s,55-60℃3s,30-40个循环,进行PCR反应,得到PCR产物;
S4)HCR反应:构建由探针1、探针2、探针3、探针4、PCR产物和自组装缓冲液组成的HCR反应体系,于37℃反应30-60min,得到HCR产物;
S5)显色反应:将80μL酶活缓冲液、10μL氯高铁血红素溶液与10μL HCR产物混合,于37℃反应30min,加入100μL ABTS显色液,混匀,37℃避光孵育5-10min,根据加入显色液前后溶液颜色的变化来判断待测样品中是否含有钠离子和镁离子;可通过肉眼直接观察溶液颜色的变化,或利用酶标仪测定溶液的OD值变化。
其中,核酶构建中所用缓冲液I的配方为:50mM MES,pH 6.0,25mM LiCl。
缓冲液II的配方为:140mM NaCl,50mM Tris,pH 7.5。
切割反应中所用终止液的配方为:0.2M EDTA,2M NaCl,0.5M Tris。
HCR反应中所用自组装缓冲液的配方为:8mM Na2HPO4,2.5mM NaH2PO4,0.15MNaCl,2mM MgCl2,pH 7.4。
显色反应中所用酶活缓冲液的配方为:100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4。
所述氯高铁血红素溶液的配制方法为:用DMSO配制浓度为20mM的氯高铁血红素原液,将2μL氯高铁血红素原液与1mL所述酶活缓冲液混合,即得。
优选地,PCR反应体系如下:
单独检测钠离子:
单独检测镁离子:
钠离子和镁离子双重检测:
HCR反应体系的构建方法如下:
①单独检测钠离子:将探针1、探针2分别用水溶解至100μM,于90-95℃加热5min,然后缓慢降至室温备用;将PCR产物I加入终浓度为2μM-3μM的探针1和探针2的混合液中,并加入自组装缓冲液至总体积50μL。
②单独检测镁离子:将探针3、探针4分别用水溶解至100μM,于90-95℃加热5min,然后缓慢降至室温备用;将PCR产物II加入终浓度为2μM-3μM的探针3和探针4的混合液中,并加入自组装缓冲液至总体积50μL。
③钠离子和镁离子双重检测:将探针1、探针2、探针3和探针4分别用水溶解至100μM,于90-95℃加热5min,然后缓慢降至室温备用;将PCR产物加入终浓度为2μM-3μM的探针1、探针2、探针3和探针4的混合液中,并加入自组装缓冲液至总体积50μL。
配制一系列浓度的钠离子标准溶液,按照上述方法进行检测,并利用酶标仪测定溶液OD415值来判断显色情况,并根据溶液颜色变化绘制显色的标准曲线:y=0.005x-0.031,R2=0.992,从而可实现对钠离子的定量检测。
本方法的钠离子检测限是20-200nM。
配制一系列浓度的镁离子标准溶液,按照上述方法进行检测,并利用酶标仪测定溶液OD415值来判断显色情况,并根据溶液颜色变化绘制显色的标准曲线:y=0.005x+0.0139,R2=0.9989,从而可实现对镁离子的定量检测。
本方法的镁离子检测限是30-300nM。
借由上述技术方案,本发明至少具有下列优点及有益效果:
本发明通过建立一种隔断快速扩增钠离子、镁离子切割型功能核酸比色传感器,用于钠离子、镁离子的快速可视化检测。根据金属离子的特异性核酶,设计隔断引物对其进行超快聚合酶链式反应,结合富G序列在K+存在条件下形成具有类过氧化物酶活性的G四链体,构建了一种新型的基于通用隔断引物的金属离子切割型功能核酸比色传感器,并提供了一种快速、可视的钠离子、镁离子双重检测新方法。使样品的检测时间大大缩短,检出限达nM级,而且本发明成功解决了PCR产物的可视化问题,对解决现场实时快速检测具有重要的现实意义。
(一)本方法首次构建了隔断引物,对模板进行超快扩增,将耗时3小时左右的传统PCR过程缩减到10分钟,显著减少了PCR反应的用时。
(二)引物的隔断作用阻碍了聚合酶的延伸,获得单链核酸序列。可以促发HCR反应,使得产物在适宜的条件下(缓冲液中含有K+)形成具有类过氧化物酶活性的G四链体。
(三)PCR产物或HCR产物与ABTS发生颜色变化,解决了传统PCR产物难于可视化检测的难题。
(四)本方法可实现钠离子、镁离子的大批量、快速检测。
附图说明
图1为本发明实施例1中钠离子核酶制备并切割验证的结果;其中,泳道1:核酶-Na;泳道2-4:切割体系。
图2为本发明实施例1中镁离子核酶制备并切割验证的结果;其中,泳道1:核酶-Mg;泳道2-4:切割体系。
图3为本发明实施例1中超速PCR仪的外观结构。
图4为本发明实施例1中超速PCR扩增产物的胶图;其中,泳道1:DNA Marker2000;泳道2:镁离子超速PCR产物;泳道3:钠离子超速PCR产物;泳道4:双重超速PCR产物。
