CN108949931A - 一种锌离子切割型通用隔断超快扩增可视化传感器 - Google Patents

一种锌离子切割型通用隔断超快扩增可视化传感器 Download PDF

Info

Publication number
CN108949931A
CN108949931A CN201810634857.7A CN201810634857A CN108949931A CN 108949931 A CN108949931 A CN 108949931A CN 201810634857 A CN201810634857 A CN 201810634857A CN 108949931 A CN108949931 A CN 108949931A
Authority
CN
China
Prior art keywords
zinc ion
hcr
detection
solution
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810634857.7A
Other languages
English (en)
Other versions
CN108949931B (zh
Inventor
许文涛
罗云波
黄昆仑
杜再慧
田晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201810634857.7A priority Critical patent/CN108949931B/zh
Publication of CN108949931A publication Critical patent/CN108949931A/zh
Application granted granted Critical
Publication of CN108949931B publication Critical patent/CN108949931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Abstract

本发明提供一种锌离子切割型通用隔断超快扩增可视化传感器,包括:(1)切割体系,(2)sPCR扩增体系,(3)HCR体系,(4)包含ABTS显色液的检测体系。本发明通过巧妙地设计引物、模板及探针,使得在锌离子存在下可对模板进行超快扩增,扩增产物通过促发HCR反应,使得产物在适宜环境中形成G四链体。进一步利用G四链体的类过氧化物酶活性进行显色,解决了传统PCR产物难于可视化检测的难题,实现了对锌离子的快速、可视化检测。不仅如此,本发明提供的传感器对锌离子具有高特异、高灵敏的特点,检测结果更加客观、准确。

