WO2019114314A1 - Max相陶瓷管材及其制备方法、核燃料包壳管 - Google Patents

Max相陶瓷管材及其制备方法、核燃料包壳管 Download PDF

Info

Publication number
WO2019114314A1
WO2019114314A1 PCT/CN2018/101360 CN2018101360W WO2019114314A1 WO 2019114314 A1 WO2019114314 A1 WO 2019114314A1 CN 2018101360 W CN2018101360 W CN 2018101360W WO 2019114314 A1 WO2019114314 A1 WO 2019114314A1
Authority
WO
WIPO (PCT)
Prior art keywords
max phase
phase ceramic
max
ceramic tube
alc
Prior art date
Application number
PCT/CN2018/101360
Other languages
English (en)
French (fr)
Inventor
李思功
薛佳祥
刘彤
黄恒
李锐
高思宇
Original Assignee
广东核电合营有限公司
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东核电合营有限公司, 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 广东核电合营有限公司
Publication of WO2019114314A1 publication Critical patent/WO2019114314A1/zh

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58042Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on iron group metals nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear fuel, in particular to a MAX phase ceramic pipe which can be used for nuclear fuel, a preparation method thereof and a nuclear fuel cladding pipe.
  • the candidate materials for fault-tolerant nuclear fuel cladding include refractory molybdenum alloy, advanced stainless steel, SiC composite material and MAX phase ceramic cladding tube, among which refractory molybdenum alloy has poor high temperature oxidation performance, advanced stainless steel material has poor neutron economy, and SiC composite.
  • the material has the characteristics of being easily soluble in water.
  • the MAX phase ceramic material has low thermal expansion coefficient, high elastic modulus, high strength, high hardness, good high temperature oxidation resistance and corrosion resistance, good electrical conductivity, thermal conductivity and easy processing. Performance, high damage tolerance and thermal shock resistance, MAX phase cladding tube is an alternative cladding material that realizes the characteristics of ATF technology.
  • the technical problem to be solved by the present invention is to provide a toughened MAX phase ceramic pipe, a preparation method thereof, and a nuclear fuel cladding pipe.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a method for preparing a MAX phase ceramic pipe, comprising the following steps:
  • the slurry is made into a MAX phase ceramic tube blank by an extrusion molding method
  • the MAX phase ceramic tube blank is pressureless sintered to obtain a MAX phase ceramic tube.
  • the MAX phase nanopowder comprises Ti 3 SiC 2 , Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC 2 , Zr 3 AlC 2 , Zr 2 AlN, Cr 2 AlN.
  • Ti 3 SiC 2 Ti 3 AlC 2 , Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC 2 , Zr 3 AlC 2 , Zr 2 AlN, Cr 2 AlN.
  • the fiber toughening phase comprises one or more of chopped fibers and whiskers; and the chopped fibers comprise one or more of carbon fibers, silicon carbide fibers, silicon nitride fibers, and alumina fibers. .
  • the MAX phase ceramic tube blank is allowed to stand for 12-48 hours by extrusion molding and before pressureless sintering.
  • the pressureless sintering comprises: raising the temperature to 300-500 ° C at a heating rate of 2-5 ° C / min under an inert gas atmosphere, maintaining the temperature for 2-5 h; and further increasing the temperature by 10 ° C / min The temperature is raised to 1400-1600 ° C, kept for 2-10 h; cooled to room temperature.
  • the MAX phase ceramic tube produced has a porosity of ⁇ 10%.
  • the invention also provides a MAX phase ceramic tube obtained by the above preparation method.
  • the present invention also provides another MAX phase ceramic tube made of a slurry having a solid content of 60% to 90%; the slurry comprising MAX phase nanopowder, deionized water and the following mass percentage of raw materials: 5-15% Binder, 5-15% plasticizer, 2-15% fiber toughening phase.
  • the MAX phase nanopowder comprises Ti 3 SiC 2 , Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC 2 , Zr 3 AlC 2 , Zr 2 AlN, Cr 2 AlN.
  • Ti 3 SiC 2 Ti 3 AlC 2 , Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC 2 , Zr 3 AlC 2 , Zr 2 AlN, Cr 2 AlN.
  • the fiber toughening phase comprises one or more of chopped fibers and whiskers; and the chopped fibers comprise one or more of carbon fibers, silicon carbide fibers, silicon nitride fibers, and alumina fibers. .
  • the invention also provides a nuclear fuel cladding tube, which is made of the above-mentioned MAX phase ceramic tube.
  • the invention has the beneficial effects that the addition of the binder and the plasticizer in the raw material of the MAX phase ceramic pipe greatly improves the formability of the raw material and solves the problem of pipe forming; on the other hand, the combination of the fiber and the MAX phase ceramic matrix is facilitated. Sintering preparation of pipes.
  • the addition of the fiber toughening phase solves the brittleness problem of the MAX phase ceramics, and the bending strength and fracture toughness are greatly improved, and the MAX phase ceramics have excellent oxidation resistance.
  • the invention solves the problems of brittleness of the MAX phase ceramic tube, the problem of the combination of the fiber toughening phase and the matrix, the tube forming problem and the mass production of the ceramic tube, and is suitable for the accident-tolerant nuclear fuel cladding, fully utilizing the thermal shock resistance of the MAX phase ceramic. , high temperature corrosion resistance and high radiation tolerance, expand the application of MAX phase ceramic cladding tube in accident-tolerant nuclear fuel, and improve the anti-accident capability and safety threshold of nuclear reactor to maintain the structural and functional integrity of nuclear fuel components under severe accident conditions.
  • the method for preparing the MAX phase ceramic pipe of the present invention may include the following steps:
  • the fiber toughening phase comprises one or more of chopped fibers and whiskers.
  • the chopped fibers include one or more of carbon fibers, silicon carbide fibers, silicon nitride fibers, and alumina fibers.
  • the binder can be hydroxypropyl methylcellulose, and the plasticizer can be polyethylene glycol.
  • the prepared suspension was also ultrasonically stirred to achieve uniform mixing of the raw materials.
  • the suspension is added to the MAX phase nanopowder to prepare a slurry having a solid content of 60% to 90%.
  • the MAX phase (including the 211, 312, 413, 514, 615, and 716 configurations) ceramic paste was prepared according to different solid contents.
  • the MAX phase nanopowder includes one or more of Ti 3 SiC 2 , Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC 2 , Zr 3 AlC 2 , Zr 2 AlN, Cr 2 AlN. Kind.
  • the slurry is made into a MAX phase ceramic tube blank by an extrusion molding method.
  • the application of the extrusion molding method is advantageous for forming a tube blank with uniform wall thickness and controllable length, and can be mass-produced at the same time to solve industrial application problems.
  • the formed MAX phase ceramic tube blank was allowed to stand for 12-48 h, followed by subsequent pressureless sintering.
  • the MAX phase ceramic tube blank is pressureless sintered to obtain a MAX phase ceramic tube.
  • the obtained MAX phase ceramic pipe has a porosity of ⁇ 10%; uniform wall thickness, controllable length, excellent high temperature oxidation resistance and wear resistance, and can be used as an accidental fault-tolerant fuel element cladding tube, which is high temperature under accident conditions. Oxidizes and resists the fretting wear of the grid.
  • the pressureless sintering comprises: raising the temperature to 300-500 ° C at a heating rate of 2-5 ° C / min under an inert gas (such as argon) atmosphere, holding for 2-5 h; and heating up at a heating rate of 10 ° C / min To 1400-1600 ° C, keep warm for 2-10h; cool to room temperature.
  • an inert gas such as argon
  • the MAX phase ceramic tube prepared by the preparation method of the invention is suitable for an accident-tolerant nuclear fuel cladding, and is used as a nuclear fuel cladding tube to form a nuclear fuel cladding tube.
  • the addition of raw material fiber toughening phase such as silicon carbide fiber in MAX phase ceramic pipe not only improves the toughness and strength of MAX phase ceramic pipe (fiber reinforcement), but also makes MAX phase ceramic pipe have strong toughening characteristics and solves MAX phase ceramics.
  • the problem of large brittleness of the pipe, while enhancing the radiation-resistant swelling performance of the MAX phase ceramic pipe enables the MAX phase ceramic pipe to withstand a certain dose of neutron irradiation damage without obvious irradiation embrittlement.
  • binder and plasticizer solves the difficult problem of forming the MAX phase ceramic tube blank, and at the same time facilitates the combination of the fiber toughening phase and the ceramic matrix, and promotes the role of the fiber and the ceramic matrix in the sintering process.
  • the principle of strengthening and toughening the fiber toughen phase is as follows: Firstly, on the one hand, in the process of the expansion of the ceramic matrix, the fiber can bridge the crack tip region and the crack of the ceramic matrix interface to form a closed surface on the crack surface. Stress, effectively inhibiting crack propagation; on the other hand, when the crack encounters the fiber during the expansion process, the crack can only diffuse along the weakly bonded interface, so the crack extends in the ceramic matrix and can absorb more fracture energy. . Secondly, when the ceramic substrate is subjected to an external load, the force of the ceramic matrix to the whiskers will generate shear stress at the interface between the interface cracking zone and the grain extraction zone. The continuous increase of the stress will result in grain breakage from the ceramic matrix. Pulling out, the interface friction during the extraction process increases the external load energy consumption and reduces the crack propagation speed in the ceramic matrix.
  • the MAX phase ceramic tube of the present invention is made of a slurry having a solid content of 60% to 90%; the slurry comprises MAX phase nano powder, deionized water and the following mass percentage of raw materials: 5-15% binder, 5 -15% plasticizer, 2-15% fiber toughening phase.
  • the MAX phase ceramic tube has a porosity of ⁇ 10%.
  • the MAX phase nanopowder comprises one of Ti 3 SiC 2 , Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC 2 , Zr 3 AlC 2 , Zr 2 AlN, Cr 2 AlN. Or a variety.
  • the fiber toughening phase includes one or more of chopped fibers and whiskers; chopped fibers include one or more of carbon fibers, silicon carbide fibers, silicon nitride fibers, and alumina fibers.
  • the binder can be hydroxypropyl methylcellulose, and the plasticizer can be polyethylene glycol.
  • the MAX phase ceramic pipe of the invention is used for nuclear fuel cladding, and is used as a MAX phase ceramic cladding pipe material, and has the advantages of high thermal conductivity, high strength, high radiation tolerance, corrosion resistance, high temperature steam oxidation resistance and abrasion resistance.
  • the nuclear fuel cladding tube of the present invention is made using the MAX phase ceramic tube described above.
  • the nuclear fuel cladding tube includes a fuel rod cladding tube.
  • the nuclear fuel cladding tube made of MAX phase ceramic tube has thermal shock resistance, high temperature corrosion resistance and high radiation tolerance, and improves the anti-accident capability and safety of nuclear reactor to maintain the structural and functional integrity of nuclear fuel components under severe accident conditions. Threshold.
  • the extrusion pressure was 10 MPa
  • a Ti 3 SiC 2 ceramic tube with a wall thickness of 1 mm and a diameter of 10 mm was prepared by an extrusion molding machine. After standing and drying for 24 hours, it was obtained by using a tube furnace at 1450 ° C for 2 hours under an argon atmosphere. Toughened Ti 3 SiC 2 ceramic tubing.
  • the obtained pipe has a density of more than 90%, a tensile strength of 350 MPa, and a fracture toughness of 12 MPa ⁇ m 1/2 .
  • the oxidation weight gain is lower than that of the commercial zirconium alloy by two orders of magnitude.
  • the extrusion pressure was 8 MPa, and a Ti 3 AlC 2 ceramic tube with a wall thickness of 1 mm and a diameter of 10 mm was prepared by an extrusion molding machine. After drying for 24 hours, it was strengthened by a tube furnace at 1500 ° C under an argon atmosphere for 5 h. Toughened Ti 3 AlC 2 ceramic tubing.
  • the density of the pipe is over 92%, the tensile strength is 380MPa, and the fracture toughness is 11MPa ⁇ m 1/2 . Under the steam condition of 1200°C, the oxidation weight gain is lower than the commercial zirconium alloy by two orders of magnitude.
  • the density of the pipe is about 92%, the tensile strength is 350MPa, and the fracture toughness is 10MPa ⁇ m 1/2 . Under the steam condition of 1200°C, the oxidation weight gain is lower than that of the commercial zirconium alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Products (AREA)

Abstract

提供一种MAX相陶瓷管材及其制备方法、核燃料包壳管。制备方法包括:S1、称取以下质量百分比的原料:5%-15%的粘结剂、5%-15%的塑化剂以及2%-15%纤维增韧相;将原料加入去离子水中,配制成悬浊液;S2、将悬浊液加入MAX相纳米粉末中,制成固含量为60%-90%的浆料;S3、采用挤出成型方法将浆料制成MAX相陶瓷管坯;S4、将MAX相陶瓷管坯进行无压烧结,制得MAX相陶瓷管材。该MAX相陶瓷管材适用于事故容错核燃料包壳,能极大地提高核反应堆在严重事故工况下维持核燃料组件结构与功能完整性的抗事故能力。

Description

MAX相陶瓷管材及其制备方法、核燃料包壳管 技术领域
本发明涉及核燃料技术领域,尤其涉及一种可用于核燃料的MAX相陶瓷管材及其制备方法、核燃料包壳管。
背景技术
在核事故发生以后,核电安全再次成为国际民众普遍关注的焦点,而如何进一步提高核电安全性特别是提高核反应堆抵抗超设计基准核事故的安全阈值也成为核能可持续发展的重要议题。事故容错核燃料(Accident Tolerant Fuels,ATF)这一全新核安全技术概念正是在这一背景下诞生的,并逐渐成为世界核电工业最重要的研究课题之一,其目的是对现有锆合金/二氧化铀燃料体系进行改进升级甚至全面更新替换以实现降低包壳与高温水蒸气的反应焓热和氢气生成量、提升包壳在1200℃事故高温下的结构完整性与功能性以及增强包壳对裂变气体的束缚能力等。
目前事故容错核燃料包壳备选材料有难熔钼合金、先进不锈钢、SiC复合材料以及MAX相陶瓷包壳管等,其中难熔钼合金高温氧化性能差,先进不锈钢材料中子经济性差,SiC复合材料具有易溶于水的特点,MAX相陶瓷材料具有低的热膨胀系数、高的弹性模量、高强度、高硬度、良好高温抗氧化性能和耐腐蚀性能、良好的导电、导热性、易加工性能、高的损伤容限及热冲击抗性等优点,MAX相包壳管是实现ATF技术特点的备选包壳材料。
采用高强度、高弹性的纤维与陶瓷基体复合,是提高陶瓷韧性和可靠性的一个有效的方法。但是,目前仍局限在纤维与基体的界面结合、增韧机制的研究等方面,并未涉及核级陶瓷包壳管的制备方法的研究。此外,在核级陶瓷管材,壁厚均匀可控、长度可控的强韧化MAX相陶包壳管技术障碍尚未有突破。
技术问题
本发明要解决的技术问题在于,提供一种强韧化的MAX相陶瓷管材及其制备方法、核燃料包壳管。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种MAX相陶瓷管材的制备方法,包括以下步骤:
S1、称取以下质量百分比的原料:5%-15%的粘结剂、5%-15%的塑化剂以及2%-15%纤维增韧相;将原料加入去离子水中,配制成悬浊液;
S2、将所述悬浊液加入MAX相纳米粉末中,制成固含量为60%-90%的浆料;
S3、采用挤出成型方法将所述浆料制成MAX相陶瓷管坯;
S4、将所述MAX相陶瓷管坯进行无压烧结,制得MAX相陶瓷管材。
优选地,所述MAX相纳米粉末包括Ti 3SiC 2、Ti 3AlC 2、Ti 2AlC、Cr 2AlC、Ti 2AlN、Zr 3SiC 2、Zr 3AlC 2、Zr 2AlN、Cr 2AlN中的一种或多种。
优选地,所述纤维增韧相包括短切纤维、晶须中的一种或多种;所述短切纤维包括碳纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维的一种或多种。
优选地,所述MAX相陶瓷管坯通过挤出成型且在无压烧结前,静置12-48h。
优选地,步骤S4中,所述无压烧结包括:在惰性气体气氛下,以2-5℃/min的升温速率升温至300-500℃,保温2-5h;再以10℃/min的升温速率升温至1400-1600℃,保温2-10h;冷却至室温。
优选地,制得的所述MAX相陶瓷管材的孔隙率≤10%。
本发明还提供一种MAX相陶瓷管材,采用上述的制备方法制得。
本发明还提供另一种MAX相陶瓷管材,由固含量60%-90%的浆料制成;所述浆料包括MAX相纳米粉末、去离子水以及以下质量百分比的原料:5-15%的粘结剂、5-15%的塑化剂、2-15%纤维增韧相。
优选地,所述MAX相纳米粉末包括Ti 3SiC 2、Ti 3AlC 2、Ti 2AlC、Cr 2AlC、Ti 2AlN、Zr 3SiC 2、Zr 3AlC 2、Zr 2AlN、Cr 2AlN中的一种或多种。
优选地,所述纤维增韧相包括短切纤维、晶须中的一种或多种;所述短切纤维包括碳纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维的一种或多种。
本发明还提供一种核燃料包壳管,采用上述的MAX相陶瓷管材制成。
有益效果
本发明的有益效果:MAX相陶瓷管材原料中粘结剂、塑化剂的加入一方面大大提高原料的可成型性,解决管材成型问题;另一方面促进纤维和MAX相陶瓷基体的结合,利于管材的烧结制备。纤维增韧相的加入解决了MAX相陶瓷脆性问题,弯曲强度、断裂韧性大幅提高,且MAX相陶瓷耐氧化性能优异。
本发明解决了目前MAX相陶瓷管材脆性问题、纤维增韧相与基体结合问题、管材成型问题以及陶瓷管材批量化生产等问题,适用于事故容错核燃料包壳,充分利用MAX相陶瓷抗热震性能、耐高温腐蚀性能以及高辐照容忍性,拓展MAX相陶瓷包壳管在事故容错核燃料的应用,提升核反应堆在严重事故工况下维持核燃料组件结构与功能完整性的抗事故能力和安全阈值。
本发明的实施方式
本发明的MAX相陶瓷管材的制备方法,可包括以下步骤:
S1、称取以下质量百分比的原料:5%-15%的粘结剂、5%-15%的塑化剂以及2%-15%纤维增韧相;将原料加入去离子水中,配制成悬浊液。
其中,纤维增韧相包括短切纤维、晶须中的一种或多种。短切纤维包括碳纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维的一种或多种。粘结剂可采用羟丙基甲基纤维素,塑化剂可采用聚乙二醇。
制得的悬浊液,还进行超声搅拌实现原料均匀混合。
S2、将悬浊液加入MAX相纳米粉末中,制成固含量为60%-90%的浆料。
浆料中,去离子水和MAX相纳米粉末根据固含量的要求适量加入。根据不同固含量,制成MAX相(包括211、312、413、514、615、716构型)陶瓷浆料。
MAX相纳米粉末包括Ti 3SiC 2、Ti 3AlC 2、Ti 2AlC、Cr 2AlC、Ti 2AlN、Zr 3SiC 2、Zr 3AlC 2、Zr 2AlN、Cr 2AlN中的一种或多种。
S3、采用挤出成型方法将浆料制成MAX相陶瓷管坯。
挤出成型方法的应用,利于制成壁厚均匀、长度可控的管坯,同时可批量化生产,解决工业化应用问题。
成型的MAX相陶瓷管坯静置12-48h,再进行后续的无压烧结。
S4、将MAX相陶瓷管坯进行无压烧结,制得MAX相陶瓷管材。
制得的MAX相陶瓷管材的孔隙率≤10%;壁厚均匀,长度可控,具有优异的抗高温氧化性能和耐磨性能,可作为事故容错燃料元件包壳管,在事故工况下高温氧化和抵御格架的微振磨损作用。
其中,无压烧结包括:在惰性气体(如氩气)气氛下,以2-5℃/min的升温速率升温至300-500℃,保温2-5h;再以10℃/min的升温速率升温至1400-1600℃,保温2-10h;冷却至室温。
本发明的制备方法制得的MAX相陶瓷管材,适用于事故容错核燃料包壳,作为核燃料包壳管材制成核燃料包壳管。MAX相陶瓷管材中原料纤维增韧相如碳化硅纤维的加入,不仅起到提高MAX相陶瓷管材韧性、强度的作用(纤维增强),使MAX相陶瓷管材具有强韧化特点,解决MAX相陶瓷管材脆性大的问题,同时增强MAX相陶瓷管材耐辐照肿胀性能,使MAX相陶瓷管材能承受一定剂量中子辐照损伤而不出现明显辐照脆化现象。粘结剂、塑化剂的加入解决MAX相陶瓷管坯成型难问题,同时利于纤维增韧相与陶瓷基体的结合,促进纤维与陶瓷基体在烧结过程的作用。