图5为本发明实施例1中PCR产物自组装的阵列排列顺序;其中,1为2μM Hairpin 1和2μM Hairpin 2;2为2μM Hairpin 3和2μM Hairpin 4;3为2μM Hairpin 1,2μM Hairpin2,2μM Hairpin 3和2μM Hairpin 4;4为阴性对照水。
图6为本发明实施例1中根据不同浓度钠离子及溶液颜色变化绘制显色的标准曲线。
图7为本发明实施例1中根据不同浓度镁离子及溶液颜色变化绘制显色的标准曲线。
图8-图10为本发明实施例2中检测方法的特异性考察结果。
图11为本发明实施例4中HCR反应时间的优化结果;其中,M:DNA Marker2000;1:阴性;2:2μM Hairpin 1;3:2μM Hairpin 2;4:2μM Hairpin 1+2μM Hairpin 2;5-6:30min;7-8:1h;9-10:1.5h;11-12:2h。
图12为本发明实施例4中HCR反应时间优化实验结果;其中,1:Hairpin 3;2:Hairpin 4;3-7:Hairpin 3+Hairpin 4分别10min,20min,30min,40min,50min。
图13为本发明实施例5中HCR反应中发夹探针序列的优化结果;其中,M:DNAMarker2000;1-4是组3;5-8是组2;9-12是组1;第1组点样顺序从左至右依次为:500nMHairpin 1;500nM Hairpin 2;500nM Hairpin 1+500nM Hairpin 2;500nM Hairpin 1+500nM Hairpin 2+促发子。第2组点样顺序从左至右依次为:500nM Hairpin1-2;500nMHairpin 2-2;500nM Hairpin 2-2+500nM Hairpin 1-2;500nM Hairpin 2-2+500nMHairpin 1-2+促发子。第3组点样顺序从左至右依次为:500nM Hairpin1-3;500nM Hairpin2-3;500nM Hairpin 1-3+500nM Hairpin 2-3;500nM Hairpin 1-3+500nM Hairpin 2-3+促发子。
图14为本发明实施例5中发夹探针序列优化实验结果;其中,M:DNA Marker2000;第一组(泳道5-8):5:Hairpin3;6:Hairpin4;7-8:Hairpin3+Hairpin4+促发子;第二组(泳道1-4):1:Hairpin3-2;2:Hairpin4-2;3-4:Hairpin3-2+Hairpin4-2+促发子;第三组(泳道9-12):9:Hairpin3-3;10:Hairpin4-3;11-12:Hairpin3-3+Hairpin4-3+促发子。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
本发明中,ABTS显色液的配方为:1mL DNAzyme底物缓冲液,柠檬酸0.933g,蒸馏水100mL,5μL ABTS底物溶液,1μL 30%H2O2
DNAzyme底物缓冲液:即为pH 3.6的柠檬酸盐缓冲液,配方为:Na2HPO4.12H2O1.843g,柠檬酸0.933g,蒸馏水100mL。
ABTS底物溶液:取20mg 2,2′-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐粉末(购自Sigma公司)溶于1mL DMSO,即得。
实施例1通用隔断超快扩增的镁、钠切割型功能核酸可视化检测方法
1、实验材料
SYBR Gold核酸染料、核酸分子量标准ultra-low range DNA ladder、dNTP、ExTaq DNA聚合酶、10×Taq buffer、氯高铁血红素、氯化钠、氯化镁、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二胺盐(ABTS)、H2O2、4-羟乙基哌嗪乙磺酸(HEPES)、MES、LiCl、Tris、乙二胺四乙酸二钠,四甲基联苯胺,尿素,均购自赛默飞科技(Thermo Scientific LifeTechnologies)。实验用水均来自Milli-Q纯水系统。
序列设计如下(SEQ ID NO:1-13):
注:核酶切割目标产物和扩增模板3’端序列互补;
核酶底物链末端所添加的加粗碱基序列是为了增加与模板结合Tm值;切割位点用“-”表示;
17EV1核酶底物链-Na和核酶酶链-Na共同组成钠离子的特异性核酶(核酶-Na);17E核酶底物链-Mg和核酶酶链-Mg共同组成镁离子的特异性核酶(核酶-Mg)。
