CN106747536A - 一种纤维增强三元层状陶瓷零件的表面氮化方法 - Google Patents

一种纤维增强三元层状陶瓷零件的表面氮化方法 Download PDF

Info

Publication number
CN106747536A
CN106747536A CN201611034967.7A CN201611034967A CN106747536A CN 106747536 A CN106747536 A CN 106747536A CN 201611034967 A CN201611034967 A CN 201611034967A CN 106747536 A CN106747536 A CN 106747536A
Authority
CN
China
Prior art keywords
fiber
nitridation
nitrogen
nitriding
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611034967.7A
Other languages
English (en)
Other versions
CN106747536B (zh
Inventor
孙振淋
辛玉武
段小明
刘慧�
许建武
徐奉鑫
吴彦芬
曲延龙
王忠明
齐智超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Harbin Dongan Engine Group Co Ltd
Original Assignee
AVIC Harbin Dongan Engine Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Harbin Dongan Engine Group Co Ltd filed Critical AVIC Harbin Dongan Engine Group Co Ltd
Priority to CN201611034967.7A priority Critical patent/CN106747536B/zh
Publication of CN106747536A publication Critical patent/CN106747536A/zh
Application granted granted Critical
Publication of CN106747536B publication Critical patent/CN106747536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Gears, Cams (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种纤维增强三元层状陶瓷零件的氮化方法,通过在MAX相三元层状陶瓷材料中引入纤维增强相,经过烧结后,制得的纤维增强三元层状陶瓷复合材料,氮化后有效氮化层的厚度可达0.05~0.25mm。通过本发明制造的零件,如齿轮、轴承等,可以用于制造服役于450℃以上高温环境的零件,具有加工工艺好、耐冲击等优点。

