CN108947587A - 一种氮化硼界面的制备方法 - Google Patents

一种氮化硼界面的制备方法 Download PDF

Info

Publication number
CN108947587A
CN108947587A CN201810774469.9A CN201810774469A CN108947587A CN 108947587 A CN108947587 A CN 108947587A CN 201810774469 A CN201810774469 A CN 201810774469A CN 108947587 A CN108947587 A CN 108947587A
Authority
CN
China
Prior art keywords
boron nitride
precast body
preparation
temperature
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810774469.9A
Other languages
English (en)
Inventor
成来飞
高志伟
范尚武
叶昉
陈乃齐
张立同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810774469.9A priority Critical patent/CN108947587A/zh
Publication of CN108947587A publication Critical patent/CN108947587A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种氮化硼界面的制备方法,具体涉及在晶须或纤维表面氮化硼的制备,其主要应用于陶瓷基复合材料界面制备领域。其技术特征在于步骤为浸渍硼酸乙醇溶液与常温干燥、高温脱水、氮化处理、高温热处理。本发明所提供的技术方案可以在晶须或纤维组成的单极小空隙预制体的增强体表面制备一种厚度均匀、连续并且质量稳定的氮化硼(BN)界面。本发明的工艺稳定,可重复性高,成本低廉,转化率较高,可用于制备大型复杂构件。