2、核酶的构建及切割反应体系的验证
(1)将4μL核酶底物链-Na(10μM母液)与4μL核酶酶链-Na(10μM母液)用缓冲液(终浓度为50mM MES,pH 6.0,25mM LiCl)稀释至40μL,95℃加热15min,然后缓慢降至37℃,大约耗时45min。
加入5μL氯化钠溶液标准样品(1μM母液),形成40μL体系,于37℃下孵育6分钟,在40μL体系中加入5μL终止液(浓度为0.2M EDTA,2M NaCl,0.5M Tris),混匀后4℃保存。用20%的变性聚丙烯酰胺凝胶电泳验证,得到钠离子核酶切割后的小片段,证明钠离子核酶的制备与切割成功(图1)。
(2)将4μL核酶底物链-Mg(10μM母液)与4μL核酶酶链-Mg(10μM母液)用缓冲液(终浓度为140mM NaCl,50mM Tris,pH 7.5)稀释至40μL,95℃加热15min,然后缓慢降至37℃,大约耗时45min。
加入5μL氯化镁溶液(1μM母液),形成40μL体系,于37℃下孵育5分钟,在40μL体系中加入5μL终止液(浓度为0.2M EDTA,2M NaCl,0.5M Tris),混匀后4℃保存。用20%的变性聚丙烯酰胺凝胶电泳验证,得到镁离子核酶切割后的小片段,证明镁离子核酶的制备与切割成功(图2)。
3、超速PCR装置的搭建以及超速PCR反应体系的建立与验证
超速PCR装置的主要结构如图3所示,其具体的结构、连接方式和工作原理、工作过程包括:超速PCR装置的温度变化经由一个95℃的高温水浴锅和一个58℃的中温水浴锅来实现。采用Light Cycler型号的毛细管(20μL,04 929 292 001,Roche)作为PCR样品室。通过快速离心的方式,样品会分别聚集到各个毛细管一端;离心完成后带有样品的毛细管被固定在一个专用的塑料支架上。
钠离子超速PCR体系如下:
镁离子超速PCR体系如下:
双重超速PCR体系如下:
在实际检测中,切割产物是指上述切割反应体系中,用待测样品替换标样。
在冰上配制10μL反应体系,迅速置于超速PCR反应装置中进行温度控制。超速PCR反应程序:95℃2s,58℃3s,36个循环,总计3min。
完成双重超速PCR反应过程,使用2%琼脂糖凝胶电泳验证超速PCR反应体系的扩增效果,反应条件:120V 0.5h,拍照系统:Molecular Imager Gel Doc XR(Bio-Rad)。
实验结果表明,在切割目标产物分别存在或者同时存在时都可以进行模板在短时间内进行扩增(图4)。
4、PCR产物自组装
发夹探针Hairpin 1,Hairpin 2,Hairpin 3,Hairpin 4分别用超纯水溶解至100μM,于95℃加热5min,后缓慢降至室温,备用;按照超速PCR反应体系和反应过程完成超速PCR反应,将超速PCR反应产物加入不同组成的阵列中,使得阵列终浓度为2μM的Hairpin 1,Hairpin 2,Hairpin 3和Hairpin 4中,加入自组装缓冲液(8mM Na2HPO4,2.5mM NaH2PO4,0.15M NaCl,2mM MgCl2,pH 7.4),使得每个反应体系的总体积为50μl,37℃,30min,进行HCR反应。阵列排列顺序见图5。根据阵列的排列顺序,可以对镁离子、钠离子是否是单独存在,还是共存做出判断,在依据产物催化ABTS的颜色变化,再对其进行单独定量。
5、显色模块的建立与验证
80μL酶活缓冲液(100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4),10μL氯高铁血红素溶液与10μL HCR产物,混匀后37℃反应30min,使HCR产物结合氯高铁血红素形成具有类过氧化物酶活性的G四链体结构,加入100μL ABTS显色液,混匀,37℃避光孵育10min,酶标仪测定OD415
所述氯高铁血红素溶液的配制方法为:用DMSO配制浓度为20mM的氯高铁血红素原液,将2μL氯高铁血红素原液与1mL所述酶活缓冲液混合,即得。
6、双重金属离子的超灵敏、可视化的快速检测
根据上述优化体系,分别加入不同浓度的20、60、90、150、200nM的Na+和30、60、90、150、300nM的Mg2+的切割产物进行超快PCR,将PCR进行自组装,在适宜的缓冲条件下进行显色,根据颜色变化绘制显色的标准曲线,Na+标准曲线见图6,Mg2+标准曲线见图7。
Na+检测范围是20-200nM(可在此范围内实现定量检测),最低检出限是3.6nM。
Mg2+检测范围是30-300nM(可在此范围内实现定量检测),最低检出限是6.8nM。
最低检测限对应的吸光度值=平均空白吸光度值+3σ(空白值得标准偏差),又称3σrule原则。然后根据标准曲线,推导出最低检测浓度。
实施例2检测方法的特异性考察
按照实施例1构建的生物传感器,分别将100nM Na+、10μM的Ag+、Mg2+、Zn2+、Cd2+、Hg2 +、Cr3+加入到体系中进行检测,结果表明,所建立的Na+生物传感器具有较好的特异性(图8)。
按照实施例1构建的生物传感器,分别将50nM Mg2+、5μM的Ag+、Cu2+、Zn2+、Cd2+、Hg2+、Cr3+、Fe2+加入到体系中进行检测,结果表明,所建立的Mg2+生物传感器具有较好的特异性(图9)。
按照实施例1构建的生物传感器,分别将100nM Na+、50nM Mg2+、5μM的Ag+、Cu2+、Zn2 +、Cd2+、Hg2+、Cr3+、Fe2+加入到体系中进行检测,结果表明,所建立的Mg2+生物传感器具有较好的特异性(图10)。
实施例3加标实验
取高纯水用实施例1构建的生物传感器进行检测,Mg2+、Na+无检出,对其进行加标实验,连续测定多次所得结果见表1。
表1加标回收实验结果
实施例4HCR反应时间的优化
按照实施例1构建的生物传感器,将探针1、探针2分别用水溶解至100μM,于95℃加热5min,然后缓慢降至室温备用;将PCR产物加入终浓度为2μM的探针1和探针2的混合液中,并加入自组装缓冲液至总体积50μL。HCR反应时间分别是30min、1h、1.5h、2h。结果见图11,由图11可以看出,30min内就可以形成足够的长双链,因此确定反应时间为30min。
按照实施例1构建的生物传感器,将探针3、探针4分别用水溶解至100μM,于95℃加热5min,然后缓慢降至室温备用;将PCR产物加入终浓度为2μM的探针3和探针4的混合液中,并加入自组装缓冲液至总体积50μL。HCR反应时间分别是10min、20min、30min、40min、50min。结果见图12,由图12可以看出,30min内就可以形成足够的长双链,因此确定反应时间为30min。
实施例5HCR反应中发夹探针序列的优化
按照实施例1构建的生物传感器,设计如下钠离子发夹探针组合实验组(表2)。所用促发子的碱基序列如下:5′-AGACGAAGCACTGGTTGAAACTCC-3′。
表2
结果见图13,由图13可以看出,实验组1促发HCR的效果最好,因此本发明选择将发夹探针组合Hairpin 1+Hairpin 2作为HCR促发序列。
按照实施例1构建的生物传感器,设计如下镁离子发夹探针组合实验组(表3)。所用促发子的碱基序列如下:5′-AGTCTAGGATTCGGCGTCCCTT-3′。
表3
结果见图14,由图14可以看出,实验组1促发HCR的效果最好,因此本发明选择将发夹探针组合Hairpin 3+Hairpin 4作为HCR促发序列。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 中国农业大学
<120> 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法
<130> KHP181111297.1
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ctctatctat aggaagtacc gccgcggagg ga 32
<210> 2
<211> 61
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gcggcggtac caggtcaaag gtgggtgagg ggacgccaag agtccccgcg gttagataga 60
g 61
<210> 3
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ggaagtaccg ccgcggaggg a 21
<210> 4
<211> 70
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
agacgaagca ctggttgaaa ctccggagtt tcaaccagtg cttcgtcttc atcgcaccgt 60
caaaggaacc 70
<210> 5
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
agggcgggtg ggtggagttt caaccagtgc ttcgtctccc cagacgaagc actggttgat 60
gggt 64
<210> 6
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tgggtagacg aagcactggt tgaaactcct caaccagtgc ttcgtctggg gtgggtaggg 60
cggg 64
<210> 7
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gtcacgagtc actatra 60
ggaagatggc gaaattcggg gc 40
<210> 8
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tttcgccatc ttctccgagc cggtcgaaat agtgactcgt gac 43
<210> 9
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ggaagatggc gaaattcggg gc 22
<210> 10
<211> 70
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
agtctaggat tcggcgtccc ttaattaagg gacgccgaat cctagacttc atcgcaccgt 60
caaaggaacc 70
<210> 11
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
agggcgggtg ggttaaggga cgccgaatcc tagactcaaa gtagtctagg attcggcgtc 60
gggt 64
<210> 12
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gggtagtcta ggattcggcg tcccttaaga cgccgaatcc tagactactt tgagggcggg 60
tggg 64
<210> 13
<211> 94
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tcatcgcacc gtcaaaggaa cctcagtatc agtgctatac gtcgatcagt agccccgaat 60
ttcgccatct tcctccctcc gcggcggtac ttcc 94

Claims (10)

1.一种快速检测镁、钠离子的系统,其特征在于,包括:(1)切割体系,(2)sPCR扩增体系,(3)HCR体系,(4)包含ABTS显色液的检测体系;
所述检测体系用于对待测样品依次经由所述切割体系、sPCR扩增体系和HCR体系进行反应后所得产物进行显色检测;
其中,所述切割体系包括底物链I和酶链I以及底物链II和酶链II:
底物链I:5′-CTCTATCTATrA-GGAAGTACCGCCGC-3′
酶链I:5′-GCGGCGGTACCAGGTCAAAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGATAGAG-3′
其中,rA表示核糖核酸;-表示钠离子切割位点;
底物链II:5′-GTCACGAGTCACTATrA-GGAAGATGGCGAAA-3′
酶链II:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
其中,rA表示核糖核酸;-表示镁离子切割位点;
所述sPCR扩增体系包括:正向隔断引物I、反向引物I、正向隔断引物II、反向引物II、模板:
正向隔断引物I:5′-AGACGAAGCACTGGTTGAAACTCC-隔断物-GGAGTTTCAACCAGTGCTTCGTCTTCATCGCACCGTCAAAGGAACC-3′
反向引物I:5′-GGAAGTACCGCCGCGGAGGGA-3′
正向隔断引物II:5′-AGTCTAGGATTCGGCGTCCCTTAA-隔断物-TTAAGGGACGCCGAATCCTAGACTTCATCGCACCGTCAAAGGAACC-3′
反向引物II:5′-GGAAGATGGCGAAATTCGGGGC-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCTCCCTCCGCGGCGGTACTTCC-3′;
所述HCR体系包括4条探针:
探针1:5′-AGGGCGGGTGGGTGGAGTTTCAACCAGTGCTTCGTCTCCCCAGACGAAGCACTGGTTGATGGGT-3′
探针2:5′-TGGGTAGACGAAGCACTGGTTGAAACTCCTCAACCAGTGCTTCGTCTGGGGTGGGTAGGGCGGG-3′
探针3:5′-AGGGCGGGTGGGTTAAGGGACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTCGGGT-3′
探针4:5′-GGGTAGTCTAGGATTCGGCGTCCCTTAAGACGCCGAATCCTAGACTACTTTGAGGGCGGGTGGG-3′。
2.根据权利要求1所述的系统,其特征在于,所述正向隔断引物中的隔断物为聚六乙二醇。
3.根据权利要求1或2所述的系统,其特征在于,所述检测体系包括:酶活缓冲液和氯高铁血红素溶液。
4.权利要求1-3任一项所述的系统在检测镁、钠离子方面中的应用。
5.根据权利要求4所述的应用,其特征在于,所述检测为定性检测或定量检测。
6.基于权利要求1-3任一项所述系统的通用隔断超快扩增镁、钠切割型功能核酸可视化定性检测方法,其特征在于,包括如下步骤:
S1、向所述切割体系中加入待测样品,进行切割反应;
S2、将S1所得切割产物加入所述sPCR扩增体系中进行超快聚合酶链式反应,得sPCR产物;
S3、将所述sPCR产物加入所述HCR体系中进行HCR反应,得HCR产物;
S4、利用所述检测体系对所述HCR产物进行检测。
7.根据权利要求6所述的方法,其特征在于,S1具体如下:将底物链与酶链按等摩尔比例混合,用缓冲液稀释至浓度1μM-2μM,85℃-95℃加热15min,然后降温至25-37℃,得到核酶液;向35μL所述核酶液中加入待测样品溶液,形成40μL体系,于36-38℃孵育4-6min,然后加入4-6μL终止液,得到切割产物。
8.根据权利要求6所述的方法,其特征在于,所述检测体系包括酶活缓冲液和氯高铁血红素稀释溶液,将酶活缓冲液、氯高铁血红素稀释溶液和HCR产物按体积比为8:1:1混匀,在35-38℃条件下反应20-40min,加入与前述混合物等体积的ABTS显色液,混匀,35-38℃避光孵育,进行肉眼监测。
9.基于权利要求1-3任一项所述系统的通用隔断超快扩增镁、钠切割型功能核酸可视化定量检测方法,其特征在于,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的镁、钠离子溶液,构建具有不同镁、钠离子浓度的切割体系,sPCR扩增、HCR反应与检测步骤与权利要求6中的步骤相同;
以镁、钠离子浓度为横坐标,以OD415值为纵坐标,绘制标准曲线;
SII、按照权利要求6所述的方法对待测样品进行检测,将测得的OD415值代入标准曲线,计算得到待测样品中镁、钠离子的含量,实现对镁、钠离子的定量检测。
10.根据权利要求9所述的方法,其特征在于,所述不同镁、钠离子浓度的浓度区间分别为30-300nM和20-200nM。
CN201810637034.XA 2018-06-20 2018-06-20 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法 Pending CN108949918A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810637034.XA CN108949918A (zh) 2018-06-20 2018-06-20 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810637034.XA CN108949918A (zh) 2018-06-20 2018-06-20 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法

Publications (1)

Publication Number Publication Date
CN108949918A true CN108949918A (zh) 2018-12-07

Family

ID=64490266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810637034.XA Pending CN108949918A (zh) 2018-06-20 2018-06-20 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法

Country Status (1)

Country Link
CN (1) CN108949918A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170241971A1 (en) * 2014-04-28 2017-08-24 Juewen Liu Phosphorothioate dnazyme complexes and use thereof
CN107976435A (zh) * 2017-10-27 2018-05-01 中国农业大学 一种基于功能核酸的传感器及其在钠离子检测中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170241971A1 (en) * 2014-04-28 2017-08-24 Juewen Liu Phosphorothioate dnazyme complexes and use thereof
CN107976435A (zh) * 2017-10-27 2018-05-01 中国农业大学 一种基于功能核酸的传感器及其在钠离子检测中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANYONG PENG, ET AL.,: "DNAzyme-mediated assays for amplified detection of nucleic acids and proteins", 《ANALYTICAL CHEMISTRY》 *
JINGJING TIAN,WENTAO XU ET AL.: "Visual single cell detection of dual-pathogens based on multiplex super PCR (MS-PCR) and asymmetric tailing HCR (AT-HCR)", 《SENSORS AND ACTUATORS B: CHEMICAL》 *

Similar Documents

Publication Publication Date Title
CN107271668A (zh) 一种多信号检测真菌毒素的方法及试剂盒
CN109321672B (zh) 核苷酸组合物、试剂盒及检测方法
CN102827929B (zh) 一种核酸检测方法
CN108796131A (zh) 可视化鉴别口蹄疫病毒和蓝舌病病毒的二重荧光rt-lamp检测组、试剂盒及其应用
CN107686863A (zh) 环介导等温扩增技术检测三种泌尿生殖道支原体的方法
CN108251514A (zh) 一种双重致病菌的比色传感新方法
CN108949931A (zh) 一种锌离子切割型通用隔断超快扩增可视化传感器
CN110205394A (zh) 一种用于检测沙门氏菌的生物传感器及方法
CN107976435A (zh) 一种基于功能核酸的传感器及其在钠离子检测中的应用
CN109913565A (zh) 一种用于检测副溶血弧菌的试剂盒、引物对、探针及方法
CN108841937A (zh) 通用隔断超快扩增镁、锌切割型功能核酸可视化检测方法
CN106093023A (zh) 一种检测汞离子的比色传感器及其制备方法
CN108949932A (zh) 通用隔断超快扩增铜、钙切割型功能核酸可视化检测方法
CN114875174A (zh) 一种快速鉴别毒红菇的lamp引物组、试剂盒及检测方法
CN108486233A (zh) 一种可视化检测转基因食品的方法
CN111560377A (zh) 一种多价核酸及其在制备malat1检测试剂盒中的用途
CN108949934B (zh) 一种铬离子切割型通用隔断超快扩增可视化传感器
CN104677897B (zh) 基于纳米金催化显色体系的pH及尿素的测定方法
CN108949918A (zh) 通用隔断超快扩增镁、钠切割型功能核酸可视化检测方法
CN110592186B (zh) 一种and分子逻辑门传感体系及其制备方法和应用
CN108949936A (zh) 一种镁离子切割型通用隔断超快扩增可视化传感器
CN110229872A (zh) 一种基于G-四链体探针结构解旋的可视化识别microRNA的检测方法
CN110628950A (zh) 一种用于检测ev71病毒的引物组合、试剂盒和psr方法
CN108841935A (zh) 一种钠离子切割型通用隔断超快扩增可视化传感器
CN108841938A (zh) 一种铜离子切割型通用隔断超快扩增可视化传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207