Description

一种纤维增强三元层状陶瓷零件的表面氮化方法
技术领域
本发明涉及一种氮化方法,尤其是一种纤维增强三元层状陶瓷零件的氮化方法。
背景技术
航空发动机传动系统零件多为钢制材料,受材质属性限制,其最高服役温度大约在430℃左右。随着航空发动机性能的不断提升,钢制零件的环境使用温度也不断提高,原有钢制齿轮、轴承等零件已不能满足使用要求。
Si3N4、ZrO2、塞隆(SiAlON)等陶瓷材料在高温环境下表现出良好的力学性能,可以满足在高温环境下服役的要求,但这类材料常温下硬度高且脆性大,无法进行铣削等机械加工,即便制造出此类陶瓷零件,由于其模量高、耐冲击性极差,无法满足航空发动机传动系统零件高可靠性的实际工程要求。
发明内容
本发明的目的是提供一种纤维增强三元层状陶瓷零件的表面氮化强化方法,以三元层状MAX相为基体,以纤维为增强相,经过热压烧结后,制备出陶瓷批体,待机械加工成实际零件后,进行高温氮化强化,改善三元层状陶瓷材料相对较低的硬度和高温蠕变抗力,满足陶瓷零件在室温下兼具一定的可机械加工性能的同时,在高温环境下具有良好力学性能,通过氮化处理,在陶瓷零件表面生成致密的高模量氮化物陶瓷膜层,改善零件的耐蚀性和耐磨性。
本发明中以Ti3AlC2为代表的Mn+1AXn相陶瓷基体,包括Ti4AlC3、Ti3SiC2、Ti3AlC2、Ti2AlC、Ti2AlN、Ti2SnC、Ti4AlN3、Ta4AlC3、Nb2AlC、Cr2AlC、Ta2AlC等。
本发明的具体技术方案是,所述的纤维增强三元层状陶瓷零件制备方法包括以下步骤:
1、MAX相块体陶瓷材料经过球磨后制备成MAX相陶瓷粉体,取30目以上的粉体备用;
2、在所述的粉末中加入与MAX相材料粉末体积分数比为(0.5~30):(70~99.5)的纤维,所述的纤维为碳纤维、SiC纤维、SiO2纤维、BN纤维、AlBO4中的一种或多种,纤维可以是长纤维,也可以是短纤维;
3、MAX相材料粉末和纤维混合后,进行烧结,烧结温度在1100~1600℃,烧结压力为20~40MPa,烧结时间为1~4h,形成毛坯;
4、将毛坯加工成零件;
5、对零件进行表面氮化,所述的氮化方法包括以下步骤:
a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;
b.氮化过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;
c.保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种;
氮源气体的混合比见下表所示:
氮源气体组成 N2 N2:H2 N2:Ar NH3
体积比 1:(2~8) 1:(3~10)
d.继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行离子氮化,氮化时间4~100h,保温结束后,以30~150℃/h的冷却速度,炉冷至300~500℃;
e.关闭电源,随炉冷至150℃打开炉门,取出零件,氮化完毕;
6、将零件空冷至室温后,进行最终精密加工。
本发明通过在MAX相三元层状陶瓷材料中引入纤维增强相,经过烧结后,制得的纤维增强三元层状陶瓷复合材料,不仅在室温下具有良好的机械加工性能,耐温性良好,材料通过纤维得到进一步增强、增韧,加工后的零件经过离子氮化后,在表面原位生成一层致密的高模量氮化物陶瓷膜层,耐蚀性和耐磨性均大幅提升。有效氮化层的厚度可达0.05~0.25mm,形成心部具有一定韧性、工作表面具有一定硬度的纤维增强可加工三元层状陶瓷复合材料零件,这种纤维增强三元层状陶瓷复合材料零件氮化后的组织结构类似钢制零件氮化后的组织结构,具有耐冲击、加工性好的特点。通过本发明制造的零件,如齿轮、轴承等,可以用于制造服役于450℃以上高温环境的零件,具有加工工艺好、耐冲击等优点。
具体实施方式
一种纤维增强三元层状陶瓷零件的氮化方法,所述的方法包括以下步骤:
1、MAX相块体陶瓷材料经过球磨后制备成MAX相陶瓷粉体,取30目以上的粉体备用;
2、在所述的粉末中加入与MAX相材料粉末体积分数比为(0.5~30):(70~99.5)的纤维,所述的纤维为碳纤维、SiC纤维、SiO2纤维、BN纤维、AlBO4中的一种或多种,纤维可以是长纤维,也可以是短纤维;
3、MAX相材料粉末和纤维混合后,进行烧结,烧结温度在1100~1600℃,烧结压力为20~40MPa,烧结时间为1~4h,形成毛坯;
4、将毛坯加工成零件;
5、对零件进行表面氮化,所述的氮化方法包括以下步骤:
a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;
b.氮化过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;
c.保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种;
氮源气体的混合比见下表所示:
氮源气体组成 N2 N2:H2 N2:Ar NH3
体积比 1:(2~8) 1:(3~10)
d.继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行离子氮化,氮化时间4~100h,保温结束后,以30~150℃/h的冷却速度,炉冷至300~500℃;
e.关闭电源,随炉冷至150℃打开炉门,取出零件,氮化完毕;
6、将零件空冷至室温后,进行最终精密加工。
实施例
某航空器上使用的齿轮,工作环境最高可达450℃,其加工方法包括以下步骤:
1、烧结的Ti3AlC2块体陶瓷材料,经过球磨后制备成Ti3AlC2陶瓷粉体,取100目以上的粉体备用;
2、在所述的粉末中加入与其体积分数比为5:95的长度为1~5mm的SiC短纤维;
3、Ti3AlC2材料粉末和纤维混合后,进行烧结,烧结温度在1200℃,烧结压力为30MPa,烧结时间为2h,形成毛坯;
4、将毛坯加工成零件;
5、对零件进行表面氮化,所述的氮化方法包括以下步骤:
a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;
b.氮化过程中,氮化炉的升温速率为2℃/min,升温至400℃时保温1h;
c.保温结束后,通入氮源气体,所述的氮源气体为氮气;
d.继续以1.5℃/min的升温速率升温至900℃范围内进行离子氮化,氮化时间10h,氮化结束后,以1.5℃/h的冷却速度,炉冷至400℃;
e.关闭电源,随炉冷至150℃以下打开炉门,取出零件,氮化完毕;
6、将零件空冷至室温后,进行最终精密加工。
加工后的齿轮,室温100g载荷作用下,显微硬度在HV900以上,在450℃时力学性能稳定,达到使用要求。

Claims (1)

1.一种纤维增强三元层状陶瓷零件的氮化方法,其特征在于,所述的方法包括以下步骤:
1)MAX相块体陶瓷材料经过球磨后制备成MAX相陶瓷粉体,取30目以上的粉体备用;
2)在所述的粉末中加入与MAX相材料粉末体积分数比为(0.5~30):(70~99.5)的纤维,所述的纤维为碳纤维、SiC纤维、SiO2纤维、BN纤维、AlBO4中的一种或多种,纤维可以是长纤维,也可以是短纤维;
3)MAX相材料粉末和纤维混合后,进行烧结,烧结温度在1100~1600℃,烧结压力为20~40MPa,烧结时间为1~4h,形成毛坯;
4)将毛坯加工成零件;
5)对零件进行表面氮化,所述的氮化方法包括以下步骤:
a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;
b.氮化过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;
c.保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种;
氮源气体的混合比见下表所示:
氮源气体组成 N2 N2:H2 N2:Ar NH3 体积比 1:(2~8) 1:(3~10)
d.继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行离子氮化,氮化时间4~100h,保温结束后,以30~150℃/h的冷却速度,炉冷至300~500℃;
e.关闭电源,随炉冷至150℃打开炉门,取出零件,氮化完毕;
6)将零件空冷至室温后,进行最终精密加工。
CN201611034967.7A 2016-11-09 2016-11-09 一种纤维增强三元层状陶瓷零件的表面氮化方法 Active CN106747536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611034967.7A CN106747536B (zh) 2016-11-09 2016-11-09 一种纤维增强三元层状陶瓷零件的表面氮化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611034967.7A CN106747536B (zh) 2016-11-09 2016-11-09 一种纤维增强三元层状陶瓷零件的表面氮化方法

