CN108807501B - 一种低导通压降的绝缘栅双极晶体管及其制备方法 - Google Patents

一种低导通压降的绝缘栅双极晶体管及其制备方法 Download PDF

Info

Publication number
CN108807501B
CN108807501B CN201810570229.7A CN201810570229A CN108807501B CN 108807501 B CN108807501 B CN 108807501B CN 201810570229 A CN201810570229 A CN 201810570229A CN 108807501 B CN108807501 B CN 108807501B
Authority
CN
China
Prior art keywords
layer
region
kev
bipolar transistor
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810570229.7A
Other languages
English (en)
Other versions
CN108807501A (zh
Inventor
许海东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUNNYCHIP SEMICONDUCTOR Co.
Original Assignee
Sunnychip Semiconductor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunnychip Semiconductor Co filed Critical Sunnychip Semiconductor Co
Priority to CN201810570229.7A priority Critical patent/CN108807501B/zh
Publication of CN108807501A publication Critical patent/CN108807501A/zh
Application granted granted Critical
Publication of CN108807501B publication Critical patent/CN108807501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/6634Vertical insulated gate bipolar transistors with a recess formed by etching in the source/emitter contact region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种低导通压降的绝缘栅双极晶体管及其制备方法,沿着终端区域(101)、过渡区域(102)和原胞区域(103)的纵向剖面,从下到上依次为:P+集电极层(204)、N+场截止层(203)、N漂移层(202)和表面PN+交替层(201)。所述绝缘栅双极晶体管的制备方法,是在N型衬底材料上通过增加一次N型离子注入,在原胞中充当载流子存储层,同时利用保护环P型注入,在原胞处形成PN电荷补偿结构,避免因N型离子注入引起的击穿电压降低,同时N型离子注入提高了终端表面的杂质浓度,可以降低可动电荷对终端表面电场的影响,并提高器件的耐压可靠性。

Description

一种低导通压降的绝缘栅双极晶体管及其制备方法
技术领域
本发明涉及一种绝缘栅双极晶体管及其制备方法。
背景技术
为了尽可能的提高IGBT器件的性能,需要不断的降低其导通电阻,对于高压IGBT来说,影响正向导通压降Vce(on)的因素主要是JFET区域等效电阻RJ和漂移区等效电阻RD,因此,现有技术一般都是通过降低这两部分电阻来进一步提高IGBT的性能。
针对JFET区域电阻RJ,目前主要有三类方法降低电阻RJ:第一、增加JFET注入,增加JFET区域处载流子浓度,降低JFET电阻,但这种方法需要增加工艺步骤且效果不是非常明显;第二、使用采用沟槽栅代替平面栅结构,将平面栅中的JFET区域去除,这种方法直接去除了JFET这部分电阻,有效地增大了器件的电流密度,在低压IGBT中得到了广泛地应用,但是这种方法制造工艺复杂,且沟槽栅的形貌及工艺控制对IGBT的可靠性具有很大的影响,在高压IGBT中并不常用;第三、在Pbody区域下增加载流子存储层,提高载流子浓度,降低正向导通压降,但这种方法会引起器件击穿电压降低,改善有限;第四、通过增加平面栅的尺寸来降低JFET电阻,这种方法会降低器件的电流密度和击穿电压,需要优化设计。
针对漂移区电阻RD,主要通过降低漂移区厚度来降低电阻RD。迄今为止,主要有穿通型PT-IGBT、非穿通型NPT-IGBT和场截止型FS-IGBT三种结构,三者之间的主要差异是不同的衬底PN结结构和不同的漂移区厚度。相对穿通型PT-IGBT和非穿通型NPT-IGBT来讲,场截止型FS-IGBT具有最薄的厚度,其正向导通压降得到明显的下降,该结构在IGBT产品中得到了广泛的应用。然而,随着半导体晶圆尺寸的不断提高,薄片设备的价格、工艺复杂程度以及很高的碎片率严重的限制了IGBT性能的不断提升。
如图1a所示的专利201110225181.4和图1b所示的专利201110225680.3,通过注入的方式在Pwell下方设置N型埋层,充当载流子存储层结构,在器件导通时可以提升漂移区载流子浓度,降低器件正向导通压降,但是这种方法会提高埋层位置处的电场,降低器件的反向击穿电压;
图1c所示的专利PCT/JP2012/063687,在漂移区内设置重复的PNPN结构,降低漂移区的电场,提高正向导通时载流子浓度,来降低正向导通压降,该方法效果明显,但是制备方法复杂且成本非常高。
发明内容
为了进一步降低绝缘栅双极晶体管IGBT的导通压降,提高IGBT的性能,本发明提出一种低导通压降的绝缘栅双极晶体管及其制备方法。本发明在N型衬底上通过增加一次N型离子注入,在原胞中充当载流子存储层,同时利用保护环P型注入,在原胞处形成PN电荷补偿结构,避免因N型离子注入引起的击穿电压降低,并且,N型离子注入提高了终端表面的杂质浓度,可以降低可动电荷对终端表面电场的影响,并提高了器件的耐压可靠性。
本发明的优点在于可以有效降低IGBT的内阻,使其在系统线路中的损耗大幅降低,从而提高电源系统转换效率。
本发明低导通压降的绝缘栅双极晶体管主要包括:终端区域101、过渡区域102和原胞区域103。晶体管中间区域为原胞区域103,终端区域101围绕原胞区域103一圈,保证器件的击穿稳定性,原胞区域103与终端区域101过渡之处为过渡区域102。沿着原胞区域103、过渡区域102、终端区域101的纵向剖面,从下到上依次为:P+集电极层204、N+场截止层203、N漂移层202和表面PN+交替层201。
所述的P+集电极层204的掺杂浓度范围为5e15~3e16 cm-3,掺杂厚度0.5~2μm,集电极效率较低,有利于少数载流子的抽取,开关频率高。
所述的N+场截止层203位于P+集电极层204之上N漂移层202之下,掺杂浓度范围为5e14~6e15cm-3,掺杂厚度为2~20μm,在器件阻断情况下,起到电场截止的作用。
所述的N漂移层202位于N+场截止层203之上、表面PN+交替层201之下,掺杂浓度范围为3e13~1e14cm-3,掺杂厚度为70~150μm,在器件阻断情况下承担主要压降。
所述表面PN+交替层201,P区214与N+区213横向左右交替相间设置,其特征在于:终端区域101的P区域218浮空,起分压环作用,N+区216可以降低可动电荷对表面电场的影响,降低器件高温漏电,提高器件击穿电压稳定性;过渡区域102的P区217与发射极金属相连,起到平衡电位的作用;原胞区域103的P区214与N+区213横向左右交替,相间设置,且掺杂总量基本相等。
所述表面PN+交替层201中,P区域214的浓度与N+区域213的浓度比为NP/NN+=0.8~1.2,P区域214与N+区域213深度比为TP/TN+=0.9~1.0,P区域214上部Pwell区域212深度与N+区域213的深度比为TPwell/TN+=0.3~0.8,N+区域213的浓度比N漂移区域202高10~100倍。
所述原胞区域103内的表面PN+交替层201中,在P区214内设置P+掺杂区215,P+掺杂区215与发射极金属相连;在N+区213内设置Pwell区212,Pwell区212与P区214相连;在Pwell区212内设置N++掺杂区211,N++掺杂区211与发射极金属相连。
本发明引入表面PN+交替层201,可以提高正向工作状态下的载流子浓度,降低导通电阻;同时,P区214与N+区213内掺杂电荷进行横向补偿,可降低横向电场,提高器件的耐压。
本发明低导通压降的绝缘栅双极晶体管制备方法包括以下步骤:
(1)在电阻率为20~100ohm·cm,厚度为300~700μm的N型衬底上,采用中束流离子注入机,注入剂量1e12~1e13 cm-2、能量60~200keV的N型杂质离子,在衬底表面形成N+层;或者利用外延设备生长一层厚度为6~20μm,浓度为1e15~1e18 cm-2的N型外延层;
(2)在经步骤(1)离子注入N型杂质离子或外延生长N型外延层的所述N型衬底上,采用P+掩模版,经过涂胶、曝光、湿法腐蚀、去胶等步骤,采用大束流离子注入机,注入剂量为1e13~1e15cm-2能量为80keV~300keV的P型杂质离子,得到圆片;
(3)对圆片进行清洗,在1150℃~1250℃,N2环境下,加热300~500min,在圆片表面形成6~20μm交替的PN+区;
之后再对圆片进行清洗,在1000℃~1100℃,O2环境下,加热120~240min,在圆片PN+区上形成
Figure GDA0002941944150000031
氧化层;
(4)采用Active掩模版,圆片经过涂胶、曝光、湿法腐蚀、去胶,在900℃~1100℃,O2环境下,加热120~180min,在圆片上生长一层
Figure GDA0002941944150000032
栅氧化层。将圆片置于低压炉管中,沉积一层厚度为
Figure GDA0002941944150000033
多晶硅。然后采用大束流离子注入机,注入剂量为1e15~1e16cm-2,能量为40keV~60keV的N型杂质离子,形成多晶硅栅层;
(5)采用Poly掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶后,利用中束流离子注入机,注入剂量为1e13~1e14cm-2能量为80keV~180keV的P型杂质,再经过清洗后,在1100℃~1200℃,N2环境下,加热120~240min,形成Pwell区212;
(6)采用NSD掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶后,利用大束流离子注入机,注入剂量为1e15~1e16cm-2能量为80keV~120keV的N型杂质离子,再经过清洗后,在800℃~1000℃,N2环境下,加热30~60min,形成N++211区;
(7)利用PECVD设备,先后在圆片上沉积
Figure GDA0002941944150000034
氧化层和
Figure GDA0002941944150000035
的BPSG,在800℃~980℃,N2环境下,加热30~60min,形成IDL层;
(8)采用CON掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶后,利用Lam90或其它干法刻蚀机腐蚀1~2μm硅,采用大束流离子注入机,注入剂量为5e14~1e15cm2能量为30keV~180keV的P型杂质离子,采用Centru或APL等PVD设备溅射4~6μm ALSICU金属,并采用Metal掩模版刻蚀金属,形成发射极引线;
(9)采用PECVD设备,先后在圆片上沉积
Figure GDA0002941944150000041
PSG和
Figure GDA0002941944150000042
的SIN,并采用PAD掩模版,先后经过涂胶、曝光、去胶后,在400℃~450℃,N2和H2环境下,加热30~60min,形成钝化保护层219;
对圆片背面进行减薄,减薄至80~160μm后,在圆片背面采用中束流离子注入机,先注入剂量为5e12~1e14cm-2、能量为300keV~1200keV的N型杂质离子,再注入剂量为5e13~2e14cm-2、能量为60keV~120keV的P型杂质离子,然后在400℃~450℃,N2和H2环境下,加热60~120min,激活杂质离子形成衬底PN结,最后利用金属蒸发台,在圆片背面蒸发一层厚度为0.6~2μm的ALTINIAG金属,形成集电极引线。
附图说明
图1a是专利201110225181.4的绝缘栅双极晶体管结构图;
图1b是专利的201110225680.3绝缘栅双极晶体管结构图;
图1c是专利PCT/JP2012/063687绝缘栅双极晶体管结构图;
图2是本发明绝缘栅双极晶体管结构的俯视图;
图3是本发明绝缘栅双极晶体管结构的剖面图;
图4是本发明绝缘栅双极晶体管制备方法流程图;
图5是本发明绝缘栅双极晶体管制备方法步骤2后的结构剖面;
图6是本发明绝缘栅双极晶体管制备方法步骤3后的结构剖面;
图7是本发明绝缘栅双极晶体管制备方法步骤4后的结构剖面;
图8是本发明绝缘栅双极晶体管制备方法步骤6后的结构剖面;
图9是本发明绝缘栅双极晶体管制备方法步骤7后的结构剖面;
图10是本发明绝缘栅双极晶体管制备方法步骤8后的结构剖面;
图11是本发明绝缘栅双极晶体管制备方法步骤10后的结构剖面;
图12是本发明绝缘栅双极晶体管制备方法步骤11后的结构剖面;
图13是本发明绝缘栅双极晶体管制备方法步骤12后的结构剖面;
图中,101~终端区域;
102~过渡区域;
103~原胞区域;
201~表面PN+交替层;
202~N漂移层;
203~N+场截止层;
204~P+集电极层;
211~N++掺杂区;
212~Pwell区;
213~位于原胞区域中处于表面PN+交替层中的N+区;
214~位于原胞区域中处于表面PN+交替层中的P区;
215~P+掺杂区;
216~PN+交替层中的N+区;
217~位于过渡区中的PN+交替层中的P区;
218~位于终端区域的PN+交替层中的P区;
219~钝化层。
具体实施方式
以下结合附图和具体实施方式对本发明做进一步说明。
如图2所示,本发明低导通压降的绝缘栅双极晶体管主要包括:终端区域101、过渡区域102和原胞区域103。晶体管中间区域为原胞区域103,终端区域101围绕原胞区域103一圈,保证器件的击穿稳定性。原胞区域103与终端区域101过渡之处为过渡区域102。沿着原胞区域103、过渡区域102、终端区域101的纵向剖面,从下到上依次为:P+集电极层204、N+场截止层203、N漂移层202、表面PN+交替层201。
所述的P+集电极层204的掺杂浓度范围为5e15~3e16cm-3,掺杂厚度0.5~2μm,集电极效率较低,有利于少数载流子的抽取,开关频率高。
所述的N+场截止层203位于P+集电极层204之上N漂移层202之下,掺杂浓度范围为5e14~6e15cm-3,掺杂厚度为2~20μm,在器件阻断情况下,起到电场截止的作用。
所述的N漂移层202位于N+场截止层203之上、表面PN+交替层201之下,掺杂浓度范围为3e13~1e14cm-3,掺杂厚度为70~150μm,在器件阻断情况下承担主要压降。
所述表面PN+交替层201,P区214与N+区213横向左右交替相间设置,其特征在于:终端区域101的P区域218浮空,起分压环作用,N+区216可以降低可动电荷对表面电场的影响,降低器件高温漏电,提高器件击穿电压稳定性;过渡区域102的P区217与发射极金属相连,起到平衡电位的作用;原胞区域103的P区214与N+区213横向左右交替,相间设置,且掺杂总量基本相等,P区214与N+区213掺杂电荷横向补偿,可降低横向电场,提高器件耐压。
所述表面PN+交替层201,其特征在于:P区域214的浓度与N+区域213的浓度比为NP/NN+=0.8~1.2,P区域214与N+区域213深度比为TP/TN+=0.9~1.0,有利于降低N+区电场,提高器件击穿电压。P区域214上部Pwell区域212深度与N+区域213的深度比为TPwell/TN+=0.3~0.8,N+区域213的浓度比N漂移区域202高10~100倍,有利于提高整个漂移区的载流子浓度,降低导通电阻。
所述原胞区域103内表面PN+交替层201中,在P区214内设置P+掺杂区215,与发射极金属相连,可以提高器件浪涌电流能力;在N+区213内设置Pwell区212,与P区214相连;在Pwell区212内设置N++掺杂区211;N++掺杂区211与发射极金属相连;
如图4~图13所示,本发明低导通压降的绝缘栅双极晶体管制备方法步骤具体如下:
步骤001:准备电阻率30~100ohm·cm,厚度500~625μm的N型衬底,并清洗;
步骤002:采用中束流离子注入机,注入剂量1e12~1e13cm-2,能量60~200keV的N型杂质离子,在N型衬底表面形成N+层,如图5所示;
或者利用CSD外延或ESPL外延炉生长一层厚度为6~20μm,浓度为1e15~1e18 cm-2的N型外延层。
步骤003:采用P+掩模版,经过涂胶、曝光、湿法腐蚀、去胶等步骤,采用大束流离子注入机,注入剂量为1e13~1e15cm-2、能量为80keV~300keV的P型杂质离子,在衬底表明形成PNPN相间的结构,得到圆片,如图6所示;
步骤004:圆片经过清洗后,在1150℃~1250℃,N2环境下,加热300~500min,在N型衬底表面形成6~20μm交替的PN+区,如图7所示;
步骤005:将步骤004得到的圆片经过清洗后,在1000℃~1100℃,O2环境下,加热120~240min,形成
Figure GDA0002941944150000061
氧化层;
步骤006:圆片经过涂胶、曝光、湿法腐蚀及去胶,采用Active掩模版,在900℃~1100℃,O2环境下,加热120~180min,生长一层
Figure GDA0002941944150000062
栅氧化层;在低压炉管中沉积一层厚度为
Figure GDA0002941944150000063
多晶硅,采用大束流离子注入机,注入剂量为1e15~1e16cm-2、能量为40keV~60keV的N型杂质离子,形成多晶硅栅层,如图8所示;
步骤007:采用Poly掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶,采用中束流离子注入机,注入剂量为1e13~1e14cm-2,能量为80keV~180keV的P型杂质,再经过清洗后,在1100℃~1200℃,N2环境下,加热120~240min,形成Pwell区212,如图9所示;
步骤008:采用NSD掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶,采用大束流离子注入机,注入剂量为1e15~1e16cm-2,能量为80keV~120keV的N型杂质离子,再经过清洗后,在800℃~1000℃,N2环境下,加热30~60min,形成N++211区,如图10所示;
步骤009:利用PECVD设备,先后在步骤008得到的圆片正面沉积
Figure GDA0002941944150000071
氧化层和
Figure GDA0002941944150000072
的BPSG,在800℃~980℃,N2环境下,加热30~60min,形成IDL层;
步骤010:采用CON掩模版,步骤009得到的圆片经过涂胶、曝光、干法腐蚀、去胶,利用Lam90或其它干法刻蚀机腐蚀1~2μm硅,采用大束流离子注入机,注入剂量为5e14~1e15cm2、能量为30keV~180keV的P型杂质离子,采用Centru或APL等PVD设备溅射4~6μmALSICU金属,并采用Metal掩模版刻蚀金属,形成金属引线,如图11所示;
步骤011:采用PECVD设备,先后在步骤010得到的圆片上沉积
Figure GDA0002941944150000073
PSG和
Figure GDA0002941944150000074
的SIN,并采用PAD掩模版,先后经过涂胶、曝光、去胶等步骤后,在400℃~450℃,N2和H2环境下,加热30~60min,形成钝化层219,如图12所示;
步骤012:对步骤011得到的圆片背面进行减薄,减薄至80~160μm后,在圆片背面采用中束流离子注入机,先注入剂量为5e12~1e14cm-2、能量为300keV~1200keV的N型杂质离子,再注入剂量为5e13~2e14cm-2、能量为60keV~120keV的P型杂质离子,然后在400℃~450℃,N2和H2环境下,加热60~120min,激活杂质离子形成衬底PN结,最后利用金属蒸发台,在圆片背面蒸发一层厚度为0.6~2μm的铝钛镍银(ALTINIAG)金属,形成集电极,如图13所示。

Claims (7)

1.一种低导通压降的绝缘栅双极晶体管,其特征在于,所述的绝缘栅双极晶体管包括:终端区域(101)、过渡区域(102)和原胞区域(103);
晶体管中间区域为原胞区域(103),终端区域(101)围绕原胞区域(103)一圈,原胞区域(103)与终端区域(101)过渡之处为过渡区域(102);
沿着原胞区域(103)、过渡区域(102)和终端区域(101)的纵向剖面,从下到上依次为:P+集电极层(204)、N+场截止层(203)、N漂移层(202)和表面PN+交替层(201)。
2.如权利要求1所述的低导通压降的绝缘栅双极晶体管,其特征在于,所述的P+集电极层(204)的掺杂浓度范围为5e15~3e16cm-3,掺杂厚度0.5~2μm;所述的N+场截止层(203)位于P+集电极层(204)之上,N漂移层(202)之下,掺杂浓度范围为5e14~6e15cm-3,掺杂厚度为2~20μm;所述的N漂移层(202)位于N+场截止层(203)之上,表面PN+交替层(201)之下,掺杂浓度范围为3e13~1e14cm-3,掺杂厚度为70~150μm。
3.如权利要求1所述的低导通压降的绝缘栅双极晶体管,其特征在于,所述的表面PN+交替层(201)中的P区(214)与N+区(213)深度比为TP/TN+=0.9~1.0,浓度比为NP/NN+=0.8~1.2。
4.如权利要求1所述的低导通压降的绝缘栅双极晶体管,其特征在于,所述的表面PN+交替层(201)中的N+区(213)的浓度比N漂移层(202)高10~100倍。
5.如权利要求1所述的低导通压降的绝缘栅双极晶体管,其特征在于,所述的表面PN+交替层(201)中,终端区域(101)的P区(218)浮空,过渡区域(102)的P区(217)与发射极金属相连,起到平衡电位的作用;原胞区域(103)的P区(214)与N+区(213)交替重复设置,且掺杂总量相等。
6.如权利要求5所述的低导通压降的绝缘栅双极晶体管,其特征在于,所述的原胞区域(103)的表面PN+交替层(201)中,在P区(214)内设置P+掺杂区(215),P+掺杂区(215)与发射极金属相连。
7.一种权利要求1所述的低导通压降的绝缘栅双极晶体管的制备方法,其特征在于,所述的制备方法包括以下步骤:
步骤001:准备电阻率20~200ohm·cm,厚度300~700μm的N型衬底,并清洗;
步骤002:注入剂量1e12~1e13cm-2,能量60~200keV的N型杂质离子,在N型衬底表面形成N+层;或者利用CSD外延或ESPL外延炉生长一层厚度为6~20μm,浓度为1e15~1e18cm-2的N型外延层;
步骤003:采用P+掩模版,经过涂胶、曝光、湿法腐蚀、去胶,注入剂量为1e13~1e15cm-2、能量为80keV~300keV的P型杂质离子,在衬底表面形成PNPN相间的结构,得到圆片;
步骤004:圆片经过清洗后,在1150℃~1250℃,N2环境下,加热300~500min,在N型衬底表面形成6~20μm交替的PN+区;
步骤005:将步骤004得到的圆片经过清洗后,在1000℃~1100℃,O2环境下,加热120~240min,形成
Figure FDA0002941944140000021
的氧化层;
步骤006:圆片经过涂胶、曝光、湿法腐蚀及去胶,采用Active掩模版,在900℃~1100℃,O2环境下,加热120~180min,生长一层
Figure FDA0002941944140000022
的栅氧化层;在低压炉管中沉积一层厚度为
Figure FDA0002941944140000023
的多晶硅,注入剂量为1e15~1e16cm-2、能量为40keV~60keV的N型杂质离子,形成多晶硅栅层;
步骤007:采用Poly掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶,注入剂量为1e13~1e14cm-2,能量为80keV~180keV的P型杂质,再经过清洗后,在1100℃~1200℃,N2环境下,加热120~240min,形成Pwell区;
步骤008:采用NSD掩模版,圆片经过涂胶、曝光、干法腐蚀、去胶,注入剂量为1e15~1e16cm-2,能量为80keV~120keV的N型杂质离子,再经过清洗后,在800℃~1000℃,N2环境下,加热30~60min,形成N++区;
步骤009:利用PECVD设备,先后在步骤008得到的圆片正面沉积
Figure FDA0002941944140000024
的氧化层和
Figure FDA0002941944140000025
的BPSG,在800℃~980℃,N2环境下,加热30~60min,形成IDL层;
步骤010:采用CON掩模版,将步骤009得到的圆片经过涂胶、曝光、干法腐蚀、去胶,利用Lam90或其它干法刻蚀机腐蚀1~2μm硅,注入剂量为5e14~1e15cm2、能量为30keV~180keV的P型杂质离子,采用PVD设备溅射4~6μm ALSICU金属,并采用Metal掩模版刻蚀金属,形成金属引线;
步骤011:采用PECVD设备,先后在步骤010得到的圆片上沉积
Figure FDA0002941944140000026
的PSG和
Figure FDA0002941944140000027
的SIN,并采用PAD掩模版,先后经过涂胶、曝光、去胶,在400℃~450℃,N2和H2环境下,加热30~60min,形成钝化层;
步骤012:对步骤011得到的圆片背面进行减薄,减薄至80~160μm后,在圆片背面,先注入剂量为5e12~1e14cm-2、能量为300keV~1200keV的N型杂质离子,再注入剂量为5e13~2e14cm-2、能量为60keV~120keV的P型杂质离子,然后在400℃~450℃,N2和H2环境下,加热60~120min,激活杂质离子形成衬底PN结,最后利用金属蒸发台,在圆片背面蒸发一层厚度为0.6~2μm的铝钛镍银(ALTINIAG)金属,形成集电极。
CN201810570229.7A 2018-06-05 2018-06-05 一种低导通压降的绝缘栅双极晶体管及其制备方法 Active CN108807501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810570229.7A CN108807501B (zh) 2018-06-05 2018-06-05 一种低导通压降的绝缘栅双极晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810570229.7A CN108807501B (zh) 2018-06-05 2018-06-05 一种低导通压降的绝缘栅双极晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN108807501A CN108807501A (zh) 2018-11-13
CN108807501B true CN108807501B (zh) 2021-05-25

Family

ID=64088730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810570229.7A Active CN108807501B (zh) 2018-06-05 2018-06-05 一种低导通压降的绝缘栅双极晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN108807501B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190029B (zh) * 2019-04-28 2021-07-09 爱特微(张家港)半导体技术有限公司 一种功率半导体器件的制备方法
CN112713199B (zh) * 2019-10-25 2022-10-11 株洲中车时代电气股份有限公司 碳化硅肖特基二极管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436171A1 (en) * 1990-01-02 1991-07-10 Motorola, Inc. High voltage planar edge termination using a punch-through retarding implant
US5075739A (en) * 1990-01-02 1991-12-24 Motorola, Inc. High voltage planar edge termination using a punch-through retarding implant and floating field plates
CN103367398A (zh) * 2013-07-23 2013-10-23 上海北车永电电子科技有限公司 终端保护环及其制造方法
CN103824879A (zh) * 2014-01-30 2014-05-28 株洲南车时代电气股份有限公司 一种功率器件结终端结构与制造方法
CN105895679A (zh) * 2015-01-22 2016-08-24 肖胜安 一种绝缘栅双极晶体管的结构和制造方法
CN107924843A (zh) * 2015-06-09 2018-04-17 Abb瑞士股份有限公司 用于制造用于碳化硅功率半导体器件的边缘终端的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137676B4 (de) * 2001-08-01 2007-08-23 Infineon Technologies Ag ZVS-Brückenschaltung zum entlasteten Schalten
US10367085B2 (en) * 2015-08-31 2019-07-30 Littelfuse, Inc. IGBT with waved floating P-Well electron injection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436171A1 (en) * 1990-01-02 1991-07-10 Motorola, Inc. High voltage planar edge termination using a punch-through retarding implant
US5075739A (en) * 1990-01-02 1991-12-24 Motorola, Inc. High voltage planar edge termination using a punch-through retarding implant and floating field plates
CN103367398A (zh) * 2013-07-23 2013-10-23 上海北车永电电子科技有限公司 终端保护环及其制造方法
CN103824879A (zh) * 2014-01-30 2014-05-28 株洲南车时代电气股份有限公司 一种功率器件结终端结构与制造方法
CN105895679A (zh) * 2015-01-22 2016-08-24 肖胜安 一种绝缘栅双极晶体管的结构和制造方法
CN107924843A (zh) * 2015-06-09 2018-04-17 Abb瑞士股份有限公司 用于制造用于碳化硅功率半导体器件的边缘终端的方法

Also Published As

Publication number Publication date
CN108807501A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
JP3413250B2 (ja) 半導体装置及びその製造方法
CN111081759B (zh) 一种增强型碳化硅mosfet器件及其制造方法
US20240055484A1 (en) Field stop igbt with grown injection region
US9941383B2 (en) Fast switching IGBT with embedded emitter shorting contacts and method for making same
US20210057557A1 (en) Igbt devices with 3d backside structures for field stop and reverse conduction
CN111430453B (zh) 一种反向恢复特性好的rc-igbt芯片及其制造方法
CN114975602B (zh) 一种高可靠性的igbt芯片及其制作方法
CN104332495B (zh) 一种绝缘栅双极晶体管及其制造方法
CN108807501B (zh) 一种低导通压降的绝缘栅双极晶体管及其制备方法
CN213340375U (zh) 功率器件
CN111211168B (zh) 一种rc-igbt芯片及其制造方法
CN112510081B (zh) 一种星用抗辐射沟槽型mos管的加固结构和制备方法
CN114300539A (zh) 一种辐射加固的ldmos器件结构及制备方法
CN110419111A (zh) 自对准且稳健的绝缘栅双极晶体管器件
WO2024037274A1 (zh) 一种具有反向导通特性的igbt器件及其制备方法
WO2024037276A1 (zh) 一种深缓冲层高密度沟槽的igbt器件及其制备方法
CN111446239A (zh) 一种低电容低钳位电压瞬态电压抑制器及其制造方法
CN112510080B (zh) 一种抗单粒子高压mos场效应晶体管的辐射加固结构和制备方法
CN115083895A (zh) 一种背面变掺杂结构的场截止igbt芯片制作方法
US11114552B2 (en) Insulated gate turn-off device with designated breakdown areas between gate trenches
CN108389857B (zh) 提高维持电压的多晶硅假栅静电释放器件及其制作方法
CN211654821U (zh) 低电容低钳位电压瞬态电压抑制器
CN219800852U (zh) 一种igbt芯片
CN116190227B (zh) 一种igbt芯片制备方法和igbt芯片
CN209896065U (zh) 一种vdmos

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181226

Address after: 100085 Beijing Haidian District Ningzhuang West No. 9 Building 7 Floor 6 Unit 717

Applicant after: BEIJING SHIGANG SHENGHUA SCIENCE & TECHNOLOGY CO., LTD.

Applicant after: The bright die semiconductor Co., Ltd in Nanjing

Address before: 100085 Beijing Haidian District Ningzhuang West 3 No. 9 Building 7 Floor 6 Unit 717

Applicant before: BEIJING SHIGANG SHENGHUA SCIENCE & TECHNOLOGY CO., LTD.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210420

Address after: 211106 No.105, Gaohu Road, Jiangning Economic and Technological Development Zone, Nanjing City, Jiangsu Province

Applicant after: SUNNYCHIP SEMICONDUCTOR Co.

Address before: 100085 Beijing Haidian District Ningzhuang West No. 9 Building 7 Floor 6 Unit 717

Applicant before: BEIJING SHIGANG SHENGHUA TECHNOLOGY Co.,Ltd.

Applicant before: SUNNYCHIP SEMICONDUCTOR Co.

GR01 Patent grant
GR01 Patent grant