Description

一种氮化硼界面的制备方法
技术领域
本发明涉及一种氮化硼界面的制备方法,具体涉及在晶须或纤维表面氮化硼界面的制备。其主要应用于陶瓷基复合材料界面制备领域。
背景技术
碳化硅陶瓷基复合材料具有高比强度、高比模量、耐高温、抗氧化等一系列优异性能,可广泛应用于航空、航天领域。为了在更加严苛复杂的应力环境下服役,新兴的具有各向同性特征的碳化硅陶瓷基复合材料如碳化硅晶须(SiCw)增韧陶瓷基复合材料、碳化硅短切纤维增韧陶瓷基复合材料等被开发出来。通常陶瓷基复合材料中增强体与基体间的界面结合较强,需要引入适当的弱结合界面来实现界面相载荷传递和力学熔断功能,最大限度地发挥增强体的增韧效果。选择合适的界面材料与界面制备工艺是保证复合材料性能优异的关键一环。
热解碳(PyC)和氮化硼(BN)能够同时满足低模量和底剪切强度要求,是常用的陶瓷基复合材料界面材料。热解碳(PyC)是目前最常用,制备技术最成熟的界面材料,能够在增强体与基体间形成适当的弱结合界面,更好的发挥增强体的增韧效果。但热解碳(PyC)在低温下易氧化,使所制备的陶瓷基复合材料的抗氧化性下降,限制了陶瓷基复合材料的应用范围。氮化硼具有类石墨结构,热稳定性好,介电性能优良;较之于热解碳(PyC),氮化硼(BN)抗氧化性能更好,且高温氧化环境下的产物为液态氧化硼(B2O3),一方面可以有效阻止氧的扩散,另一方面液态氧化硼(B2O3)还可以填补材料内部的微裂纹起到一定的自愈合效果。所以,氮化硼(BN)是具有较大发展潜力的界面材料。
现有的复合材料界面制备工艺多针对传统的具有各向异性特征的连续纤维增韧陶瓷基复合材料。这种具有各向异性特征的陶瓷基复合材料的预制体大多具有两级孔隙结构(大于100微米的大孔隙与小于10微米的小孔隙),该结构有利于界面的渗透,使预制体的增强体表面形成厚度均匀连续的界面。但是具有各向同性特征的碳化硅陶瓷基复合材料的预制体内部为单极小孔隙结构(小于10微米的小孔隙),该结构不利于界面的渗透,使现有的界面制备工艺很难在预制体的增强体表面形成厚度均匀连续的界面。因此,在这种具有单极小孔隙结构预制体的增强体表面制备厚度均匀连续的界面成为目前亟需解决的问题。
典型的氮化硼(BN)界面制备方法有三种:化学气相渗透法(CVI)、浸渍-涂覆法(Dip-Coating)、先驱体浸渍裂解法(PIP)。化学气相渗透法多采用BCl3-NH3反应体系,当预制体内部为多级孔隙时,有利于反应气体的扩散,氮化硼(BN)界面的渗透能力较强,可在预制体内部形成厚度均匀的界面;当预制体内部为单极孔隙且孔隙尺寸较小时,反应气体扩散较为困难,氮化硼(BN)界面的渗透能力较弱,造成预制体内部形成的界面厚度不均匀。谢亚南等在文献“界面对SiCw/SiC层状陶瓷性能的影响”中采用CVI法在SiCw/SiC(SiCw为SiC晶须)层状陶瓷层内制备BN界面后,层状陶瓷的强度和韧性分别下降了15.38%和25.05%,这是由于CVI-BN是以扩散传质为主,气态前驱体的进入和扩散慢于等压热梯度CVI,SiCw/SiC层状陶瓷的层内为单极小孔隙,气体输送速度慢于沉积反应速度,使层内的BN界面厚度出现梯度,降低了材料的机械性能。浸渍-涂覆法(Dip-Coating)多采用硼酸-尿素反应体系,该法将硼酸与尿素以一定比例溶于乙醇-水混合溶液中,然后将制得的溶液浸渍预制体,经干燥后在氮气或氨气气氛下高温反应得到氮化硼(BN)界面。由于采用液相浸渍的方法引入硼源和氮源,因此浸渍-涂覆法适用于孔隙尺寸较小厚度较大的预制体。另外,该工艺具有操作简单,成本低并且反应副产物无毒的优点,但这种方法存在界面不连续,质量不均匀,转化率低等缺点。Liu等在文献“Mechanical and microwave dielectricproperties of SiCf/SiC composites with BN interphase prepared by dip-coatingprocess”中,使用浸渍-涂覆法在SiC纤维表面制备氮化硼(BN)界面,所制备的SiCf/BN/SiC复合材料的弯曲强度是未制备氮化硼(BN)界面SiCf/SiC复合材料的两倍,但存在SiC纤维表面BN界面不连续,浸渍-涂覆过程中的热处理造成SiC纤维损伤等不足。先驱体浸渍裂解法(PIP)将含有硼元素和氮元素的有机先驱体溶于有机溶剂中,然后将制得的溶液浸渍预制体,经干燥和高温裂解得到氮化硼(BN)界面。先驱体浸渍裂解法(PIP)同样适用于孔隙尺寸较小厚度较大的预制体,但所制备的氮化硼(BN)界面具有较多的裂纹与气孔。
因此,采用上述的工艺方法在具有单极小孔隙的预制体中制备氮化硼(BN)界面存在较多缺陷。化学气相渗透法(CVI)虽然制备的氮化硼(BN)界面连续且致密,但氮化硼(BN)界面的渗透性有限,若预制体孔隙较小或厚度较大,则易在预制体内部形成厚度不均匀的界面。浸渍-涂覆法(Dip-Coating)与先驱体浸渍裂解法(PIP)采用的是液相浸渍法引入硼源和氮源,氮化硼(BN)界面的制备受预制体厚度的影响小,但也存在界面不连续,晶化程度与转化率较低等一系列问题。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种氮化硼界面的制备方法,解决单极小孔隙的预制体中制备氮化硼(BN)界面困难,涂层质量不高的问题。
技术方案
一种氮化硼界面的制备方法,其特征在于步骤如下:
步骤1、浸渍硼酸乙醇溶液与常温干燥:将预制体放入真空浸渍皿中,抽真空20~30min,然后将预制体放入硼酸乙醇溶液中,继续抽真空20~30min,将预制体取出,在常温下干燥12h后,继续完成该步骤3~6次;
所述硼酸乙醇溶液的摩尔分数为0.5~2mol/L,硼酸为溶质,乙醇为溶剂;
步骤2、高温脱水:将步骤1的预制体放入烘箱,在100~110℃下保温1~2h,再升温至150~180℃,保温3~5h,完成高温脱水;
步骤3、氮化处理:将步骤2的预制体放入气氛炉等温区,对预制体进行氮化处理,氮化温度:900~1100℃,保温时间:8~16h,炉内压力:500~2000Pa,气氛:NH3-H2,利用以下反应得到氮化硼界面:B2O3+2NH3→2BN+3H2O;
步骤4、高温热处理:将步骤3得到的预制体放入热处理炉内高温热处理,热处理温度1400~1800℃,保温时间0.5~2h,炉内压力:100~200KPa,气氛:N2,提高氮化硼界面的晶化程度并除去残余的氧化硼。
所述氮化处理的气氛:NH3-H2,NH3-H2的比例为1﹕2。
所述步骤4中的高温热处理的气压为常压或高压。
所述预制体为:陶瓷晶须或陶瓷纤维。
所述陶瓷晶须为非氧化晶须SiC晶须或氧化物晶须Al2O3晶须。
陶瓷纤维为非氧化纤维SiC纤维或氧化物纤维Al2O3纤维。
有益效果
本发明提出的一种氮化硼界面的制备方法,在预制体的增强体表面制备厚度均匀、连续并且质量稳定的氮化硼(BN)界面的制备方法。本发明的思想在于将硼酸乙醇溶液浸渍预制体,经过常温干燥,高温脱水,然后在低压氨气氛(氨气和氢气混合)中氮化处理,最后经高温热处理得到厚度均匀、连续并且质量稳定的氮化硼(BN)界面。
本发明的有益效果有以下几点:
(1)所用的硼源为前期引入,氮化处理时的气氛(NH3-H2)是小分子,在低压下的渗透能力强,较之于化学气相渗透法(CVI),可以在孔隙更小厚度更大的预制体中制备氮化硼界面,并且可在预制体内部形成厚度均匀的界面,这种制备方法既适用于各向同性复合材料,也适用于各向异性复合材料。
(2)采用两步法先后引入硼源和氮源,低压通入氨气与氧化硼缓慢反应,较之于浸渍-涂覆法(Dip-Coating),反应更加温和,使预制体的增强体表面的界面连续均匀。另外,在浸渍过程中,只需配制硼酸乙醇溶液,不用考虑硼源与氮源在溶液内的配比,因此可以引入更多的硼源,从而提高氮化硼界面的转化率。
整个工艺过程操作简单,可重复性高,成本低廉,可用于制备各向同性或各向异性的大尺寸复杂构件。
附图说明
图1.是本发明的工艺流程图。
图2.是本发明实施例1SiC晶须预制体内部制备的氮化硼界面断面扫描电子显微镜(SEM)照片。
图3.是本发明实施例1SiC晶须预制体内部制备氮化硼界面的拉曼光谱。
图4.是本发明实施例1SiC晶须预制体内部制备氮化硼界面的红外光谱。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1.
步骤一:制备SiC晶须预制体。
步骤二:浸渍硼酸乙醇溶液与常温干燥。配置摩尔分数为1mol/L的硼酸乙醇溶液,将配好的溶液放入真空浸渍皿准备浸渍。将SiC晶须预制体放入真空浸渍皿,抽真空20min,然后将SiC晶须预制体放入溶液中,继续抽真空20min,将SiC晶须预制体取出,在常温下干燥12h后,重复完成该步骤3次。
步骤三:高温脱水。干燥后将SiC晶须预制体放入烘箱,在110℃下保温2h,再升温至180℃,保温5h,完成高温脱水。
步骤四:氮化处理。将步骤三的SiC晶须预制体放入气氛炉等温区,对预制体进行氮化处理,氮化温度:950℃,保温时间:8h,炉内压力:1000Pa,气氛:NH3-H2,利用以下反应得到氮化硼界面:B2O3(s)+2NH3(g)→2BN(s)+3H2O(g)。
步骤五:高温热处理。将步骤四得到的SiC晶须预制体放入热处理炉内高温热处理,热处理温度1700℃,保温时间1h,炉内压力:100KPa,气氛:N2,提高氮化硼界面的晶化程度并除去残余的氧化硼。
实施例2.
步骤一:制备SiC短切纤维毡预制体(SiC纤维商品代号:H-Nicalon S)。
步骤二:浸渍硼酸乙醇溶液与常温干燥。配制摩尔分数为1.5mol/L的硼酸乙醇溶液,将配好的溶液放入真空浸渍皿准备浸渍。将SiC短切纤维毡预制体放入真空浸渍皿,抽真空30min,然后将SiC短切纤维毡预制体放入溶液中,继续抽真空30min,将SiC短切纤维毡预制体取出,在常温下干燥12h后,重复完成该步骤3次。
步骤三:高温脱水。干燥后将SiC短切纤维毡预制体放入烘箱,在110℃下保温2h,再升温至150℃,保温4h,完成高温脱水。
步骤四:氮化处理。将步骤三的SiC短切纤维毡预制体放入气氛炉等温区,对预制体进行氮化处理,氮化温度:1100℃,保温时间:6h,炉内压力:1000Pa,气氛:NH3-H2,利用以下反应得到氮化硼界面:B2O3(s)+2NH3(g)→2BN(s)+3H2O(g)。
步骤五:高温热处理。将步骤四得到的SiC短切纤维毡预制体放入热处理炉内高温热处理,热处理温度1400℃,保温时间1h,炉内压力:150KPa,气氛:N2,提高氮化硼界面的晶化程度并除去残余的氧化硼。
实施例3.
步骤一:制备单向SiC纤维预制体(SiC纤维商品代号:Tyranno SA)。
步骤二:浸渍硼酸乙醇溶液与常温干燥。配制摩尔分数为1.5mol/L的硼酸乙醇溶液,将配好的溶液放入真空浸渍皿准备浸渍。将单向SiC纤维预制体放入真空浸渍皿,抽真空30min,然后将单向SiC纤维预制体放入溶液中,继续抽真空30min,将SiC纤维预制体取出,在常温下干燥12h后,重复完成该步骤5次。
步骤三:高温脱水。干燥后将单向SiC纤维预制体放入烘箱,在110℃下保温2h,再升温至180℃,保温4h,完成高温脱水。
步骤四:氮化处理。将步骤二的单向SiC纤维预制体放入气氛炉等温区,对单向SiC纤维预制体进行氮化处理,氮化温度:1000℃,保温时间:6h,炉内压力:1000Pa,气氛:NH3-H2,利用以下反应得到氮化硼界面:B2O3(s)+2NH3(g)→2BN(s)+3H2O(g)。
步骤五:高温热处理。将步骤四得到的单向SiC纤维预制体放入热处理炉内高温热处理,热处理温度1400℃,保温时间1h,炉内压力:150KPa,气氛:N2,提高氮化硼界面的晶化程度以及除去残余的氧化硼。
实施例4.
步骤一:制备2.5维或3维SiC纤维预制体(SiC纤维商品代号:Sylramic)。
步骤一:浸渍硼酸乙醇溶液与常温干燥。配制摩尔分数为1.5mol/L的硼酸乙醇溶液,将配好的溶液放入真空浸渍皿准备浸渍。将SiC纤维预制体放入真空浸渍皿,抽真空30min,然后将SiC纤维预制体放入溶液中,继续抽真空30min,将SiC纤维预制体取出,在常温下干燥12h后,重复完成该步骤5次。
步骤二:高温脱水。干燥后将SiC纤维预制体放入烘箱,在110℃下保温2h,再升温至180℃,保温4h,完成高温脱水。
步骤三:氮化处理。将步骤二的SiC纤维预制体放入气氛炉等温区,对SiC纤维预制体进行氮化处理,氮化温度:900℃,保温时间:6h,炉内压力:800Pa,气氛:NH3-H2,利用以下反应得到氮化硼界面涂层:B2O3(s)+2NH3(g)→2BN(s)+3H2O(g)。
步骤四:高温热处理。将步骤四得到的SiC纤维预制体放入热处理炉内高温热处理,热处理温度1400℃,保温时间1h,炉内压力:200KPa,气氛:N2,提高氮化硼界面的晶化程度并除去残余的氧化硼。
图2SiC晶须预制体内部制备的氮化硼界面断面扫描电子显微镜(SEM)照片;(a)为采用本发明制备氮化硼界面后预制体内部形貌的低倍扫描照片;(b)(c)为采用本发明制备氮化硼界面后预制体内部形貌的高倍扫描照片;(d)为采用Dip-Coating法制备氮化硼界面后预制体内部形貌的高倍扫描照片。
图3SiC晶须预制体内部制备氮化硼界面的拉曼光谱;A0为SiCw预制体的拉曼光谱,A1为采用CVI法制备氮化硼界面后的预制体的拉曼光谱,A2采用本发明制备氮化硼界面后的预制体的拉曼光谱,A3采用Dip-coating法制备氮化硼界面后的预制体的拉曼光谱。
图4SiC晶须预制体内部制备氮化硼界面的红外光谱;S0为SiCw预制体的红外光谱,S1为采用CVI法制备氮化硼界面后的预制体的红外光谱,S2采用本发明制备氮化硼界面后的预制体的红外光谱。

Claims (6)

1.一种氮化硼界面的制备方法,其特征在于步骤如下:
步骤1、浸渍硼酸乙醇溶液与常温干燥:将预制体放入真空浸渍皿中,抽真空20~30min,然后将预制体放入硼酸乙醇溶液中,继续抽真空20~30min,将预制体取出,在常温下干燥12h后,继续完成该步骤3~6次;
所述硼酸乙醇溶液的摩尔分数为0.5~2mol/L,硼酸为溶质,乙醇为溶剂;
步骤2、高温脱水:将步骤1的预制体放入烘箱,在100~110℃下保温1~2h,再升温至150~180℃,保温3~5h,完成高温脱水;
步骤3、氮化处理:将步骤2的预制体放入气氛炉等温区,对预制体进行氮化处理,氮化温度:900~1100℃,保温时间:8~16h,炉内压力:500~2000Pa,气氛:NH3-H2,利用以下反应得到氮化硼界面:B2O3+2NH3→2BN+3H2O;
步骤4、高温热处理:将步骤3得到的预制体放入热处理炉内高温热处理,热处理温度1400~1800℃,保温时间0.5~2h,炉内压力:100~200KPa,气氛:N2,提高氮化硼界面的晶化程度并除去残余的氧化硼。
2.根据权利要求1所述氮化硼界面的制备方法,其特征在于:所述氮化处理的气氛:NH3-H2,NH3-H2的比例为1﹕2。
3.根据权利要求1所述氮化硼界面的制备方法,其特征在于:所述步骤4中的高温热处理的气压为常压或高压。
4.根据权利要求1所述氮化硼界面的制备方法,其特征在于:所述预制体为:陶瓷晶须或陶瓷纤维。
5.根据权利要求1所述氮化硼界面的制备方法,其特征在于:所述陶瓷晶须为非氧化晶须SiC晶须或氧化物晶须Al2O3晶须。
6.根据权利要求1所述氮化硼界面的制备方法,其特征在于:陶瓷纤维为非氧化纤维SiC纤维或氧化物纤维Al2O3纤维。
CN201810774469.9A 2018-07-16 2018-07-16 一种氮化硼界面的制备方法 Pending CN108947587A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810774469.9A CN108947587A (zh) 2018-07-16 2018-07-16 一种氮化硼界面的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810774469.9A CN108947587A (zh) 2018-07-16 2018-07-16 一种氮化硼界面的制备方法

Publications (1)

Publication Number Publication Date
CN108947587A true CN108947587A (zh) 2018-12-07

Family

ID=64481818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810774469.9A Pending CN108947587A (zh) 2018-07-16 2018-07-16 一种氮化硼界面的制备方法

Country Status (1)

Country Link
CN (1) CN108947587A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130100A (zh) * 2019-05-24 2019-08-16 中国人民解放军国防科技大学 一种含硼SiC纤维的连续化烧成方法
CN111205100A (zh) * 2020-03-02 2020-05-29 西北工业大学 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
CN112321331A (zh) * 2020-11-18 2021-02-05 江西信达航科新材料科技有限公司 一种耐高温抗氧化复合涂层及其制备工艺
CN113929481A (zh) * 2021-11-15 2022-01-14 航天特种材料及工艺技术研究所 一种氮化物纤维增强复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161947A (zh) * 1997-02-03 1997-10-15 汪宁 一种含六方氮化硼的高技术复合陶瓷及其制备方法
US7060237B1 (en) * 2002-04-22 2006-06-13 Science & Technology Corporation @ Unm Non-aqueous borate routes to boron nitride
CN102180706A (zh) * 2011-03-03 2011-09-14 西北工业大学 一种六方氮化硼界面涂层的制备方法
CN103922779A (zh) * 2014-04-10 2014-07-16 中国人民解放军国防科学技术大学 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法
CN106747536A (zh) * 2016-11-09 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种纤维增强三元层状陶瓷零件的表面氮化方法
CN107540400A (zh) * 2017-09-26 2018-01-05 苏州宏久航空防热材料科技有限公司 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN108059484A (zh) * 2017-11-29 2018-05-22 广东先导先进材料股份有限公司 半导体晶体生长用石英坩埚镀氮化硼膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161947A (zh) * 1997-02-03 1997-10-15 汪宁 一种含六方氮化硼的高技术复合陶瓷及其制备方法
US7060237B1 (en) * 2002-04-22 2006-06-13 Science & Technology Corporation @ Unm Non-aqueous borate routes to boron nitride
CN102180706A (zh) * 2011-03-03 2011-09-14 西北工业大学 一种六方氮化硼界面涂层的制备方法
CN103922779A (zh) * 2014-04-10 2014-07-16 中国人民解放军国防科学技术大学 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法
CN106747536A (zh) * 2016-11-09 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种纤维增强三元层状陶瓷零件的表面氮化方法
CN107540400A (zh) * 2017-09-26 2018-01-05 苏州宏久航空防热材料科技有限公司 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN108059484A (zh) * 2017-11-29 2018-05-22 广东先导先进材料股份有限公司 半导体晶体生长用石英坩埚镀氮化硼膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SADANANDA SAHU ET AL.: ""Formation of Boron Nitride Thin Films on β-Si3N4 Whiskers and α-SiC Platelets by Dip-Coating"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130100A (zh) * 2019-05-24 2019-08-16 中国人民解放军国防科技大学 一种含硼SiC纤维的连续化烧成方法
CN110130100B (zh) * 2019-05-24 2021-11-26 中国人民解放军国防科技大学 一种含硼SiC纤维的连续化烧成方法
CN111205100A (zh) * 2020-03-02 2020-05-29 西北工业大学 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
CN112321331A (zh) * 2020-11-18 2021-02-05 江西信达航科新材料科技有限公司 一种耐高温抗氧化复合涂层及其制备工艺
CN113929481A (zh) * 2021-11-15 2022-01-14 航天特种材料及工艺技术研究所 一种氮化物纤维增强复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108947587A (zh) 一种氮化硼界面的制备方法
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN104311090B (zh) 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法
CN105272262B (zh) 一种提高SiC/SiC陶瓷基复合材料致密度的方法
CN103467126B (zh) 一种SiC纳米线改性C/C复合材料的制备方法
CN110282993B (zh) 一种含界面相的陶瓷基复合材料的制备方法
US6277440B1 (en) Preparation of ceramic matrix composites by infiltration of fibrous preforms with fluids or slurries and subsequent pyrolysis
CN105152671A (zh) SiCf/SiC复合材料的界面改性方法
CN109231993B (zh) 一种含自润滑相高强度炭纤维增强陶瓷基体摩擦材料及其制备方法
CN108101566A (zh) Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法
CN106007766A (zh) Cf/MC-SiC复合材料及其制备方法
US20060035024A1 (en) Processing of Sic/Sic ceramic matrix composites by use of colloidal carbon black
CN112299865A (zh) 一种改性C/SiC复合材料及其制备方法
CN112645725A (zh) 一种带有台阶结构的陶瓷基复合材料构件及其制备方法
CN115745643A (zh) 一种碳纳米管改性的复合材料及其制备方法
CN108658614A (zh) 一种碳化硅陶瓷基复合材料复杂构件近净尺寸成型方法
CN114988901A (zh) 一种高致密SiC/SiC复合材料的快速制备方法
CN112374901B (zh) 一种耐烧蚀改性C/SiC复合材料及其制备方法
CN117567165A (zh) 一种连续纤维增强陶瓷基复合材料及其制备方法
JPH0822782B2 (ja) 繊維強化セラミックスの製造方法
CN105669231A (zh) 一种碳纤维增强MoSi2-SiC陶瓷基复合材料的制备方法
CN114853490A (zh) 兼具优异成型性和良好力学性能的SiC/SiC陶瓷复合材料及制备方法
CN106518120B (zh) 一种碳纤维-碳纳米管复合强韧化ZrC陶瓷复合材料的制备方法及应用
CN113149680A (zh) 一种碳纤维强化硅硼碳氮基陶瓷复合材料及其制备方法
Tai et al. Nanofiber formation in the fabrication of carbon/silicon carbide ceramic matrix nanocomposites by slurry impregnation and pulse chemical vapor infiltration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181207

WD01 Invention patent application deemed withdrawn after publication