Publications (2)

Publication Number Publication Date
CN106747536A true CN106747536A (zh) 2017-05-31
CN106747536B CN106747536B (zh) 2022-04-01

Family

ID=58971849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611034967.7A Active CN106747536B (zh) 2016-11-09 2016-11-09 一种纤维增强三元层状陶瓷零件的表面氮化方法

Country Status (1)

Country Link
CN (1) CN106747536B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147828A (zh) * 2017-12-13 2018-06-12 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108947587A (zh) * 2018-07-16 2018-12-07 西北工业大学 一种氮化硼界面的制备方法
CN109053206A (zh) * 2018-08-31 2018-12-21 中国科学院金属研究所 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN110219168A (zh) * 2019-07-05 2019-09-10 聊城大学 一种碳纤维表面改性方法
CN113213960A (zh) * 2021-05-24 2021-08-06 苏长全 一种高韧性、高硬度耐磨陶瓷及其制备方法
CN113999012A (zh) * 2020-07-28 2022-02-01 中国科学院金属研究所 一种短切纤维增强陶瓷基复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448760A (zh) * 2006-05-30 2009-06-03 原子能委员会 Max相粉末和用于制备所述粉末的方法
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN105839044A (zh) * 2016-06-03 2016-08-10 哈尔滨东安发动机(集团)有限公司 一种钛合金齿轮的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448760A (zh) * 2006-05-30 2009-06-03 原子能委员会 Max相粉末和用于制备所述粉末的方法
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN105839044A (zh) * 2016-06-03 2016-08-10 哈尔滨东安发动机(集团)有限公司 一种钛合金齿轮的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPENCER CHARLES B.等: ""The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550 degrees C"", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147828A (zh) * 2017-12-13 2018-06-12 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
WO2019114314A1 (zh) * 2017-12-13 2019-06-20 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108147828B (zh) * 2017-12-13 2021-08-27 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108947587A (zh) * 2018-07-16 2018-12-07 西北工业大学 一种氮化硼界面的制备方法
CN109053206A (zh) * 2018-08-31 2018-12-21 中国科学院金属研究所 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN110219168A (zh) * 2019-07-05 2019-09-10 聊城大学 一种碳纤维表面改性方法
CN110219168B (zh) * 2019-07-05 2021-12-31 聊城大学 一种碳纤维表面改性方法
CN113999012A (zh) * 2020-07-28 2022-02-01 中国科学院金属研究所 一种短切纤维增强陶瓷基复合材料的制备方法
CN113213960A (zh) * 2021-05-24 2021-08-06 苏长全 一种高韧性、高硬度耐磨陶瓷及其制备方法

Also Published As

Publication number Publication date
CN106747536B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN106747536A (zh) 一种纤维增强三元层状陶瓷零件的表面氮化方法
CN106565244A (zh) 一种颗粒增强三元层状陶瓷零件的表面氮化方法
CN112142449A (zh) 二维过渡金属碳化钛材料增强陶瓷复合材料及其制备方法
EP1134204A1 (en) Silicon nitride wear resistant member and manufacturing method thereof
CN106609788B (zh) 晶须加强高断裂韧性陶瓷螺纹紧固件
Sun et al. Effects of Ti (C, N) addition on the microstructure and mechanical properties of spark plasma sintered Si3N4/Ti (C, N) ceramic tool material
Verma et al. Effect on physical, mechanical, and wear performance of ZrB2‐based composites processed with or without additives
CN103480848A (zh) 一种高性能拉丝模模芯的制造方法
RU2718682C2 (ru) Способ изготовления керамики на основе карбида кремния, армированного волокнами карбида кремния
CN104529167A (zh) 原位生长β-Si3N4纤维/棒晶增强微晶玻璃复合材料及其制备方法
JP2016160117A (ja) 窒化珪素質セラミックス焼結体及びその製造方法
CN108585907B (zh) 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料的制备方法
JP3754271B2 (ja) バタフライ弁及びその製造方法
CN104909764A (zh) 一种改性复相塞隆陶瓷、其制备方法及用途
CN108002841B (zh) 六方氮化硼-镱硅氧氮陶瓷基复合材料及其原位制备方法
Sun et al. Thermal shock resistance of the porous boron nitride/silicon oxynitride ceramic composites
Zhang et al. Densification mechanism and mechanical properties of oscillatory pressure sintered Al2O3-Ti (C, N) composite
CN101328059B (zh) 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法
CN108085783B (zh) 高韧性碳化硅及其制备方法
Kgoete et al. Advancement in the application of alloys and composites in the manufacture of aircraft component: A review
EP2891640A1 (en) Sialon sintered body and wear-resistant component using same
CN101956115B (zh) 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法
CN115872748B (zh) 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用
JP2001335363A (ja) 軸受用材料およびその製造方法
CN106702315A (zh) 金属钽及合金表面MoSi2涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant