WO2017035916A1 - 一种增强型金属陶瓷耐磨复合材料及其制备方法 - Google Patents

一种增强型金属陶瓷耐磨复合材料及其制备方法 Download PDF

Info

Publication number
WO2017035916A1
WO2017035916A1 PCT/CN2015/091828 CN2015091828W WO2017035916A1 WO 2017035916 A1 WO2017035916 A1 WO 2017035916A1 CN 2015091828 W CN2015091828 W CN 2015091828W WO 2017035916 A1 WO2017035916 A1 WO 2017035916A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
composite material
carbide
powder
resistant composite
Prior art date
Application number
PCT/CN2015/091828
Other languages
English (en)
French (fr)
Inventor
钱兵
孙书刚
Original Assignee
南通高欣耐磨科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通高欣耐磨科技股份有限公司 filed Critical 南通高欣耐磨科技股份有限公司
Publication of WO2017035916A1 publication Critical patent/WO2017035916A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides

Definitions

  • the invention belongs to the technical field of wear-resistant composite materials, and particularly relates to a reinforced cermet wear-resistant composite material and a preparation method thereof.
  • the cermet is a composite material composed of a ceramic hard phase and a metal or alloy binder phase.
  • the cermet maintains the high strength, high hardness, wear resistance, high temperature resistance, oxidation resistance and chemical stability of the ceramic. Has good metal toughness and plasticity.
  • the cermet has been used for three generations. The first generation was during World War II. Germany used Ti-bonded TiC to produce cermet. The second generation was in the 1960s. Ford Motor Company added Mo to Ni binder phase to improve TiC and The wettability of other carbides increases the toughness of the material; the third generation of cermet introduces the nitride into the hard phase of the alloy, changing the single phase to a composite phase. The binder phase is also improved by the addition of the Co phase and other elements.
  • Another new direction in the development of cermets is boride-based cermets. Because of its high hardness, melting point, excellent electrical conductivity and corrosion resistance, boride ceramics make boride-based cermets the most promising cermets. However, the improvement of the performance of cermets in China is still not satisfactory. The Rockwell hardness and flexural strength of existing cermets still need to be further improved.
  • Composite materials usually have a good combination of different materials to complement each other.
  • Composite materials have the characteristics of two or more materials, which can improve the performance of a single material, such as improving strength, increasing toughness and improving dielectric properties.
  • ceramic composite materials are mainly used in aerospace, military and other departments.
  • various ceramic composite materials are widely used in the fields of machinery, chemical engineering, and electronic technology.
  • Ceramic matrix composites are a composite of ceramics and various fibers.
  • the ceramic substrate may be a high temperature structural ceramic such as silicon nitride or silicon carbide. These advanced ceramics have excellent properties such as high temperature resistance, high strength and rigidity, relatively light weight, and corrosion resistance, and their fatal weakness is brittleness.
  • Ceramic matrix composites have excellent high temperature resistance and are mainly used as high temperature and wear resistant products. Its maximum use temperature depends mainly on the matrix characteristics. Plastic polymer materials, temperature resistance, weather resistance, wear resistance and other properties are not as good as ceramic composite materials, and there are shortcomings such as short life and large maintenance.
  • the present invention proposes a new technical solution for ceramic composite materials.
  • the present invention provides a reinforced cermet wear-resistant composite material and a preparation method thereof, and the composite material has excellent performance, and the bending strength can be up to 2500 MPa and the Rockwell hardness can reach 93; Excellent wear resistance and high temperature resistance; easy to prepare method, suitable for wide-scale application, simple preparation process, sintering temperature Low degree, low cost, low energy consumption, good environmental coordination, and at the same time, it has comprehensive properties such as high strength and toughness, good thermal shock resistance and outstanding wear resistance.
  • An reinforced cermet wear-resistant composite material according to the present invention comprises the following parts by mass:
  • nanometer molybdenum carbide 15-25 parts of nano ceramic powder, 10-15 parts of glass fiber, 5-10 parts of cobalt, 10-15 parts of chromium, 10-15 parts of titanium carbonitride, 1-3 parts of zirconia , 3-5 parts of silica, 8-10 parts of cerium oxide, 1-3 parts of alumina, 5-10 parts of cerium carbide, 5-15 parts of silicon carbide, 1-3 parts of vanadium carbide, 4-9 parts of copper, titanium 1-5 parts of powder, 1-5 parts of coupling agent, 1-3 parts of antistatic agent, and 1-3 parts of curing agent.
  • components include the following parts by mass:
  • nanometer molybdenum carbide 15-20 parts of nano ceramic powder, 10-12 parts of glass fiber, 5-8 parts of cobalt, 10-13 parts of chromium, 10-12 parts of titanium carbonitride, 1-2 parts of zirconia 3-4 parts of silica, 8-9 parts of cerium oxide, 1-2 parts of alumina, 5-8 parts of cerium carbide, 5-10 parts of silicon carbide, 1-2 parts of vanadium carbide, 5-8 parts of copper, titanium 1-3 parts of powder, 1-3 parts of coupling agent, 1-2 parts of antistatic agent, and 1-2 parts of curing agent.
  • components include the following parts by mass:
  • the coupling agent is a silane coupling agent KH550 or a silane coupling agent KH560.
  • the antistatic agent is ethoxylated laurylamine.
  • the curing agent is one or a mixture of m-xylylenediamine and m-phenylenediamine.
  • the invention also discloses a preparation method of the reinforced cermet wear-resistant composite material comprising the following steps:
  • the components are compounded and mixed according to the parts by mass, and the particle size of each powder is 500-800 mesh;
  • the pulverized material is then pulverized in a ball mill to 270-500 mesh, loaded into a mold and subjected to a pressure of 50 MPa, and held for 5 minutes;
  • the cermet composite material of the invention has excellent performance, the bending strength can be up to 2500 MPa, the Rockwell hardness can reach 93; and the alloy has excellent wear resistance and high temperature resistance; the preparation method is simple and easy, suitable Widely promoted and applied, the preparation process is simple, the sintering temperature is low, the cost is low, the energy consumption is low, the environment coordination is good, and at the same time, it has comprehensive properties such as high strength and toughness, good thermal shock resistance and outstanding wear resistance.
  • the cermet composite material of the invention also has good mechanical strength, toughness and anti-wear property, utilizes high hardness and wear resistance of the ceramic, and anticorrosion performance and impact resistance of the plastic. The ability, at the same time, has good performance in flame retardant, antistatic, etc., and is light in weight, long in service life and low in cost.
  • a reinforced cermet wear resistant composite comprising the following parts by mass:
  • nano-molybdenum carbide 15 parts of nano-ceramic powder, 10 parts of glass fiber, 5 parts of cobalt, 10 parts of chromium, 10 parts of titanium carbonitride, 1 part of zirconia, 3 parts of silicon oxide, 8 parts of cerium oxide, alumina 1 - part, 5 parts of niobium carbide, 5 parts of silicon carbide, 1 part of vanadium carbide, 4 parts of copper, 1 part of titanium powder, 1 part of coupling agent, 1 part of antistatic agent, 1 part of curing agent.
  • the preparation method of the above reinforced cermet wear-resistant composite material comprises the following steps:
  • the components are compounded and mixed according to the parts by mass, and the particle size of each powder is 500 mesh;
  • the pulverized material is then pulverized to 270 mesh in a ball mill, loaded into a mold and subjected to a pressure of 50 MPa, and held for 5 minutes;
  • a reinforced cermet wear resistant composite comprising the following parts by mass:
  • 35 parts of nanometer molybdenum carbide 25 parts of nano ceramic powder, 15 parts of glass fiber, 10 parts of cobalt, 15 parts of chromium, 15 parts of titanium carbonitride, 3 parts of zirconia, 5 parts of silicon oxide, 10 parts of cerium oxide, aluminum oxide 3 Parts, 10 parts of niobium carbide, 15 parts of silicon carbide, 3 parts of vanadium carbide, 9 parts of copper, 5 parts of titanium powder, 5 parts of coupling agent, 3 parts of antistatic agent, and 3 parts of curing agent.
  • the preparation method of the above reinforced cermet wear-resistant composite material comprises the following steps:
  • the components are compounded and mixed according to the parts by mass, and the particle size of each powder is 800 mesh;
  • the pulverized material is then pulverized to 500 mesh in a ball mill, loaded into a mold and subjected to a pressure of 50 MPa, and held for 5 minutes;
  • a reinforced cermet wear resistant composite comprising the following parts by mass:
  • the preparation method of the above reinforced cermet wear-resistant composite material comprises the following steps:
  • the pulverized material is then pulverized to 350 mesh in a ball mill, loaded into a mold and subjected to a pressure of 50 MPa, and held for 5 minutes;
  • the cermet composite material of the invention has excellent performance, the bending strength can be up to 2500 MPa, the Rockwell hardness can reach 93; and the alloy has excellent wear resistance and high temperature resistance; the preparation method is simple and easy, and is suitable for a wide range Promote application, simple preparation process, low sintering temperature, low cost, low energy consumption, good environmental coordination, and at the same time have comprehensive properties such as high strength and toughness, good thermal shock resistance and outstanding wear resistance.
  • the cermet composite material of the invention also has good mechanical strength, toughness and anti-wear property, utilizes the high hardness and wear resistance of the ceramic, and the anti-corrosion performance and impact resistance of the plastic, and also has the aspects of flame retardant and antistatic. Very good performance, light weight, long service life and low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种金属陶瓷耐磨复合材料及其制备方法,该金属陶瓷复合材料按质量份数包括如下组分:纳米碳化钼25-35份,纳米陶瓷粉15-25份,玻璃纤维10-15份,钴5-10份,铬10-15份,碳氮化钛10-15份,氧化锆1-3份,氧化硅3-5份,氧化铈8-10份,氧化铝1-3份,碳化铌5-10份,碳化硅5-15份,碳化钒1-3份,铜4-9份,钛粉1-5份,偶联剂1-5份,抗静电剂1-3份,固化剂1-3份。该金属陶瓷复合材料的制备方法包括:混合、球磨、烘干、烧结以及冷却。所述金属陶瓷复合材料的抗弯强度可达2500MPa,洛氏硬度可达93。

Description

一种增强型金属陶瓷耐磨复合材料及其制备方法 技术领域
本发明属于耐磨复合材料技术领域,具体涉及一种增强型金属陶瓷耐磨复合材料及其制备方法。
背景技术
金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的复合材料,金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。
金属陶瓷迄今为止已历经三代,第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。又通过添加Co相和其他元素改善了粘结相。金属陶瓷研制的另一个新方向是硼化物基金属陶瓷。由于硼化物陶瓷具有很高的硬度、熔点和优良的导电性,耐腐蚀性,从而使硼化物基金属陶瓷成为最有发展前途的金属陶瓷。但是目前我国对金属陶瓷在性能方面的改进仍不理想,现有金属陶瓷的洛氏硬度和抗弯强度仍有待进一步提高。
复合材料通常具有不同材料相互取长补短的良好综合性能。复合材料兼有两种或两种以上材料的特点,能改善单一材料的性能,如提高强度、增加韧性和改善介电性能等。作为高温结构材料用的陶瓷复合材料,主要用于宇航,军工等部门。此外,在机械、化工、电子技术等领域也广泛采用各种陶瓷复合材料。陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。塑料高分子材料,耐温、耐气侯变化,耐磨等性能不如陶瓷复合材料,而且存在寿命短、维护量大等缺陷,而本发针对陶瓷复合材料提出一种新的技术方案。
发明内容
发明目的:本发明针对不足,提出一种增强型金属陶瓷耐磨复合材料及其制备方法,该复合材料具有优良的性能,其抗弯强度可高达2500MPa,洛氏硬度可达93;且还具有优良的耐磨损性和耐高温性能;制备方法简单易行,适于大范围推广应用,制备工艺简便,烧结温 度低,成本低,能耗低,环境协调性好,并且同时具有强度和韧性高、热震性好和耐磨性突出等综合性能。
技术方案:本发明所述的一种增强型金属陶瓷耐磨复合材料,包括如下质量份数的组分:
纳米碳化钼25-35份,纳米陶瓷粉15-25份,玻璃纤维10-15份,钴5-10份,铬10-15份,碳氮化钛10-15份,氧化锆1-3份,氧化硅3-5份,氧化铈8-10份,氧化铝1-3份,碳化铌5-10份,碳化硅5-15份,碳化钒1-3份,铜4-9份,钛粉1-5份,偶联剂1-5份,抗静电剂1-3份,固化剂1-3份。
进一步的,包括如下质量份数的组分:
纳米碳化钼25-30份,纳米陶瓷粉15-20份,玻璃纤维10-12份,钴5-8份,铬10-13份,碳氮化钛10-12份,氧化锆1-2份,氧化硅3-4份,氧化铈8-9份,氧化铝1-2份,碳化铌5-8份,碳化硅5-10份,碳化钒1-2份,铜5-8份,钛粉1-3份,偶联剂1-3份,抗静电剂1-2份,固化剂1-2份。
进一步的,包括如下质量份数的组分:
纳米碳化钼27份,纳米陶瓷粉18份,玻璃纤维11份,钴6份,铬12份,碳氮化钛11份,氧化锆1.5份,氧化硅3.5份,氧化铈8.5份,氧化铝1.5份,碳化铌7份,碳化硅7份,碳化钒1.5份,铜6份,钛粉2份,偶联剂2份,抗静电剂1.5份,固化剂1.5份。
进一步的,所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。
进一步的,所述抗静电剂为乙氧基月桂酷胺。
进一步的,所述固化剂为间苯二甲胺、间苯二胺其中的一种或两种混合物。
本发明还公开了一种增强型金属陶瓷耐磨复合材料的制备方法包括如下步骤:
(1)按照质量份数将各组分进行配料并混合,各粉料的粒度均为500-800目;
(2)将上述粉料装入球磨机中,然后注水,注水重量和粉料总重量之比为1∶1;(3)球磨湿混12h后取出烘干,烘干温度为150-200℃;
(4)然后将烘干的物料在球磨机中粉碎到270-500目,装入模具中并施加50MPa压力,保压5min;
(5)然后放入电炉中烧结,先加热到500-600℃保温0.5-2h,然后再升温1350℃~1450℃,保温3-5h;之后随炉冷却便得到增强型金属陶瓷耐磨复合材料。
有益效果:本发明金属陶瓷复合材料具有优良的性能,其抗弯强度可高达2500MPa,洛氏硬度可达93;且还具有优良的耐磨损性和耐高温性能;制备方法简单易行,适于大范围推广应用,制备工艺简便,烧结温度低,成本低,能耗低,环境协调性好,并且同时具有强度和韧性高、热震性好和耐磨性突出等综合性能。同时本发明金属陶瓷复合材料还具有良好的机械强度、韧性、抗磨特性,利用陶瓷的高硬度、耐磨性能,以及塑料的防腐性能、耐冲击 能力,同时在阻燃、抗静电等方面也有很好的性能,而且重量轻、使用寿命长,成本低。
具体实施方式
下面结合具体实施例对本发明作进一步说明:
实施例1
一种增强型金属陶瓷耐磨复合材料,包括如下质量份数的组分:
纳米碳化钼25份,纳米陶瓷粉15份,玻璃纤维10份,钴5份,铬10份,碳氮化钛10份,氧化锆1份,氧化硅3份,氧化铈8份,氧化铝1-份,碳化铌5份,碳化硅5份,碳化钒1份,铜4份,钛粉1份,偶联剂1份,抗静电剂1份,固化剂1份。
上述一种增强型金属陶瓷耐磨复合材料的制备方法包括如下步骤:
(1)按照质量份数将各组分进行配料并混合,各粉料的粒度均为500目;
(2)将上述粉料装入球磨机中,然后注水,注水重量和粉料总重量之比为1∶1;(3)球磨湿混12h后取出烘干,烘干温度为150℃;
(4)然后将烘干的物料在球磨机中粉碎到270目,装入模具中并施加50MPa压力,保压5min;
(5)然后放入电炉中烧结,先加热到500℃保温0.5h,然后再升温1350℃,保温3h;之后随炉冷却便得到增强型金属陶瓷耐磨复合材料。
实施例2
一种增强型金属陶瓷耐磨复合材料,包括如下质量份数的组分:
纳米碳化钼35份,纳米陶瓷粉25份,玻璃纤维15份,钴10份,铬15份,碳氮化钛15份,氧化锆3份,氧化硅5份,氧化铈10份,氧化铝3份,碳化铌10份,碳化硅15份,碳化钒3份,铜9份,钛粉5份,偶联剂5份,抗静电剂3份,固化剂3份。
上述一种增强型金属陶瓷耐磨复合材料的制备方法包括如下步骤:
(1)按照质量份数将各组分进行配料并混合,各粉料的粒度均为800目;
(2)将上述粉料装入球磨机中,然后注水,注水重量和粉料总重量之比为1∶1;(3)球磨湿混12h后取出烘干,烘干温度为200℃;
(4)然后将烘干的物料在球磨机中粉碎到500目,装入模具中并施加50MPa压力,保压5min;
(5)然后放入电炉中烧结,先加热到600℃保温2h,然后再升温1450℃,保温5h;之后随炉冷却便得到增强型金属陶瓷耐磨复合材料。
实施例3
一种增强型金属陶瓷耐磨复合材料,包括如下质量份数的组分:
纳米碳化钼27份,纳米陶瓷粉18份,玻璃纤维11份,钴6份,铬12份,碳氮化钛11份,氧化锆1.5份,氧化硅3.5份,氧化铈8.5份,氧化铝1.5份,碳化铌7份,碳化硅7份,碳化钒1.5份,铜6份,钛粉2份,偶联剂2份,抗静电剂1.5份,固化剂1.5份。
上述一种增强型金属陶瓷耐磨复合材料的制备方法包括如下步骤:
(1)按照质量份数将各组分进行配料并混合,各粉料的粒度均为650目;
(2)将上述粉料装入球磨机中,然后注水,注水重量和粉料总重量之比为1∶1;(3)球磨湿混12h后取出烘干,烘干温度为170℃;
(4)然后将烘干的物料在球磨机中粉碎到350目,装入模具中并施加50MPa压力,保压5min;
(5)然后放入电炉中烧结,先加热到550℃保温1h,然后再升温1400℃,保温4h;之后随炉冷却便得到增强型金属陶瓷耐磨复合材料。
本发明金属陶瓷复合材料具有优良的性能,其抗弯强度可高达2500MPa,洛氏硬度可达93;且还具有优良的耐磨损性和耐高温性能;制备方法简单易行,适于大范围推广应用,制备工艺简便,烧结温度低,成本低,能耗低,环境协调性好,并且同时具有强度和韧性高、热震性好和耐磨性突出等综合性能。同时本发明金属陶瓷复合材料还具有良好的机械强度、韧性、抗磨特性,利用陶瓷的高硬度、耐磨性能,以及塑料的防腐性能、耐冲击能力,同时在阻燃、抗静电等方面也有很好的性能,而且重量轻、使用寿命长,成本低。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

  1. 一种增强型金属陶瓷耐磨复合材料,其特征在于:包括如下质量份数的组分:
    纳米碳化钼25-35份,纳米陶瓷粉15-25份,玻璃纤维10-15份,钴5-10份,铬10-15份,碳氮化钛10-15份,氧化锆1-3份,氧化硅3-5份,氧化铈8-10份,氧化铝1-3份,碳化铌5-10份,碳化硅5-15份,碳化钒1-3份,铜4-9份,钛粉1-5份,偶联剂1-5份,抗静电剂1-3份,固化剂1-3份。
  2. 根据权利要求1所述的一种增强型金属陶瓷耐磨复合材料,其特征在于:包括如下质量份数的组分:
    纳米碳化钼25-30份,纳米陶瓷粉15-20份,玻璃纤维10-12份,钴5-8份,铬10-13份,碳氮化钛10-12份,氧化锆1-2份,氧化硅3-4份,氧化铈8-9份,氧化铝1-2份,碳化铌5-8份,碳化硅5-10份,碳化钒1-2份,铜5-8份,钛粉1-3份,偶联剂1-3份,抗静电剂1-2份,固化剂1-2份。
  3. 根据权利要求1所述的一种增强型金属陶瓷耐磨复合材料,其特征在于:包括如下质量份数的组分:
    纳米碳化钼27份,纳米陶瓷粉18份,玻璃纤维11份,钴6份,铬12份,碳氮化钛11份,氧化锆1.5份,氧化硅3.5份,氧化铈8.5份,氧化铝1.5份,碳化铌7份,碳化硅7份,碳化钒1.5份,铜6份,钛粉2份,偶联剂2份,抗静电剂1.5份,固化剂1.5份。
  4. 根据权利要求1或2或3所述的一种增强型金属陶瓷耐磨复合材料,其特征在于:所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。
  5. 根据权利要求1或2或3所述的一种增强型金属陶瓷耐磨复合材料,其特征在于:所述抗静电剂为乙氧基月桂酷胺。
  6. 根据权利要求1或2或3所述的一种增强型金属陶瓷耐磨复合材料,其特征在于:所述固化剂为间苯二甲胺、间苯二胺其中的一种或两种混合物。
  7. 根据权利要求1-6任一一项所述的一种增强型金属陶瓷耐磨复合材料的制备方法,其特征在于:包括如下步骤:
    (1)按照质量份数将各组分进行配料并混合,各粉料的粒度均为500-800目;
    (2)将上述粉料装入球磨机中,然后注水,注水重量和粉料总重量之比为1∶1;(3)球磨湿混12h后取出烘干,烘干温度为150-200℃;
    (4)然后将烘干的物料在球磨机中粉碎到270-500目,装入模具中并施加50MPa压力,保压5min;
    (5)然后放入电炉中烧结,先加热到500-600℃保温0.5-2h,然后再升温1350℃~1450℃,保温3-5h;之后随炉冷却便得到增强型金属陶瓷耐磨复合材料。
PCT/CN2015/091828 2015-08-28 2015-10-13 一种增强型金属陶瓷耐磨复合材料及其制备方法 WO2017035916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510538030.2 2015-08-28
CN201510538030.2A CN105088047A (zh) 2015-08-28 2015-08-28 一种增强型金属陶瓷耐磨复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017035916A1 true WO2017035916A1 (zh) 2017-03-09

Family

ID=54569365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091828 WO2017035916A1 (zh) 2015-08-28 2015-10-13 一种增强型金属陶瓷耐磨复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105088047A (zh)
WO (1) WO2017035916A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108116352A (zh) * 2018-01-02 2018-06-05 苏州盱酋汽车科技有限公司 一种耐磨前保险杠安装支架
CN111116178A (zh) * 2019-11-27 2020-05-08 东台施迈尔新材料科技有限公司 一种高硬度烧制陶瓷件的组份及制备方法
CN113929351A (zh) * 2020-06-29 2022-01-14 比亚迪股份有限公司 一种仿陶瓷材料及其制备方法和应用
CN115138814A (zh) * 2022-06-27 2022-10-04 国网山东省电力公司汶上县供电公司 一种安全耐磨损的电力安装工具材料箱
CN115491128A (zh) * 2022-08-31 2022-12-20 山东之诺新材料科技有限公司 Jjy-1石墨烯改性耐高温抗磨损重防腐纳米陶瓷涂料的配方
CN116215017A (zh) * 2023-03-10 2023-06-06 中科博翰新材料(北京)有限公司 一种多腔孔陶瓷复合绝热材料
CN116516231A (zh) * 2023-05-05 2023-08-01 扬州威世新材料有限公司 一种粉末冶金定子环材料及其制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105884338A (zh) * 2016-04-08 2016-08-24 苏州捷德瑞精密机械有限公司 一种氧化铝-氮化钛-碳化钒刀具材料及其制备方法
CN105821276A (zh) * 2016-05-24 2016-08-03 刘和来 一种金属陶瓷材料
CN105970065A (zh) * 2016-05-31 2016-09-28 合肥正浩机械科技有限公司 一种立方氮化硼-羰基镍粉金属陶瓷密封环及其制备方法
CN105861907A (zh) * 2016-05-31 2016-08-17 合肥正浩机械科技有限公司 一种镍铬铝钇合金复合金属陶瓷密封环及其制备方法
CN106041046A (zh) * 2016-05-31 2016-10-26 合肥正浩机械科技有限公司 一种耐高温金属陶瓷密封环及其制备方法
CN105970066A (zh) * 2016-05-31 2016-09-28 合肥正浩机械科技有限公司 一种金属陶瓷密封环及其制备方法
CN105861906A (zh) * 2016-05-31 2016-08-17 合肥正浩机械科技有限公司 一种高润滑防污金属陶瓷密封环及其制备方法
CN106086722A (zh) * 2016-06-22 2016-11-09 陈林美 一种耐磨抗氧化钛镁合金材料及其制备方法
CN105886972A (zh) * 2016-06-22 2016-08-24 陈林美 一种耐磨碳化物基金属陶瓷刀具及其制备方法
CN106282857A (zh) * 2016-07-28 2017-01-04 陈林美 一种高强度氮化物基金属陶瓷衬板及其制备方法
CN106319325A (zh) * 2016-09-27 2017-01-11 张家港集优特防护设施有限公司 一种新型复合陶瓷金属材料
CN106282735A (zh) * 2016-09-27 2017-01-04 张家港集优特防护设施有限公司 一种新型隔热防护栏金属材料
CN106367657A (zh) * 2016-09-27 2017-02-01 张家港集优特防护设施有限公司 一种防紫外线耐磨栅栏金属材料
CN106381438A (zh) * 2016-09-27 2017-02-08 张家港集优特防护设施有限公司 一种耐磨栅栏金属材料
CN106435321A (zh) * 2016-09-27 2017-02-22 张家港集优特防护设施有限公司 一种实用陶瓷金属材料
CN106244892A (zh) * 2016-09-27 2016-12-21 张家港集优特防护设施有限公司 一种复合陶瓷金属材料
CN106381437A (zh) * 2016-09-27 2017-02-08 张家港集优特防护设施有限公司 一种陶瓷金属材料
CN106319327A (zh) * 2016-09-27 2017-01-11 张家港集优特防护设施有限公司 一种隔热防护栏金属材料
CN106282739A (zh) * 2016-09-27 2017-01-04 张家港集优特防护设施有限公司 一种实用防护栏金属材料
CN106498222B (zh) * 2016-10-07 2017-11-28 马鞍山瑞辉实业有限公司 一种复合耐磨材料的制备方法
CN106435330A (zh) * 2016-10-18 2017-02-22 张家港集优特防护设施有限公司 一种高耐磨栅栏金属材料
CN107419203A (zh) * 2017-03-15 2017-12-01 济南中铁重工轨道装备有限公司 一种盾构机用新型耐磨材料
CN107034406B (zh) * 2017-04-14 2018-05-22 洛阳鹏飞耐磨材料股份有限公司 一种刹车片用陶瓷合金复合耐磨材料的制备方法
CN107763358B (zh) * 2017-11-16 2023-05-05 江苏乾元飞达电力设备有限公司 一种耐磨型陶瓷膨胀节及其陶瓷衬管的烧结成型工艺
CN108775340B (zh) * 2018-06-23 2021-03-26 唐山中茂科技有限公司 填充固化固体润滑材料自润滑轴承及其制备方法
CN109926581B (zh) * 2019-04-11 2021-04-20 北京佳美未来科技有限公司 一种高温脱粘自粘合的SiCf/Ti基复合材料及制备方法
CN113054145B (zh) * 2019-12-28 2022-08-23 Tcl科技集团股份有限公司 复合材料及其制备方法、应用、发光二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081525A (ja) * 1993-12-10 2001-03-27 Allied Material Corp サーメット及び非酸化物系セラミックス
KR20060111103A (ko) * 2005-04-22 2006-10-26 한국야금 주식회사 고인성 탄질화 티탄기 서멧트 및 이의 제조 방법
CN104371165A (zh) * 2014-10-28 2015-02-25 昆山艾士比高分子科技有限公司 一种高分子陶瓷复合材料
CN104388718A (zh) * 2014-10-22 2015-03-04 苏州莱特复合材料有限公司 金属陶瓷复合材料及其制备方法
CN104556991A (zh) * 2015-01-28 2015-04-29 吴江华诚复合材料科技有限公司 一种复合金属陶瓷材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978171A (ja) * 1995-09-19 1997-03-25 Kurosaki Refract Co Ltd 炭窒化物金属複合材料およびサーメット部品
CN101508574B (zh) * 2009-03-25 2012-11-21 王铀 一种具有非晶/纳米晶结构的陶瓷材料及其制备方法
CN102531468B (zh) * 2012-01-16 2013-09-18 吉林吉瑞莱板材科技有限公司 一种纳米二氧化硅复合石英石板材制品及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081525A (ja) * 1993-12-10 2001-03-27 Allied Material Corp サーメット及び非酸化物系セラミックス
KR20060111103A (ko) * 2005-04-22 2006-10-26 한국야금 주식회사 고인성 탄질화 티탄기 서멧트 및 이의 제조 방법
CN104388718A (zh) * 2014-10-22 2015-03-04 苏州莱特复合材料有限公司 金属陶瓷复合材料及其制备方法
CN104371165A (zh) * 2014-10-28 2015-02-25 昆山艾士比高分子科技有限公司 一种高分子陶瓷复合材料
CN104556991A (zh) * 2015-01-28 2015-04-29 吴江华诚复合材料科技有限公司 一种复合金属陶瓷材料及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108116352A (zh) * 2018-01-02 2018-06-05 苏州盱酋汽车科技有限公司 一种耐磨前保险杠安装支架
CN111116178A (zh) * 2019-11-27 2020-05-08 东台施迈尔新材料科技有限公司 一种高硬度烧制陶瓷件的组份及制备方法
CN113929351A (zh) * 2020-06-29 2022-01-14 比亚迪股份有限公司 一种仿陶瓷材料及其制备方法和应用
CN115138814A (zh) * 2022-06-27 2022-10-04 国网山东省电力公司汶上县供电公司 一种安全耐磨损的电力安装工具材料箱
CN115491128A (zh) * 2022-08-31 2022-12-20 山东之诺新材料科技有限公司 Jjy-1石墨烯改性耐高温抗磨损重防腐纳米陶瓷涂料的配方
CN116215017A (zh) * 2023-03-10 2023-06-06 中科博翰新材料(北京)有限公司 一种多腔孔陶瓷复合绝热材料
CN116215017B (zh) * 2023-03-10 2023-11-17 中科博翰新材料(北京)有限公司 一种多腔孔陶瓷复合绝热材料的制备方法
CN116516231A (zh) * 2023-05-05 2023-08-01 扬州威世新材料有限公司 一种粉末冶金定子环材料及其制备方法
CN116516231B (zh) * 2023-05-05 2023-10-27 扬州威世新材料有限公司 一种粉末冶金定子环材料及其制备方法

Also Published As

Publication number Publication date
CN105088047A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017035916A1 (zh) 一种增强型金属陶瓷耐磨复合材料及其制备方法
CN103724034B (zh) 一种碳化硅晶须增强氮化硅陶瓷复合材料及其制备方法
Feng et al. A composite structural high-temperature-resistant adhesive based on in-situ grown mullite whiskers
CN101102977B (zh) 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法
WO2008138266A1 (fr) Revêtement haute température écologique et économe en énergie pour un métal
CN103265926B (zh) 复合纳米粉体改性亚胺环氧胶黏剂
CN103724032B (zh) 一种二维纤维布增强氮化硅-碳化硅陶瓷复合材料及其制备方法
CN104310976A (zh) 一种高耐磨耐高温陶瓷
CN107746282B (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
Salvo et al. Shear and bending strength of SiC/SiC joined by a modified commercial adhesive
CN105154724A (zh) 一种碳纳米管增强铝基复合材料及其制备方法
Lee et al. Formation of Ti3SiC2 interphase coating on SiCf/SiC composite by electrophoretic deposition
CN107619288A (zh) 采用原位反应制备碳纤维增强二硼化钛复合材料的方法
CN105463225A (zh) 一种Ti3AlC2-SiC相协同增强Ni基复合材料及其制备方法
CN105859295A (zh) 一种碳化硼基陶瓷-金属复合材料及其制备方法
Wang et al. Preparation and performance of the room‐temperature‐cured heat‐resistant phosphate adhesive for c/c composites bonding
CN105543609A (zh) 一种含锆的碳化硼基复合材料及其制备方法
CN102276280A (zh) 基于玻璃碳和碳添加物的复合薄板及其制备方法
CN105585324A (zh) 晶须增韧强化碳陶瓷复合材料
CN114790121A (zh) 一种耐热高强度炭/陶材料的紧固件及其制备方法
CN112442328B (zh) 粘结剂及其制备方法和应用
CN104372231A (zh) 一种耐腐蚀的金属陶瓷材料及其制备方法
CN113248273A (zh) 一种陶瓷基复合标签材料及其制备方法
CN105177386A (zh) 一种无油润滑轴承材料及其制备方法
CN106747449B (zh) 新型碳化钨复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902723

Country of ref document: EP

Kind code of ref document: A1