Description

一种锌离子切割型通用隔断超快扩增可视化传感器
技术领域
本发明涉及生物传感器技术领域,具体地说,涉及一种锌离子切割型通用隔断超快扩增可视化传感器。
背景技术
锌,化学符号是Zn,原子序数是30,原子量是65.38,属第IIB族,是一种浅灰色的过渡金属,在自然界中分布较广,主要以硫化锌、氧化锌状态存在,也可与很多元素如铅、铜、锌的矿物共生。锌是人体含量最多的微量元素,其含量高达3g之多,主要以锌离子的形式参与体内的代谢,参与人体内200多种酶的合成与活化,是机体新陈代谢中必不可少的物质。锌污染是指锌及化合物所引起的环境污染。主要污染源有锌矿开采、冶炼加工、机械制造以及镀锌、仪器仪表、有机会合成和造纸等工业的排放。
传统的锌离子检测方法一般可分为冷原子吸收光谱法、石墨碳原子吸收光谱法和火焰原子吸收光谱法等,但是普遍存在前处理复杂、大型仪器专人操作、检测周期长、价格昂贵的特征。因此迫切需要发展无污染的、简便快速、高灵敏度和高特异性的方法来满足金属离子的检测的需要,以保障食品的安全。
发明内容
本发明的目的是提供一种锌离子切割型通用隔断超快扩增可视化传感器。
本发明的另一目的是提供基于生物传感器技术检测锌离子的方法。
为了实现本发明目的,发明人根据锌离子的特异性核酶,设计通用隔断引物对其进行超快聚合酶链式反应(super Polymerase Chain Reaction,sPCR),结合富G序列在K+存在条件下形成具有类过氧化物酶活性的G四链体,构建了一种新型的基于隔断引物的锌离子切割型功能核酸比色传感器。
第一方面,本发明提供一种锌离子切割型通用隔断超快扩增可视化传感器,包括:(1)切割体系,(2)sPCR扩增体系,(3)HCR体系,(4)包含ABTS显色液的检测体系。
所述检测体系用于对待测样品依次经由所述切割体系、sPCR扩增体系和HCR体系进行反应后所得产物进行显色检测;
其中,所述切割体系包括底物链和酶链:
底物链:5′-CCACCACAATGTTATACAGGTACTATrA—GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
酶链:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
其中,rA表示核糖核酸;-表示锌离子切割位点;
所述sPCR扩增体系包括:正向隔断引物、反向引物、模板:
正向隔断引物:5′-AGACGAAGCACTGGTTGAAACTCC-隔断物-GGAGTTTCAACCAGTGCTTCGTCTTCATCGCACCGTCAAAGGAACC-3′
反向引物:5′-GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCCCACCACCGCCTCGTAACTCAACTTCC-3′
所述HCR体系包括2条探针:
探针1:5′-AGGGCGGGTGGGTGGAGTTTCAACCAGTGCTTCGTCTCCCCAGACGAAGCACTGGTTGATGGGT-3′
探针2:5′-TGGGTAGACGAAGCACTGGTTGAAACTCCTCAACCAGTGCTTCGTCTGGGGTGGGTAGGGCGGG-3′。
其中,所述正向隔断引物中的隔断物为聚六乙二醇。其它能够阻止PCR延伸的隔断结构也可用于本发明。
所述DNA聚合酶为Ex Taq DNA聚合酶,所述缓冲液为10×Ex Taq Buffer,二者与所述dNTP均购自赛默飞科技(Thermo Scientific Life Technologies)。
本发明所述的检测体系包括:酶活缓冲液,氯高铁血红素溶液。
其中,所述酶活缓冲液为:100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4。
所述氯高铁血红素溶液为20mM的氯高铁血红素原液与上述酶活缓冲液按照2μL:1mL的比例混合后的氯高铁血红素稀释溶液。
本发明还提供前述传感器在检测锌离子方面中的应用,所述检测可表现为定性检测或定量检测。
第二方面,本发明提供了一种利用前述传感器对锌离子进行定性检测的方法,包括如下步骤:
S1、向所述切割体系中加入待测样品,进行切割反应;
S2、将S1所得切割产物加入所述sPCR扩增体系中进行超快聚合酶链式反应,得sPCR产物;
S3、将所述sPCR产物加入所述HCR体系中进行HCR反应,得HCR产物;
S4、利用所述检测体系对所述HCR产物进行检测。