纤维增韧相使管材具有强韧化特点原理如下:首先一方面,裂纹在陶瓷基体扩展的过程中,纤维可以将裂纹尖端区域和陶瓷基体界面开裂区域裂纹桥联起来,在裂纹的表面形成闭合应力,有效抑制裂纹扩展;另一方面,裂纹在扩展过程中遇到纤维时,裂纹只能沿结合较弱的界面扩散,因此裂纹在陶瓷基体中的扩展路程增长,能够吸收更多的断裂能量。其次,当陶瓷基体受到外载荷时,陶瓷基体传向晶须的力会在界面开裂区和晶粒拔出区二者界面上产生剪应力,应力的持续增大会导致晶粒断裂从陶瓷基体中拔出,晶粒拔出的过程中界面摩擦会增加外界载荷能量消耗,减小裂纹在陶瓷基体中扩展速度。
本发明的MAX相陶瓷管材,由固含量60%-90%的浆料制成;浆料包括MAX相纳米粉末、去离子水以及以下质量百分比的原料:5-15%的粘结剂、5-15%的塑化剂、2-15%纤维增韧相。该MAX相陶瓷管材的孔隙率≤10%。
其中,MAX相纳米粉末包括Ti 3SiC 2、Ti 3AlC 2、Ti 2AlC、Cr 2AlC、Ti 2AlN、Zr 3SiC 2、Zr 3AlC 2、Zr 2AlN、Cr 2AlN中的一种或多种。纤维增韧相包括短切纤维、晶须中的一种或多种;短切纤维包括碳纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维的一种或多种。粘结剂可采用羟丙基甲基纤维素,塑化剂可采用聚乙二醇。
本发明的MAX相陶瓷管材用于核燃料包壳,作为MAX相陶瓷包壳管材,具有高热导、高强度、高辐照容忍性、耐腐蚀性、耐事故工况高温蒸汽氧化、耐磨蚀等优点。
本发明的核燃料包壳管,使用上述的MAX相陶瓷管材制成。核燃料包壳管包括燃料棒包壳管。
由MAX相陶瓷管材制成的核燃料包壳管,具有抗热震性能、耐高温腐蚀性能以及高辐照容忍性,提升核反应堆在严重事故工况下维持核燃料组件结构与功能完整性的抗事故能力和安全阈值。
以下通过具体实施例对本发明作进一步说明。
实施例1
首先称量100g羟甲基丙级纤维素、100g聚乙二醇、170ml去离子水及100g短切碳纤维,配制成悬浊液,用超声搅拌混合均匀,逐步添加到2000g的Ti 3SiC 2纳米粉体中,用球磨罐搅拌均匀。挤出压力为10MPa,采用挤出成型机制备出壁厚1mm、直径10mm的Ti 3SiC 2陶瓷管坯,经静置干燥24h后,利用管式炉在1450℃、氩气气氛下保温2h获得强韧化的Ti 3SiC 2陶瓷管材。获得的管材致密度达90%以上,抗拉强度为350MPa,断裂韧性为12MPa·m 1/2,在1200℃水蒸汽条件下,氧化增重低于商用锆合金两个数量级。
实施例2
首先称量100g羟甲基丙级纤维素、75g聚乙二醇、100ml去离子水及60gAl 2O 3纤维,配制成悬浊液,用超声搅拌混合均匀,逐步添加到1000g的Ti 3AlC 2纳米粉体中,用球磨罐搅拌均匀。挤出压力为8MPa,采用挤出成型机制备出壁厚1mm、直径10mm的Ti 3AlC 2陶瓷管坯,经干燥24h后,利用管式炉在1500℃、氩气气氛下、保温5h获得强韧化的Ti 3AlC 2陶瓷管材。管材致密度达92%以上,抗拉强度为380MPa,断裂韧性为11MPa·m 1/2,在1200℃水蒸汽条件下,氧化增重低于商用锆合金两个数量级。
实施例3
首先称量150g羟甲基丙级纤维素、100g聚乙二醇、100ml去离子水及60gSiC晶须,配制成悬浊液,用超声搅拌混合均匀,逐步添加到1000g的Zr 3SiC 2纳米粉体中,用球磨罐搅拌均匀。挤出压力为10MPa,采用挤出成型设备,制备出壁厚1mm、直径10mm的Zr 3SiC 2陶瓷管坯,经干燥24h后,利用管式炉在1500℃、氩气气氛下、保温10h获得强韧化的Zr 3SiC 2陶瓷管材。管材致密度约为92%左右,抗拉强度为350MPa,断裂韧性为10MPa·m 1/2,在1200℃水蒸汽条件下,氧化增重低于商用锆合金两个数量级。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种MAX相陶瓷管材的制备方法,其特征在于,包括以下步骤:
    S1、称取以下质量百分比的原料:5%-15%的粘结剂、5%-15%的塑化剂以及2%-15%纤维增韧相;将原料加入去离子水中,配制成悬浊液;
    S2、将所述悬浊液加入MAX相纳米粉末中,制成固含量为60%-90%的浆料;
    S3、采用挤出成型方法将所述浆料制成MAX相陶瓷管坯;
    S4、将所述MAX相陶瓷管坯进行无压烧结,制得MAX相陶瓷管材。
  2. 根据权利要求1所述的MAX相陶瓷管材的制备方法,其特征在于,所述MAX相纳米粉末包括Ti 3SiC 2、Ti 3AlC 2、Ti 2AlC、Cr 2AlC、Ti 2AlN、Zr 3SiC 2、Zr 3AlC 2、Zr 2AlN、Cr 2AlN中的一种或多种。
  3. 根据权利要求1所述的MAX相陶瓷管材的制备方法,其特征在于,所述纤维增韧相包括短切纤维、晶须中的一种或多种;所述短切纤维包括碳纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维的一种或多种。
  4. 根据权利要求1所述的MAX相陶瓷管材的制备方法,其特征在于,所述MAX相陶瓷管坯通过挤出成型且在无压烧结前,静置12-48h。
  5. 根据权利要求1所述的MAX相陶瓷管材的制备方法,其特征在于,步骤S4中,所述无压烧结包括:在惰性气体气氛下,以2-5℃/min的升温速率升温至300-500℃,保温2-5h;再以10℃/min的升温速率升温至1400-1600℃,保温2-10h;冷却至室温。
  6. 根据权利要求1所述的MAX相陶瓷管材的制备方法,其特征在于,制得的所述MAX相陶瓷管材的孔隙率≤10%。
  7. 一种MAX相陶瓷管材,其特征在于,采用权利要求1-6任一项所述的制备方法制得。
  8. 一种MAX相陶瓷管材,其特征在于,由固含量60%-90%的浆料制成;所述浆料包括MAX相纳米粉末、去离子水以及以下质量百分比的原料:5-15%的粘结剂、5-15%的塑化剂、2-15%纤维增韧相。
  9. 根据权利要求8所述的MAX相陶瓷管材,其特征在于,所述MAX相纳米粉末包括Ti 3SiC 2、Ti 3AlC 2、Ti 2AlC、Cr 2AlC、Ti 2AlN、Zr 3SiC 2、Zr 3AlC 2、Zr 2AlN、Cr 2AlN中的一种或多种。
  10. 根据权利要求8所述的MAX相陶瓷管材,其特征在于,所述纤维增韧相包括短切纤维、晶须中的一种或多种;所述短切纤维包括碳纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维的一种或多种。
  11. 一种核燃料包壳管,其特征在于,采用权利要求7所述的MAX相陶瓷管材或权利要求8-10任一项所述的MAX相陶瓷管材制成。
PCT/CN2018/101360 2017-12-13 2018-08-20 Max相陶瓷管材及其制备方法、核燃料包壳管 WO2019114314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711331471.0 2017-12-13
CN201711331471.0A CN108147828B (zh) 2017-12-13 2017-12-13 Max相陶瓷管材及其制备方法、核燃料包壳管

Publications (1)

Publication Number Publication Date
WO2019114314A1 true WO2019114314A1 (zh) 2019-06-20

Family

ID=62467393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101360 WO2019114314A1 (zh) 2017-12-13 2018-08-20 Max相陶瓷管材及其制备方法、核燃料包壳管

Country Status (2)

Country Link
CN (1) CN108147828B (zh)
WO (1) WO2019114314A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147828B (zh) * 2017-12-13 2021-08-27 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN110451968B (zh) * 2018-05-08 2022-03-04 中国科学院宁波材料技术与工程研究所 一种核燃料包壳管及其制备方法
CN108914027A (zh) * 2018-07-04 2018-11-30 南通志乐新材料有限公司 用于锂电池的TiAlN三元陶瓷
CN109053206B (zh) * 2018-08-31 2021-07-23 中国科学院金属研究所 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN110668821B (zh) * 2019-11-12 2021-11-12 中国工程物理研究院核物理与化学研究所 一种无压制备max相陶瓷的方法
CN111822699A (zh) * 2020-07-21 2020-10-27 丽水学院 一种max相金属陶瓷间接增材制造方法
CN113213960B (zh) * 2021-05-24 2021-11-23 潮州新动力净化器有限公司 一种高韧性、高硬度耐磨陶瓷及其制备方法
CN113200759B (zh) * 2021-05-26 2022-04-22 中南大学 非氧化物max相强韧化氮化硅陶瓷复合材料及其制备方法
CN115594504A (zh) * 2021-07-07 2023-01-13 北京科技大学(Cn) 一种max相燃料包壳元件用陶瓷材料、管件及其制备方法
CN113603490B (zh) * 2021-07-22 2022-10-25 中广核研究院有限公司 高熵陶瓷惰性基弥散燃料芯块及其制备方法
CN115786852A (zh) * 2022-10-21 2023-03-14 中广核研究院有限公司 一种陶瓷基核燃料包壳管表面的抗高温腐蚀铬涂层的制备方法
CN116396077A (zh) * 2023-03-27 2023-07-07 西南交通大学 一种核电站用含铅陶瓷及其制备方法
CN116217232A (zh) * 2023-03-27 2023-06-06 西南交通大学 一种含铟三元层状碳化物陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN104446483A (zh) * 2014-12-16 2015-03-25 宁波伏尔肯机械密封件制造有限公司 一种无压烧结碳化硼陶瓷防弹片的批量生产方法
CN104628407A (zh) * 2015-02-11 2015-05-20 西北工业大学 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法
CN106083117A (zh) * 2016-06-21 2016-11-09 中国科学院宁波材料技术与工程研究所 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法
CN106747536A (zh) * 2016-11-09 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种纤维增强三元层状陶瓷零件的表面氮化方法
CN108147828A (zh) * 2017-12-13 2018-06-12 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143377A (ja) * 1994-11-22 1996-06-04 Toshiba Corp セラミックス基繊維複合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN104446483A (zh) * 2014-12-16 2015-03-25 宁波伏尔肯机械密封件制造有限公司 一种无压烧结碳化硼陶瓷防弹片的批量生产方法
CN104628407A (zh) * 2015-02-11 2015-05-20 西北工业大学 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法
CN106083117A (zh) * 2016-06-21 2016-11-09 中国科学院宁波材料技术与工程研究所 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法
CN106747536A (zh) * 2016-11-09 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种纤维增强三元层状陶瓷零件的表面氮化方法
CN108147828A (zh) * 2017-12-13 2018-06-12 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, GUANGYAO ET AL.: "Extrusion Technology", SOME FRONTIER RESEARCH TOPICS IN MATERIALS CHEMISTRY, 31 January 2013 (2013-01-31), pages 331 - 337 *

Also Published As

Publication number Publication date
CN108147828A (zh) 2018-06-12
CN108147828B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2019114314A1 (zh) Max相陶瓷管材及其制备方法、核燃料包壳管
Kim et al. Fabrication and material issues for the application of SiC composites to LWR fuel cladding
CN108788436B (zh) 一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
WO2017035916A1 (zh) 一种增强型金属陶瓷耐磨复合材料及其制备方法
CN103572084B (zh) 一种含氧的钛基合金的粉末冶金制备方法
CN103724034B (zh) 一种碳化硅晶须增强氮化硅陶瓷复合材料及其制备方法
JPS58204873A (ja) α−炭化ケイ素,炭化ホウ素および遊離炭素から成る実際に無孔な多結晶焼結体および該焼結体の製造方法
CN103304248A (zh) 一种低碳镁碳耐火材料及其制备方法
CN104926304A (zh) 一种氧化钆陶瓷及其制备方法
CN104909785A (zh) 一种氧化铝纤维增强氧化铝陶瓷基复合材料及其制备方法
Zhai et al. High temperature tensile strength of large size Al2O3/ZrO2 (Y2O3) directionally solidified eutectic ceramics
US10217534B2 (en) Method for joining silicon carbide components to one another
CN111892414A (zh) 一种短碳纤维增强碳化硼复合材料及其制备方法
CN107746283B (zh) 一种碳纳米管均匀分散增强氧化铝复合材料的制备方法
CN107150475A (zh) 无机复合材料与镍基高温合金材料间碳纳米管增韧连接层及方法
Sun et al. Mechanical properties of binderless tungsten carbide enhanced via the addition of ZrO2-20 wt% Al2O3 composite powder and graphene nanosheets
CN100558678C (zh) 多形态氧化铝颗粒组合增韧碳化硅陶瓷制造方法
CN101164997B (zh) 棒状氧化铝颗粒结合碳化硅晶须组合增韧碳化硅陶瓷制造方法
CN105463225A (zh) 一种Ti3AlC2-SiC相协同增强Ni基复合材料及其制备方法
CN109836048A (zh) 一种中空玻璃微球复合无机固体浮力材料及制备方法
WO2020093246A1 (zh) 核燃料组件的管材及燃料包壳
Zhou et al. Fast seamless joining of SiCw/Ti3SiC2 composite using electric field‐assisted sintering technique
Noda et al. Recent progress of SiC-fibers and SiC/SiC-composites for fusion applications
CN101164989B (zh) 棒状氧化铝颗粒结合炭纤维组合增韧碳化硅陶瓷制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888407

Country of ref document: EP

Kind code of ref document: A1