S1具体如下:将底物链与酶链按等摩尔比例混合,用缓冲液稀释至浓度1μM-2μM,85℃-95℃加热15min,然后降温至25-37℃,得到核酶液;向35μL所述核酶液中加入待测样品溶液,形成40μL体系,于36-38℃孵育4-6min,然后加入4-6μL终止液,得到切割产物。
进一步地,所述检测体系包括酶活缓冲液和氯高铁血红素稀释溶液,将酶活缓冲液、氯高铁血红素稀释溶液和HCR产物按体积比为8:1:1混匀(总体积为100μL),在35-38℃条件下反应20-40min,加入与前述混合物等体积的ABTS显色液,混匀,35-38℃避光孵育,肉眼进行监测。
第三方面,本发明提供了一种利用前述传感器对锌离子进行定量检测的方法,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的锌离子溶液,构建具有不同锌离子浓度的切割体系,sPCR扩增、HCR反应与检测步骤与前述定性检测的步骤相同;
以锌离子浓度为横坐标,以OD415值为纵坐标,绘制标准曲线;
SII、按照前述定性检测方法对待测样品进行检测,将测得的OD415值代入标准曲线,计算得到待测样品中锌离子的含量,实现对锌离子的定量检测。
本发明提供一种基于生物传感器技术检测锌离子的方法,首先设计锌离子特异性核酶,包括底物链和酶链,将底物链与酶链进行杂交形成具有特异性锌离子切割活性的核酶,当锌离子存在的条件下发生切割反应,切割下来的核酸片段作为反向引物(即目标引发分子),与正向隔断引物一起对模板进行PCR扩增反应,所得PCR产物的一端带有一段单链核酸序列;所述PCR产物在K+存在条件下,形成G四链体,催化H2O2和ABTS显色,进而完成对锌离子的快速可视化检测;或者
通过PCR产物促发HCR反应,使得HCR产物在K+存在条件下形成G四链体,催化H2O2和ABTS显色,进而完成对锌离子的快速可视化检测。
本发明中,显色液可用TMB替代。
所述底物链和酶链的碱基序列如下:
底物链:5′-CCACCACAATGTTATACAGGTACTATrA—GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
酶链:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
其中,rA表示核糖核酸;-表示锌离子切割位点;
所述正向隔断引物的5′端具有发夹结构,两段反向互补碱基序列之间至少设有一阻断物,所述阻断物可阻断PCR延伸。
优选地,所述正向隔断引物的发夹结构上具有富G碱基序列。当所述正向隔断引物的发夹结构上设计有富G碱基序列时,则无需借助HCR反应,即可实现对锌离子的快速可视化检测。
前述的方法,HCR的反应体系中至少含有一条带发夹结构的探针,所述发夹结构的碱基组成与所述正向隔断引物发夹结构的碱基序列基本相同,使得所述PCR产物能够促发HCR反应。
优选地,所述阻断物为聚六乙二醇。
前述的方法,锌离子检测中所用的底物链、酶链、正向隔断引物、反向引物、模板和2条探针的碱基序列如下(SEQ ID NO:1-7):
底物链:5′-CCACCACAATGTTATACAGGTACTATrA—GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
酶链:5′-CTCAACTTCTCCGAGCCGGTCGAAATAGTACCT-3′
正向隔断引物:5′-AGACGAAGCACTGGTTGAAACTCC-聚六乙二醇-GGAGTTTCAACCAGTGCTTCGTCTTCATCGCACCGTCAAAGGAACC-3′
反向引物:5′-GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCCCACCACCGCCTCGTAACTCAACTTCC-3′
探针1:5′-AGGGCGGGTGGGTGGAGTTTCAACCAGTGCTTCGTCTCCCCAGACGAAGCACTGGTTGATGGGT-3′
探针2:5′-TGGGTAGACGAAGCACTGGTTGAAACTCCTCAACCAGTGCTTCGTCTGGGGTGGGTAGGGCGGG-3′
其中,rA表示核糖核酸;-表示锌离子切割位点。
本发明还提供与上述方法配套的检测试剂盒,所述试剂盒至少包括以下成分:底物链、酶链、正向隔断引物、模板、探针1和探针2等。
本发明试剂盒的检测分析原理:首先将底物链与酶链进行杂交形成具有特异性锌离子切割活性的核酶,当锌离子存在的条件下发生切割反应,切割下来的核酸片段可以与模板结合进行PCR延伸,由于引物的隔断作用阻碍了聚合酶的延伸,使得PCR产物是带有促发HCR的特定序列,HCR产物在适宜的缓冲条件下(缓冲液中含有K+)形成G四链体,催化H2O2和ABTS显色,进而完成对锌离子的快速可视化检测。
具体检测方法如下:
1)核酶的构建:将底物链与酶链按等摩尔比例混合,用缓冲液稀释至浓度1μM-2μM,85-95℃加热15min,然后缓慢降至25-37℃(大约耗时45min),即得核酶液;
2)切割反应:向35μL上述核酶液中加入待测样品溶液,形成40μL体系,于25-37℃孵育4-6min,然后加入4-6μL终止液,得到切割产物;
3)超速PCR反应:配制由正向隔断引物、切割产物、模板、DNA聚合酶、dNTP、反应缓冲液和ddH2O组成的PCR反应体系,设置如下反应程序:90-95℃2s,55-60℃3s,30-40个循环,进行PCR反应,得到PCR产物;
4)HCR反应:构建由探针1、探针2、PCR产物和自组装缓冲液组成的HCR反应体系,于37℃反应30-60min,得到HCR产物;
5)显色反应:将80μL酶活缓冲液、10μL氯高铁血红素溶液与10μL HCR产物混合,于37℃反应30min,加入100μL ABTS显色液,混匀,37℃避光孵育5-10min,根据加入显色液前后溶液颜色的变化来判断待测样品中是否含有锌离子以及锌离子浓度的高低。可通过肉眼直接观察溶液颜色的变化,或利用酶标仪测定溶液的OD值变化。
其中,步骤1)所述缓冲液的配方为:25mM HEPES液(pH 7.6)。
步骤2)所述终止液的配方为:0.2M EDTA,2M NaCl,0.5M Tris。
步骤4)所述自组装缓冲液的配方为:8mM Na2HPO4,2.5mM NaH2PO4,0.15M NaCl,2mM MgCl2,pH 7.4。
步骤5)所述酶活缓冲液的配方为:100mM Tris、120mM NaCl、10mM MgCl2、100mMKCl,pH8.4。
步骤5)所述氯高铁血红素溶液的配制方法为:用DMSO配制浓度为20mM的氯高铁血红素原液,将2μL氯高铁血红素原液与1mL所述酶活缓冲液混合,即得。
优选地,步骤3)中PCR反应体系如下:
步骤4)中HCR反应体系的构建方法如下:
①将探针1、探针2分别用水溶解至100μM,于90-95℃加热5min,然后缓慢降至室温备用;
②将PCR产物加入终浓度为2μM-3uM的探针1和探针2的混合液中,并加入自组装缓冲液至总体积50μL。
配制一系列浓度的锌离子标准溶液,按照上述方法进行检测。步骤5)利用酶标仪测定溶液OD415值来判断显色情况,并根据溶液颜色变化绘制显色的标准曲线:y=0.0017x+0.2482,R2=0.996,从而可实现对锌离子的定量检测。本方法的锌离子检测限是1-800nM。
借由上述技术方案,本发明至少具有下列优点及有益效果:
本发明通过建立一种隔断快速扩增锌离子切割型功能核酸比色传感器,用于锌离子的快速可视化检测。根据锌离子的特异性核酶,设计隔断引物对其进行超快聚合酶链式反应和HCR反应,结合富G序列在K+存在条件下形成具有类过氧化物酶活性的G四链体,构建了一种新型的基于通用隔断引物的锌切割型功能核酸比色传感器,并提供了一种快速、可视的锌离子检测新方法。使样品的检测时间大大缩短,检出限达nM级,而且本发明成功解决了PCR产物的可视化问题,对解决现场实时快速检测具有重要的现实意义。
(一)本方法首次构建了隔断引物,对模板进行超快扩增,将耗时3小时左右的传统PCR过程缩减到10分钟,显著减少了PCR反应的用时。
(二)引物的隔断作用阻碍了聚合酶的延伸,获得单链核酸序列。可以促发HCR反应,使得产物在适宜的条件下(缓冲液中含有K+)形成具有类过氧化物酶活性的G四链体。
(三)PCR产物或HCR产物与ABTS发生颜色变化,解决了传统PCR产物难于可视化检测的难题。
(四)本方法可实现锌离子的大批量、快速检测。
附图说明
图1为本发明实施例1中锌离子核酶制备并切割验证的结果;其中,泳道1:核酶-Zn;泳道2-4:切割体系。
图2为本发明实施例1中超速PCR仪的外观结构。
图3为本发明实施例1中超速PCR扩增产物的胶图;其中,M:DNA Marker2000;泳道1:阴性对照(切割体系中不含锌离子和引物);泳道2:锌离子超速PCR产物。
图4为本发明实施例1中Zn2+HCR产物。
图5为本发明实施例1中根据不同浓度锌离子及溶液颜色变化绘制显色的标准曲线。
图6为本发明实施例2中生物传感器特异性检测结果。
图7为本发明实施例4中HCR反应时间优化实验结果;其中,1:阴性,2:10min,3:20min,4:30min,5:1h。
图8为本发明实施例5中发夹探针序列优化实验结果;其中,1-3分别对应于组1-组3。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
本发明中,ABTS显色液的配方为:1mL DNAzyme底物缓冲液,柠檬酸0.933g,蒸馏水100mL,5μL ABTS底物溶液,1μL 30%H2O2
DNAzyme底物缓冲液:即为pH 3.6的柠檬酸盐缓冲液,配方为:Na2HPO4.12H2O1.843g,柠檬酸0.933g,蒸馏水100mL。
ABTS底物溶液:取20mg 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐粉末(购自Sigma公司)溶于1mL DMSO,即得。
实施例1锌离子切割型通用隔断超快扩增可视化传感器的建立
1、实验材料
SYBR Gold核酸染料、核酸分子量标准ultra-low range DNA ladder、dNTP、ExTaq DNA聚合酶、10×Taq buffer、氯高铁血红素、氯化锌、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二胺盐(ABTS)、H2O2、4-羟乙基哌嗪乙磺酸(HEPES),氢氧化钠,磷酸氢二钠,均购自赛默飞科技(Thermo Scientific Life Technologies)。实验用水均来自Milli-Q纯水系统。
序列设计如下(SEQ ID NO:1-7):
注:核酶切割目标产物和扩增模板3’端序列互补;
切割位点用“-”表示;
核酶底物链-Zn和核酶酶链-Zn共同组成锌离子的特异性核酶(核酶-Zn)。
2、核酶的构建及切割反应体系的验证
将4μL核酶底物链-Zn(10μM母液)与4μL核酶酶链-Zn(10μM母液)用缓冲液(25mMHEPES buffer,pH 7.6)稀释至40μL,95℃加热15min,然后缓慢降至25℃,大约耗时45min。
加入5μL氯化锌溶液(1μM母液),形成40μL体系,于25℃下孵育6分钟,在40μL体系中加入5μL终止液(浓度为0.2M EDTA,2M NaCl,0.5M Tris),混匀后4摄氏度保存。用20%的变性聚丙烯酰胺凝胶电泳验证,得到锌离子核酶切割后的小片段,证明锌离子核酶的制备与切割成功(图1)。
3、超速PCR装置的搭建以及超速PCR反应体系的建立与验证
超速PCR装置的主要结构如图2所示,其具体的结构、连接方式和工作原理、工作过程包括:超速PCR装置的温度变化经由一个95℃的高温水浴锅和一个58℃的中温水浴锅来实现。采用Light Cycler型号的毛细管(20μL,04 929 292 001,Roche)作为PCR样品室。通过快速离心的方式,样品会分别聚集到各个毛细管一端;离心完成后带有样品的毛细管被固定在一个专用的塑料支架上。
锌离子超速PCR体系如下:
在实际检测中,切割产物是指上述切割反应体系中,用待测样品替换标样。
在冰上配制10μL反应体系,迅速置于超速PCR反应装置中进行温度控制。超速PCR反应程序:95℃2s,58℃3s,36个循环,总计3min。
完成超速PCR反应过程,使用2%琼脂糖凝胶电泳验证超速PCR反应体系的扩增效果,反应条件:120V 0.5h,拍照系统:Molecular Imager Gel Doc XR(Bio-Rad)。
实验结果表明,在切割产物存在时可以使模板在短时间内进行扩增(图3)。
4、PCR产物自组装
发夹探针Hairpin 1,Hairpin 2分别用超纯水溶解至100μM,于95℃加热5min,然后缓慢降至室温,备用;按照超速PCR反应体系和反应程序完成超速PCR反应,将超速PCR反应产物加入终浓度为2μM的Hairpin 1和Hairpin 2混合液中,并加入自组装缓冲液(8mMNa2HPO4,2.5mM NaH2PO4,0.15M NaCl,2mM MgCl2,pH 7.4),使得每个反应体系的总体积为50μl,37℃,30min,进行HCR反应(图4)。
5、显色模块的建立与验证
80μL酶活缓冲液(100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4),10μL氯高铁血红素溶液与10μL HCR产物,混匀后37℃反应30min,使HCR产物结合氯高铁血红素形成具有类过氧化物酶活性的G四链体结构,加入100μL ABTS显色液,混匀,37℃避光孵育10min,酶标仪测定OD415
所述氯高铁血红素溶液的配制方法为:用DMSO配制浓度为20mM的氯高铁血红素原液,将2μL氯高铁血红素原液与1mL所述酶活缓冲液混合,即得。
6、锌离子超灵敏、可视化的快速检测
根据上述优化体系,分别加入不同浓度的1、100、200、400、800nM的Zn2+的切割产物进行超快PCR,将PCR进行自组装,在适宜的缓冲条件下进行显色,根据颜色变化绘制显色的标准曲线(图5)。
Zn2+检测范围是1-800nM(可在此范围内实现定量检测),最低检出限是0.86nM。
实施例2传感器的特异性考察
按照实施例1构建的生物传感器,分别将500nM Zn2+、10μM的Ag+、Mg2+、Ca2+、Cd2+、Hg2+、Cr3+加入到体系中进行检测,结果表明,所建立的Zn2+生物传感器具有较好的特异性(图6)。
实施例3加标实验
取高纯水用实施例1构建的生物传感器进行检测,Zn2+无检出,对其进行加标实验,连续测定多次所得结果见表1。
表1 Zn2+加标回收实验结果
实施例4HCR反应时间的优化
按照实施例1构建的生物传感器,将探针1、探针2分别用水溶解至100μM,于95℃加热5min,然后缓慢降至室温备用;将PCR产物加入终浓度为2μM的探针1和探针2的混合液中,并加入自组装缓冲液至总体积50μL。HCR反应时间分别是10min、20min、30min、1h。将HCR产物进行显色,结果见图7,由图7可以看出,30min内就可以形成足够的长双链,因此确定反应时间为30min。
实施例5HCR反应中发夹探针序列的优化
按照实施例1构建的生物传感器,设计如下发夹探针组合实验组(表2)。所用促发子的碱基序列如下:5′-AGACGAAGCACTGGTTGAAAC-3′。
表2
结果见图8,由图8可以看出,实验组1促发HCR的效果最好,因此本发明选择将发夹探针组合Hairpin 1+Hairpin 2作为HCR促发序列。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 中国农业大学
<120> 一种锌离子切割型通用隔断超快扩增可视化传感器
<130> KHP181111561.5
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ccaccacaat gttatacagg tactatagga agttgagtta cgaggcggtg gtgg 54
<210> 2
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ctcaacttct ccgagccggt cgaaatagta cct 33
<210> 3
<211> 70
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
agacgaagca ctggttgaaa ctccggagtt tcaaccagtg cttcgtcttc atcgcaccgt 60
caaaggaacc 70
<210> 4
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ggaagttgag ttacgaggcg gtggtgg 27
<210> 5
<211> 100
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tcatcgcacc gtcaaaggaa cctcagtatc agtgctatac gtcgatcagt agccccgaat 60
ttcgccatct tccccaccac cgcctcgtaa ctcaacttcc 100
<210> 6
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
agggcgggtg ggtggagttt caaccagtgc ttcgtctccc cagacgaagc actggttgat 60
gggt 64
<210> 7
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tgggtagacg aagcactggt tgaaactcct caaccagtgc ttcgtctggg gtgggtaggg 60
cggg 64

Claims (10)

1.一种锌离子切割型通用隔断超快扩增可视化传感器,其特征在于,包括:(1)切割体系,(2)sPCR扩增体系,(3)HCR体系,(4)包含ABTS显色液的检测体系;
所述检测体系用于对待测样品依次经由所述切割体系、sPCR扩增体系和HCR体系进行反应后所得产物进行显色检测;
其中,所述切割体系包括底物链和酶链:
底物链:5′-CCACCACAATGTTATACAGGTACTATrA—GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
酶链:5′-TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC-3′
其中,rA表示核糖核酸;-表示锌离子切割位点;
所述sPCR扩增体系包括:正向隔断引物、反向引物、模板:
正向隔断引物:5′-AGACGAAGCACTGGTTGAAACTCC-隔断物-GGAGTTTCAACCAGTGCTTCGTCTTCATCGCACCGTCAAAGGAACC-3′
反向引物:5′-GGAAGTTGAGTTACGAGGCGGTGGTGG-3′
模板:5′-TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTAGCCCCGAATTTCGCCATCTTCCCCACCACCGCCTCGTAACTCAACTTCC-3′
所述HCR体系包括2条探针:
探针1:5′-AGGGCGGGTGGGTGGAGTTTCAACCAGTGCTTCGTCTCCCCAGACGAAGCACTGGTTGATGGGT-3′
探针2:5′-TGGGTAGACGAAGCACTGGTTGAAACTCCTCAACCAGTGCTTCGTCTGGGGTGGGTAGGGCGGG-3′。
2.根据权利要求1所述的传感器,其特征在于,所述正向隔断引物中的隔断物为聚六乙二醇。
3.根据权利要求1或2所述的传感器,其特征在于,所述检测体系包括:酶活缓冲液和氯高铁血红素溶液。
4.权利要求1-3任一项所述传感器在检测锌离子方面中的应用。
5.根据权利要求4所述的应用,其特征在于,所述检测为定性检测或定量检测。
6.利用权利要求1-3任一项所述传感器对锌离子进行定性检测的方法,其特征在于,包括如下步骤:
S1、向所述切割体系中加入待测样品,进行切割反应;
S2、将S1所得切割产物加入所述sPCR扩增体系中进行超快聚合酶链式反应,得sPCR产物;
S3、将所述sPCR产物加入所述HCR体系中进行HCR反应,得HCR产物;
S4、利用所述检测体系对所述HCR产物进行检测。
7.根据权利要求6所述的方法,其特征在于,S1具体如下:将底物链与酶链按等摩尔比例混合,用缓冲液稀释至浓度1μM-2μM,85℃-95℃加热15min,然后降温至25-37℃,得到核酶液;向35μL所述核酶液中加入待测样品溶液,形成40μL体系,于36-38℃孵育4-6min,然后加入4-6μL终止液,得到切割产物。
8.根据权利要求6所述的方法,其特征在于,所述检测体系包括酶活缓冲液和氯高铁血红素稀释溶液,将酶活缓冲液、氯高铁血红素稀释溶液和HCR产物按体积比为8:1:1混匀,在35-38℃条件下反应20-40min,加入与前述混合物等体积的ABTS显色液,混匀,35-38℃避光孵育,肉眼进行监测。
9.利用权利要求1-3任一项所述传感器对锌离子进行定量检测的方法,其特征在于,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的锌离子溶液,构建具有不同锌离子浓度的切割体系,sPCR扩增、HCR反应与检测步骤与权利要求6中的步骤相同;
以锌离子浓度为横坐标,以OD415值为纵坐标,绘制标准曲线;
SII、按照权利要求6所述的方法对待测样品进行检测,将测得的OD415值代入标准曲线,计算得到待测样品中锌离子的含量,实现对锌离子的定量检测。
10.根据权利要求9所述的方法,其特征在于,所述不同锌离子浓度的浓度区间为1-800nM。
CN201810634857.7A 2018-06-20 2018-06-20 一种锌离子切割型通用隔断超快扩增可视化传感器 Active CN108949931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810634857.7A CN108949931B (zh) 2018-06-20 2018-06-20 一种锌离子切割型通用隔断超快扩增可视化传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810634857.7A CN108949931B (zh) 2018-06-20 2018-06-20 一种锌离子切割型通用隔断超快扩增可视化传感器

Publications (2)

Publication Number Publication Date
CN108949931A true CN108949931A (zh) 2018-12-07
CN108949931B CN108949931B (zh) 2020-11-24

Family

ID=64489512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810634857.7A Active CN108949931B (zh) 2018-06-20 2018-06-20 一种锌离子切割型通用隔断超快扩增可视化传感器

Country Status (1)

Country Link
CN (1) CN108949931B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609607A (zh) * 2018-12-25 2019-04-12 中国农业大学 一种用于锌离子定量检测的方法
CN109777860A (zh) * 2019-01-29 2019-05-21 中国农业大学 一种用于Zn2+定量检测的功能核酸生物传感器
CN110205394A (zh) * 2019-05-10 2019-09-06 中国农业大学 一种用于检测沙门氏菌的生物传感器及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966438A (zh) * 2017-10-27 2018-04-27 中国农业大学 一种基于锌的功能核酸的耐高盐传感器及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966438A (zh) * 2017-10-27 2018-04-27 中国农业大学 一种基于锌的功能核酸的耐高盐传感器及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGJING TIAN, ET AL.: "Visual Single Cell Detection of Dual-Pathogens based on Multiplex Super PCR (MS-PCR) and Asymmetric Tailing HCR (AT-HCR)", 《SENSORS AND ACTUATORS B》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609607A (zh) * 2018-12-25 2019-04-12 中国农业大学 一种用于锌离子定量检测的方法
CN109609607B (zh) * 2018-12-25 2022-03-01 中国农业大学 一种用于锌离子定量检测的方法
CN109777860A (zh) * 2019-01-29 2019-05-21 中国农业大学 一种用于Zn2+定量检测的功能核酸生物传感器
CN110205394A (zh) * 2019-05-10 2019-09-06 中国农业大学 一种用于检测沙门氏菌的生物传感器及方法

Also Published As

Publication number Publication date
CN108949931B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
JP6637962B2 (ja) 核酸増幅の比色検出方法
CN108949931A (zh) 一种锌离子切割型通用隔断超快扩增可视化传感器
Qing et al. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair
Wen et al. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid
CN106093023B (zh) 一种检测汞离子的比色传感器及其制备方法
Xiang et al. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I
CN106872682B (zh) 一种检测汞离子的比色生物传感器及其制备方法
CN108949934A (zh) 一种铬离子切割型通用隔断超快扩增可视化传感器
CN108841937A (zh) 通用隔断超快扩增镁、锌切割型功能核酸可视化检测方法
CN108949932A (zh) 通用隔断超快扩增铜、钙切割型功能核酸可视化检测方法
CN108949917B (zh) 一种汞离子错配型通用隔断超快扩增比色传感器
Zhou et al. Gold nanoparticles based colorimetric detection of target DNA after loop-mediated isothermal amplification
CN109402128A (zh) 黄曲霉毒素b1的核酸适配体、含有该核酸适配体的黄曲霉毒素b1检测试剂盒及检测方法
Yong-Xi et al. Amplified fluorescence detection of Pb2+ using Pb2+-dependent DNAzyme combined with nicking enzyme-mediated enzymatic recycling amplification
Li et al. Robust and highly specific fluorescence sensing of Salmonella typhimurium based on dual-functional phi29 DNA polymerase-mediated isothermal circular strand displacement polymerization
CN108841938A (zh) 一种铜离子切割型通用隔断超快扩增可视化传感器
CN108929900A (zh) 一种镉离子切割型通用隔断超快扩增可视化传感器
CN108841935A (zh) 一种钠离子切割型通用隔断超快扩增可视化传感器
Wen et al. A label-free protamine-assisted colorimetric sensor for highly sensitive detection of S1 nuclease activity
CN105838790B (zh) 一种银纳米簇传感器及其制备方法和在检测病毒基因中的应用
CN108949936A (zh) 一种镁离子切割型通用隔断超快扩增可视化传感器
CN115786466A (zh) 一种CRISPR/Cas调控的DNA银纳米簇传感器及其检测肉类掺假的方法和应用
CN108841936A (zh) 一种钙离子切割型通用隔断超快扩增可视化传感器
CN106755379A (zh) 对4种曲霉菌同步定量和基因分型的二聚体突变荧光引物定量pcr方法
Cai et al. Terminal protection G-quadruplex-based turn-on fluorescence biosensor for H 5 N 1 antibody

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant