CN108803775B - 电路装置、振荡器、电子设备以及移动体 - Google Patents

电路装置、振荡器、电子设备以及移动体 Download PDF

Info

Publication number
CN108803775B
CN108803775B CN201810385116.XA CN201810385116A CN108803775B CN 108803775 B CN108803775 B CN 108803775B CN 201810385116 A CN201810385116 A CN 201810385116A CN 108803775 B CN108803775 B CN 108803775B
Authority
CN
China
Prior art keywords
circuit
output
oscillation
signal
enable signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810385116.XA
Other languages
English (en)
Other versions
CN108803775A (zh
Inventor
山本壮洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN108803775A publication Critical patent/CN108803775A/zh
Application granted granted Critical
Publication of CN108803775B publication Critical patent/CN108803775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L3/00Starting of generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/19Monitoring patterns of pulse trains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power
    • H03L5/02Automatic control of voltage, current, or power of power

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

提供电路装置、振荡器、电子设备以及移动体,能够在振荡电路的启动时输出适当的时钟信号。电路装置包含:第1振荡电路;第2振荡电路;时钟信号输出电路,其输出基于第1振荡电路的输出信号的时钟信号;以及输出控制电路,其进行时钟信号输出电路的输出控制。输出控制电路具有计数电路,该计数电路根据第2振荡电路的输出信号进行计数处理,计数电路根据计数处理的结果对时钟信号输出电路输出时钟信号的输出使能信号。

Description

电路装置、振荡器、电子设备以及移动体
技术领域
本发明涉及电路装置、振荡器、电子设备以及移动体等。
背景技术
以往,公知有TCXO(temperature compensated crystal oscillator)、OCXO(ovencontrolled crystal oscillator)、SPXO(Simple Packaged Crystal Oscillator)等振荡器。例如TCXO是如下的振荡器:通过补偿石英振子所具有的振荡频率的温度特性,能够获得相对于环境温度的变化较稳定的振荡频率。
在这样的振荡器中,由于在启动(振荡开始)时振荡信号逐渐增加而转移到振荡的稳定状态,所以有时在启动时进行各种控制。作为这样的技术,例如存在专利文献1~3所公开的技术。在专利文献1中,振荡电路具有:积分电路,其对振荡信号进行积分;以及放电电路,其对积分电路积分的电荷进行放电,在该积分电路的积分电压达到规定电压的情况下,输出基于振荡信号的时钟信号。在专利文献2中,利用计数器对振荡信号的脉冲数进行计数,在其计数值达到规定数之前,使振荡电路的偏置电流增加而加速振荡电路的启动,在计数值达到规定数的情况下降低振荡电路的偏置电流。
并且,在专利文献3中,利用计数器对振荡器的振荡时钟进行计数,在检测到振荡时钟达到预先确定的频率时,输出时钟。在专利文献3中,利用CR振荡器对计数器的计数动作、复位动作进行控制。
专利文献1:日本特开2008-193499号公报
专利文献2:日本特开2009-151600号公报
专利文献3:日本特开平10-4347号公报
在上述的振荡器中,存在如下的课题:在存在环境变动或工艺变动的情况下,在启动时可能无法输出适当的(例如适当的占空比等的)时钟信号。
例如,如上述的专利文献1那样,作为以往技术,对振荡电路的输出信号进行积分而控制时钟信号的输出。但是,由于利用模拟处理来控制时钟信号的输出,所以很难与环境温度的较大的变动范围或工艺偏差等对应,很难在启动时输出满足规格的适当的时钟信号。例如,当振荡信号增加到某种程度时,积分电压达到规定的电压而输出时钟信号,但当振荡信号的增加在此时并不充分时,有可能无法获得适当的占空比的时钟信号。该启动时的占空比由于环境温度的较大的变动范围或工艺偏差等而发生变动,可能不满足规格。例如,在车载用途中,环境温度的变动较大,需要应对较大的温度范围。
并且,如上述的专利文献2那样,存在在振荡电路的启动时的控制中使用计数器的以往技术。但是,在专利文献2中,计数器使用在使振荡电路的启动加速的控制中。
并且,如上述的专利文献3那样,存在对振荡器的时钟进行计数的以往技术。但是,在专利文献3中,计数器用于检测频率是否达到期望值,并没有与占空比相关的公开。并且,在专利文献3中,CR振荡器的输出用于对计数器的计数动作、复位动作进行控制,CR振荡器的输出不会成为计数对象。
发明内容
本发明是为了解决上述的课题的至少一部分而完成的,能够作为以下的形态和方式实现。
本发明的一个方式涉及电路装置,该电路装置包含:第1振荡电路,其使振荡元件振荡;第2振荡电路;时钟信号输出电路,其输出基于所述第1振荡电路的输出信号的时钟信号;以及输出控制电路,其进行所述时钟信号输出电路的输出控制,所述输出控制电路具有计数电路,该计数电路根据所述第2振荡电路的输出信号来进行计数处理,所述计数电路根据所述计数处理的结果,对所述时钟信号输出电路输出所述时钟信号的输出使能信号。
根据本发明的一个方式,根据基于第2振荡电路的输出信号的计数处理的结果,对时钟信号输出电路输出时钟信号的输出使能信号。这样,利用计数电路来进行时钟信号的输出控制,从而能够在振荡电路(第1振荡电路)的启动时确保在成为适当的振荡状态之前的时间。由此,即使在存在环境变动或工艺变动等的情况下,也能够在振荡电路的启动时输出适当的时钟信号。
并且,在本发明的一个方式中,可以是,所述输出控制电路具有计数使能信号生成电路,该计数使能信号生成电路生成所述计数电路的计数使能信号,所述计数电路在所述计数使能信号变为有效时开始所述计数处理。
这样,能够在适当的定时开始计数处理。
并且,在本发明的一个方式中,可以是,所述第2振荡电路在所述计数使能信号变为有效时开始振荡动作,之后,在所述输出使能信号变为有效时停止所述振荡动作。
这样,能够在适当的期间进行第2振荡电路的振荡动作,能够抑制产生计数遗漏或者减少功耗等。
并且,在本发明的一个方式中,可以是,所述计数使能信号生成电路根据所述第1振荡电路的所述输出信号来生成所述计数使能信号。
这样,根据第1振荡电路的输出信号来生成计数使能信号,从而能够根据第1振荡电路的输出信号开始计数处理。即,在第1振荡电路的输出信号(第1振荡电路的振荡状态)满足了规定条件的情况下,能够开始计数处理,能够适当地执行计数处理。
并且,在本发明的一个方式中,可以是,所述计数电路在所述计数使能信号变为有效时开始所述计数处理,在所述计数处理中的计数值达到给定的设定值时使所述输出使能信号有效。
这样,利用第2振荡电路的输出信号的脉冲数的计数来控制计数使能信号变为有效之后到开始时钟信号的输出的期间的长度。即,能够在第1振荡电路的启动时确保成为适当的振荡状态为止的时间。
并且,在本发明的一个方式中,可以是,所述第2振荡电路是CR振荡电路。
这样,能够利用CR振荡电路来实现第2振荡电路。
并且,在本发明的一个方式中,可以是,所述第2振荡电路的振荡频率比所述第1振荡电路的振荡频率低。
这样,与根据第1振荡电路的输出信号进行计数处理的情况相比,能够降低计数电路的电路规模等。
并且,在本发明的一个方式中,可以是,在被设定为占空比校正模式时,所述输出控制电路将基于所述计数处理的结果的所述输出使能信号输出到所述时钟信号输出电路,在未被设定为占空比校正模式时,所述输出控制电路将所述输出使能信号固定为有效电平。
这样,能够利用模式设定来切换是否执行使用了第2振荡电路和计数电路的时钟信号的输出控制。
并且,在本发明的一个方式中,可以是,在设从施加电源电压起到所述第1振荡电路的振荡频率处于容许频率偏差内为止的期间为T1、从施加所述电源电压起到所述输出使能信号变为有效为止的期间为T2时,T2<T1。
这样,当在第1振荡电路的振荡频率稳定之前开始时钟信号的输出时,能够从输出开始时输出占空比稳定的时钟信号。即,在振荡频率稳定前的时钟信号被使用在任何处理中时,能够抑制该处理中的错误产生等。
并且,在本发明的一个方式中,可以是,所述计数电路具有:计数器,其根据所述第2振荡电路的输出信号来进行计数动作;以及输出电路,其在复位信号有效时,使所述输出使能信号无效,在所述复位信号变为无效之后所述计数器的输出信号变为有效时,使所述输出使能信号有效。
这样,当复位信号无效时启动第1振荡电路,之后计数使能信号变为有效,计数器的输出信号变为有效,利用输出电路使输出使能信号有效。由此,在第1振荡电路启动的情况下使计数使能信号生成电路进行动作,在经过了可获得适当的占空比的时钟信号的时间之后,能够使输出使能信号有效。
并且,本发明的其他方式涉及振荡器,该振荡器包含:上述的任意一项所述的电路装置;以及所述振荡元件。
并且,本发明的其他方式涉及电子设备,该电子设备包含上述的任意一项所述的电路装置。
并且,本发明的其他方式涉及包含上述的任意一项所述的电路装置的移动体。
附图说明
图1是本实施方式的电路装置的结构例。
图2是用于说明本实施方式的电路装置的动作的波形图。
图3是第1振荡电路的输出信号和时钟信号的波形的比较例。
图4是电源上升之后的时钟信号的振幅和频率的时间变化例。
图5是本实施方式的第1振荡电路的输出信号和时钟信号的波形的一例。
图6是输出控制电路的第1详细结构例。
图7是输出控制电路的第2详细结构例。
图8是用于说明第2详细结构例的输出控制电路的动作的波形例。
图9是计数器的详细结构例。
图10是输出控制电路的变形例以及应用了该变形例的情况的电路装置的结构例。
图11是时钟信号输出电路的详细结构例。
图12是选择电路的详细结构例。
图13是第1振荡电路的详细结构例。
图14是第2振荡电路的详细结构例。
图15是本实施方式的信号波形例。
图16是未被设定为占空比校正模式时的信号波形例。
图17是本实施方式的电路装置的第1详细结构例。
图18是本实施方式的电路装置的第2详细结构例。
图19是振荡器的结构例。
图20是电子设备的结构例。
图21是移动体的结构例。
标号说明
10:第1振荡电路;12:振荡部;14:缓冲器;20:时钟信号输出电路;22:选择电路;24:分频电路;26:输出缓冲器;30:输出控制电路;31:计数器;32:计数电路;33:输出电路;34:计数使能信号生成电路;35:计数器;36:平滑化电路;38:检测电路;40:温度传感器;50:设定电路;60:A/D转换电路;70:第2振荡电路;80:D/A转换电路;100:电路装置;130:控制电路;140:存储部;150:温度补偿电路;160:处理部;162:温度补偿电路;170:振荡信号生成电路;206:汽车(移动体);207:车体;208:控制装置;209:车轮;400:振荡器;410:封装;420:振荡元件;500:电路装置;510:通信部;520:处理部;530:操作部;540:显示部;550:存储部;AMP1:差分放大电路;ANT:天线;CEN:计数使能信号;CID:钟控反相器;CLKO:时钟信号;FFD1~FFD6:触发器电路;LS1、LS2:电平移位器;OSQ:振荡电路的输出信号;OSCR:第2振荡电路的输出信号;QEN:输出使能信号;SHC:施密特触发电路;XTAL:振荡元件。
具体实施方式
以下,对本发明的优选实施方式进行详细说明。另外,以下说明的本实施方式并非不当地限定权利要求书所述的本发明的内容,本实施方式中说明的全部结构并非都是作为本发明的解决手段所必须的。
1.电路装置
图1是本实施方式的电路装置100的结构例。电路装置100包含第1振荡电路10、第2振荡电路70、时钟信号输出电路20(输出缓冲器)以及输出控制电路30。电路装置100例如由集成电路装置(半导体芯片)实现。并且,通过将电路装置100和振荡元件XTAL收纳在封装中而实现振荡器。另外,本实施方式不限定于图1的结构,可以实施省略其构成要素的一部分或追加其他构成要素等各种变形。
第1振荡电路10是使用振荡元件XTAL生成振荡信号的电路。具体来说,第1振荡电路10经由第1、第2振子用端子(振子用焊盘)与振荡元件XTAL连接。并且,第1振荡电路10通过使振荡元件XTAL振荡而生成振荡信号。例如,在TCXO或OCXO中,向第1振荡电路10输入与检测温度对应的控制电压(补偿振荡频率的温度特性的电压),第1振荡电路10以与该控制电压对应的振荡频率使振荡元件XTAL振荡。或者,在SPXO中,不进行振荡频率的电压控制,使振荡元件XTAL以振荡元件XTAL的固有频率进行振荡。例如,第1振荡电路10包含:振荡部(振荡电路主体),其生成振荡信号;以及缓冲器,其对该振荡信号进行缓冲而输出输出信号OSQ。
振荡元件XTAL例如是压电振子。具体来说,振荡元件XTAL例如是石英振子。作为石英振子,例如是切割角为AT切或SC切等的厚度剪切振动的石英振子。例如振荡元件XTAL可以是内置在具有恒温槽的恒温槽型石英振荡器(OCXO)中的振子,也可以是内置在不具有恒温槽的温度补偿型石英振荡器(TCXO)中的振子,还可以是内置在简单封装石英振荡器(SPXO)中的振子等。并且,作为振荡元件,也可以采用SAW(Surface Acoustic Wave)谐振器、使用硅基板形成的作为硅制振子的MEMS(Micro Electro Mechanical Systems)振子等。作为振荡元件XTAL的基板材料,可以使用石英、钽酸锂、铌酸锂等压电单晶、或锆钛酸铅等压电陶瓷等压电材料、或硅半导体材料等。作为振荡元件XTAL的激励手段,可以使用基于压电效应的装置,也可以使用基于库仑力的静电驱动。
第2振荡电路70是以比第1振荡电路10的振荡频率低的振荡频率进行振荡动作而输出输出信号OSCR的电路。即,第2振荡电路70的振荡频率比第1振荡电路10的振荡频率低。第2振荡电路70也可以是CR振荡电路。如果是使用石英振子作为振荡元件XTAL的例子,则第1振荡电路10的振荡频率为几十MHz左右,与此相对,第2振荡电路70(CR振荡电路)的振荡频率为几百KHz左右。但是,第1振荡电路10、第2振荡电路70的振荡频率能够实施各种变形。
时钟信号输出电路20根据第1振荡电路10的输出信号OSQ输出时钟信号CLKO。具体来说,对将输出信号OSQ或输出信号OSQ分频而得的信号进行缓冲(用于驱动外部负荷的放大),将该缓冲后的信号作为时钟信号CLKO输出。例如,时钟信号输出电路20包含:选择电路,其选择输出信号OSQ和其分频信号中的任意一个;以及缓冲器,其对该选择电路的输出进行缓冲。另外,也可以省略选择电路。缓冲器例如输出削峰正弦波或CMOS信号电平的时钟信号CLKO。削峰正弦波的信号是正弦波的上下被限幅在规定电压电平(例如电源电压电平)的信号。
输出控制电路30进行时钟信号输出电路20的输出控制。即,将时钟信号CLKO控制为输出状态(有效)或非输出状态(无效)。在非输出状态下,时钟信号输出电路20例如也可以输出固定电压电平的时钟信号CLKO,或者使输出节点(输出时钟信号CLKO的节点)为高阻状态。
输出控制电路30具有:计数电路32,其根据第2振荡电路70的输出信号OSCR进行计数处理;以及计数使能信号生成电路34,其根据第1振荡电路10的输出信号OSQ生成计数电路32的计数使能信号CEN。并且,计数电路32在计数使能信号CEN变为有效时开始计数处理,根据该计数处理的结果对时钟信号输出电路20输出时钟信号CLKO的输出使能信号QEN。具体来说,计数使能信号生成电路34监视第1振荡电路10的启动时的过渡振荡状态,在其监视结果满足规定条件(能够判定为振荡已增加的条件)的情况下,使计数使能信号CEN有效。计数电路32所进行的计数处理可以包含计数器所进行的计数动作(计数值的递增或递减)及其以外的信号处理(数字信号处理)。例如,计数电路32进行计数动作以及根据其计数值输出输出使能信号QEN的处理。并且,在输出使能信号QEN变为有效的情况下,时钟信号输出电路20输出基于输出信号OSQ的时钟信号CLKO(使时钟信号CLKO成为输出状态)。另外,计数电路32也可以包含在电路装置100的控制电路(例如图17的控制电路130)中。
图2是用于说明本实施方式的电路装置100的动作的波形图。在图2中,输出信号OSQ和时钟信号CLKO的波形用它们的电压振幅(峰-峰间的电压)的波形表示。
如图2的A1所示,当第1振荡电路10开始振荡元件XTAL的驱动时,振荡信号的振幅逐渐变大,对该振荡信号进行了缓冲的输出信号OSQ的振幅也逐渐变大。如A2所示,当输出信号OSQ的振幅达到规定的电平时,计数使能信号CEN从无效(例如高电平、第1逻辑电平)变化为有效(低电平、第2逻辑电平)。当计数使能信号CEN变得有效时,进行计数电路32的计数处理。由此,如A3所示,在从计数使能信号CEN变得有效到经过期间TKD之后,输出使能信号QEN从无效(例如低电平、第2逻辑电平)变为有效(高电平、第1逻辑电平)。该期间TKD是通过计数处理而设置的给定的长度的期间。当输出使能信号QEN变得有效时,如A4所示,输出时钟信号CLKO。
图3是第1振荡电路10的输出信号OSQ和时钟信号CLKO的波形的比较例。在图3中示出了例如图2的A5所示的、第1振荡电路10启动的过程中的波形。在本实施方式中,实际上未开始时钟信号CLKO的输出,这里,作为比较例,假设输出了时钟信号CLKO。
在第1振荡电路10启动的过程中,由于振荡信号的振幅正在逐渐变大(未达到最大振幅),所以,输出信号OSQ是高电平脉宽比低电平脉宽窄的脉冲状的信号。脉冲的高度随着振荡振幅变大而变高。对这样的输出信号OSQ进行了缓冲的时钟信号CLKO反映输出信号OSQ的占空比且占空比明显偏离50%。这里,占空比是高电平脉宽(高电平期间的长度)相对于1个周期的长度的比例。在图3的例子中,时钟信号CLKO是使输出信号OSQ的逻辑电平反转后的信号。在该情况下,输出信号OSQ的占空比明显小于50%,与此对应地,时钟信号CLKO的占空比明显大于50%。
在以往的振荡电路的启动时的控制中,例如,在对振荡信号进行积分而使积分电压成为规定电压的情况下开始时钟信号的输出。在仅利用这样的模拟处理的控制中,难以确保时钟信号的占空比稳定到50%附近(振荡信号的振幅达到最大振幅)的充分的时间。因此,可能在图3那样的占空比明显偏离50%的状态下开始时钟信号的输出。并且,由于模拟处理容易受到温度变动或工艺变动等影响,所以开始了时钟信号的输出的时刻的占空比产生偏差,难以收敛于规格的范围内。例如,直到满足上述的积分电压达到规定电压的条件为止的时间因温度变动或工艺变动等影响而产生偏差,其结果是,时钟信号的占空比可能会产生偏差。
图4是说明本实施方式的电路装置100的启动期间的电源电压、时钟信号CLKO的电压振幅以及第1振荡电路10的振荡频率f的时间变化的图。图4的C1是电源接通的时刻,由此,第1振荡电路10开始振荡元件XTAL的驱动。第1振荡电路10的振荡频率f在刚开始驱动后相对于期望值(标准值、基准值)fc存在误差,随着时间的经过而收敛于fc。这里,在后级的IC(例如图20的处理部520)中,有时需要频率精度较高的时钟信号CLKO。例如,在后级的IC是GPS接收器所包含的IC(狭义上是构成RF部的RFIC)的情况下,时钟信号CLKO用于GPS天线所接收到的信号的解调,因此,要求较高的频率精度。因此,电路装置100构成为满足如下要求:在电源上升之后(施加电源电压之后)的规定期间T1内,第1振荡电路10的振荡频率处于容许频率偏差(C2)内。这里的T1根据状况而不同,但例如为几msec左右的时间。并且,容许频率偏差也根据状况而不同,例如为几ppm左右的偏差。
该T1的期间比从电源上升到输出信号OSQ的振幅变得充分大(图2的A2、A5)的期间长。因此,电路装置100在振荡频率不处于容许频率偏差内的状态下也能够对后级的IC输出时钟信号CLKO。后级的IC在振荡频率充分接近期望值fc之后(经过期间T1之后)开始GPS信号的接收等主要处理。如果后级的IC在经过T1之前的时刻不进行使用了时钟信号CLKO的处理,则即使产生了使用图3说明的时钟信号的占空比偏差,也不会出现较大的问题。
但是,根据后级的IC的不同,也可考虑在开始主要处理前进行预处理。在预处理中,与GPS信号接收等主要处理相比,即使时钟信号的频率精度变低也不会出现问题。因此,例如,后级的IC与电路装置100的时钟信号CLKO的输出开始对应地开始预处理,在经过T1的期间之后转移到主要处理。在这样的例子中,图3所示的时钟信号的占空比偏差会成为问题。例如,在后级IC的预处理中可能因以下因素而出现错误:由于时钟信号的脉冲宽度较窄而使时钟检测失败、或者在进行使用上升沿和下降沿这两者的处理的情况下时钟检测定时不合适。
关于这一点,根据本实施方式,在来自计数使能信号生成电路34的计数使能信号CEN变成有效的情况下,利用计数电路32进行计数处理。然后,在根据该计数处理使输出使能信号QEN有效的情况下,时钟信号输出电路20输出时钟信号CLKO。由此,能够确保直到时钟信号的占空比(振荡信号的振幅)稳定在50%附近为止的充分的时间。即,在判断为在第1振荡电路10的启动时振荡已增加的时刻,计数使能信号CEN变得有效,在经过期间TKD之后通过之后的计数处理开始时钟信号CLKO的输出。利用该期间TKD,确保时钟信号CLKO的输出开始时的占空比处于50%附近的充分时间。并且,例如通过模拟处理实现计数使能信号CEN的生成,但还可以通过对计数处理(数字处理)进行组合来降低温度变动或工艺变动等的影响。即,能够降低因这些影响导致的占空比的偏差,使该偏差处于规格的范围内。
另外,直到时钟信号的占空比稳定在50%附近为止的时间远远短于上述T1,即使具有余量,只要设置例如几百μsec左右的时间即可。换言之,在设施加电源电压之后到输出使能信号QEN变得有效为止的期间为T2时,可以说T2<T1。另外,关于T2,只要考虑在电源上升之后到CEN变得有效为止的期间和期间TKD的长度总和即可。
图5是本实施方式的第1振荡电路10的输出信号OSQ和时钟信号CLKO的波形的一例。在图5中示出例如图2的A6所示的、第1振荡电路10启动后振荡充分稳定的时刻的波形。
当在第1振荡电路10启动后经过充分的时间时(例如当振荡振幅达到最大振幅时),第1振荡电路10的输出信号OSQ的低电平脉宽和高电平脉宽为相同程度,其占空比为50%附近。对这样的输出信号OSQ进行了缓冲的时钟信号CLKO反映输出信号OSQ的占空比且占空比为50%附近。
在本实施方式中,考虑到温度变动或工艺变动等影响,预先设定在时钟信号CLKO的输出开始时可获得50%附近(或满足规格的范围)的占空比的期间TKD的长度。特别是,在本实施方式中,通过对振荡频率相对较低的第2振荡电路70的输出信号OSCR进行计数而设定期间TKD。因此,在使用了比较简单的结构的计数电路32的情况下,也能够使期间TKD的长度在一定程度上变长,即具有充分的余量。因此,即使存在温度变动或工艺变动等影响,也能够在时钟信号CLKO的输出开始时输出适当的占空比的时钟信号。
如以上那样,与仅利用模拟处理进行启动时的控制的情况相比,通过对计数处理进行组合而实现适当的时钟信号CLKO。另一方面,相反地考虑仅利用计数电路32进行时钟信号CLKO的输出控制的情况。由于计数电路32利用与第1振荡电路10不同的第2振荡电路70的输出信号OSCR进行计数处理,所以,在该情况下,计数处理的开始定时与第1振荡电路10的输出信号OSQ的状况不对应,可能无法适当地执行计数处理。当无法适当地执行计数处理时,输出使能信号QEN变得有效的定时无法成为考虑了输出信号OSQ的状况的定时,无法实现准确的控制。
关于这一点,根据本实施方式,计数使能信号生成电路34生成计数使能信号CEN。由此,在计数使能信号CEN变得有效之后开始计数处理,因此,能够在成为适当执行计数处理的状态之后开始计数处理。由此,输出使能信号QEN变得有效的定时成为适当的定时,能够实现准确的控制。
更具体来说,计数使能信号生成电路34根据第1振荡电路10的输出信号OSQ生成计数使能信号CEN。
如在图6等后面所述,计数使能信号生成电路34可以包含:模拟电路(例如滤波器等),其对输出信号OSQ进行模拟处理;以及判定部(例如逻辑反转电路、施密特触发电路等),其根据该模拟电路的输出判定是否使计数使能信号CEN有效。
这样,根据第1振荡电路10的输出信号OSQ例如利用模拟处理等生成计数使能信号CEN,从而能够根据输出信号OSQ开始计数处理。即,在输出信号OSQ满足了规定条件的情况(例如模拟电路的输出为规定信号电平的情况)下,能够开始计数处理。由此,能够在与输出信号OSQ的状况对应的定时开始基于第2振荡电路70的输出信号OSCR的计数处理,能够适当地执行计数处理。
并且,在本实施方式中,在计数使能信号CEN变得有效时,计数电路32开始计数处理。然后,在计数处理中的计数值达到给定的设定值时,计数电路32使输出使能信号QEN有效。即,在图2中上述的期间TKD的长度是对第2振荡电路70的输出信号OSCR的脉冲数开始计数之后到该计数值成为给定的设定值为止的期间的长度。例如,计数电路32也可以包含线性反馈移位寄存器,将其二进制数据(计数值)的任意位(例如最高位)作为输出使能信号QEN输出。或者,计数电路32也可以包含计数器和判定部,判定部对来自计数器的计数值和给定的设定值进行比较,在判定为计数值和给定的设定值一致的情况下使输出使能信号QEN有效。
这样,通过输出信号OSCR(振荡信号)的脉冲数的计数来控制计数使能信号CEN变得有效之后到开始时钟信号CLKO的输出为止的期间TKD。第2振荡电路70的振荡频率比第1振荡电路10的振荡频率小,例如大约为1/100左右的量级。因此,在与对第1振荡电路10的输出信号OSQ进行计数的例子比较的情况下,即使使设定值变小,也能够确保期间TKD的长度。换言之,能够使计数电路32(计数器31)的电路规模相对地变小。
另外,给定的设定值可以由硬件确定(例如上述的线性反馈移位寄存器的例子),或者也可以通过寄存器设定来设定。或者,也可以在制造时等利用写入非易失性存储器的信息来设定给定的设定值。或者,也可以在电路装置100的内部生成给定的设定值(例如使用了后述的温度传感器的例子)。
2.输出控制电路的第1详细结构例
以下,对电路装置100的各部进行详细说明。图6是输出控制电路30的第1详细结构例。在图6中,计数使能信号生成电路34包含平滑化电路36(平滑化滤波器)和检测电路38。计数电路32包含计数器31和输出电路33。另外,本实施方式不限定于图6的结构,可以实施省略其构成要素的一部分或追加其他构成要素等各种变形。
首先,对计数使能信号生成电路34进行说明。平滑化电路36对第1振荡电路10的输出信号OSQ进行平滑化,将该平滑化后的信号作为输出信号FLQ输出。具体,平滑化电路36从输出信号OSQ中减少第1振荡电路10的振荡频率附近的成分,输出DC(与振荡频率相比慢很多的频带的)信号。例如平滑化电路36是具有比振荡频率低很多的(例如1/5以下)截止频率的低通滤波器。在图6的例子中,平滑化电路36包含电阻元件RC和电容器CC,该平滑化电路36是1阶无源低通滤波器。另外,平滑化电路36不限于此,也可以是2阶以上的滤波器或有源滤波器。
这样,通过对第1振荡电路10的输出信号OSQ进行平滑化而转换成DC信号,从而能够对第1振荡电路10的振荡状态(启动时的振荡的增加程度)进行监视。即,平滑化电路36的输出信号FLQ的电压电平(信号电平)根据振荡振幅而发生变化,因此能够将该电压电平作为监视信号来使用。
检测电路38根据平滑化电路36的输出信号FLQ进行检测动作,输出计数使能信号CEN。即,检测电路38根据输出信号FLQ进行输出信号FLQ的电压电平的检测动作,对振荡的增加程度进行监视。然后,根据其检测结果生成计数使能信号CEN。
如上述那样,平滑化电路36的输出信号FLQ的电压电平根据振荡振幅而发生变化。因此,根据输出信号FLQ进行检测动作,从而能够检测到变成可开始计数处理的振荡振幅,根据该检测结果使计数使能信号CEN有效。
具体来说,在平滑化电路36的输出信号FLQ的电压电平超过给定的电压电平的情况下,检测电路38使计数使能信号CEN有效。例如,给定的电压电平比与最大的振荡振幅对应的输出信号FLQ的电压电平的1/2(优选2/3,更优选3/4)大。
第1振荡电路10的振荡增加而使输出信号OSQ的振幅变得越大,则平滑化电路36的输出信号FLQ的电压电平也变得越大。因此,通过检测出输出信号FLQ的电压电平超过给定的电压,振荡增加到期望的振荡振幅,在该情况下能够使计数使能信号CEN有效。
检测电路38包含逻辑反转电路IVC1和施密特触发电路SHC。逻辑反转电路IVC1输入平滑化电路36的输出信号FLQ。例如,逻辑反转电路IVC1是反相器,但不限于此,也可以是NAND电路(输入的一方为“1”的情况)或NOR电路(输入的一方为“0”的情况)等。施密特触发电路SHC输入逻辑反转电路IVC1的输出信号IVCQ,输出计数使能信号CEN。
这样,在平滑化电路36的输出信号FLQ的电压电平超过了逻辑反转电路IVC1的逻辑阈值时,逻辑反转电路IVC1的输出信号IVCQ的逻辑电平从高电平变化为低电平。即,通过使平滑化电路36的输出信号FLQ输入到逻辑反转电路IVC1,能够判定输出信号FLQ的电压电平是否超过了给定的电压电平(逻辑阈值)。
并且,在平滑化电路36的输出信号FLQ中可能残留振荡频率的成分或者包含噪声。于是,逻辑反转电路IVC1的输出信号IVCQ的变化可能无法引起1次边沿(逻辑电平出现偏差。输出信号IVCQ的逻辑电平在逻辑阈值附近反复高电平和低电平)。关于这一点,在本实施方式中,通过使用施密特触发电路SHC,能够使计数使能信号CEN适当地从高电平(无效)变化为低电平(有效)。
另外,逻辑反转电路IVC1的驱动能力被设定得非常小。即,逻辑反转电路IVC1由小尺寸(W/L较小)的晶体管构成。具体来说,设定为能够减少振荡频率的成分的驱动能力,能够减少平滑化电路36的输出信号FLQ所包含的振荡频率的成分。由此,能够减少逻辑反转电路IVC1的输出信号IVCQ的逻辑电平的偏差。
接着,对计数电路32进行说明。计数电路32的计数器31根据第2振荡电路70的输出信号OSCR进行计数动作。具体来说,计数器31对输出信号OSCR的脉冲数进行计数。例如,计数器31由单纯的移位寄存器或线性反馈移位寄存器构成。并且将移位寄存器或线性反馈移位寄存器中的任意的内部信号作为输出信号CTQ输出。或者,也可以是,计数器31还包含解码器,解码器对计数值进行解码而输出输出信号CTQ。输出信号CTQ是在计数值为给定的设定值的情况下从无效(高电平、第1逻辑电平)变化为有效(低电平、第2逻辑电平)的信号。
在复位信号POR为有效(复位状态、例如低电平)的情况下,输出电路33使输出使能信号QEN无效。在复位信号POR变为无效(复位解除状态、例如高电平)之后、计数器31的输出信号CTQ变为有效的情况下,输出电路33使输出使能信号QEN有效。复位信号POR例如是通电复位信号、或者是从电路装置100的外部(CPU等)提供的复位信号、或者是电路装置100的控制电路生成的复位信号。
当复位信号POR变为无效时,启动第1振荡电路10(开始振荡),之后,计数使能信号CEN变为有效,计数器31的输出信号CTQ变为有效,利用输出电路33使输出使能信号QEN有效。由此,(仅)在启动了第1振荡电路10的情况下使计数使能信号生成电路34进行动作,能够在经过了可获得适当的占空比的时钟信号CLKO的时间之后使输出使能信号QEN有效。
输出电路33例如是RS锁存器(Reset-Set锁存器)。即,在复位信号POR有效的情况下RS锁存器为复位状态,输出使能信号QEN维持为无效。另一方面,当复位信号POR变为无效时,解除RS锁存器的复位,在计数器31的输出信号CTQ无效的情况下,输出使能信号QEN无效,当输出信号CTQ变化为有效时,RS锁存器进行锁存器动作,输出使能信号QEN变为有效。
通过以这种方式使用RS锁存器,实现输出电路33的动作。即,在复位信号POR变为无效之后、计数器31的输出信号CTQ变为有效的情况下,能够使输出使能信号QEN有效。
另外,输出电路33不限于RS锁存器,例如,也可以是根据时钟信号进行锁存器动作的锁存器电路。在该情况下,例如也可以根据第1振荡电路10的输出信号OSQ进行锁存器动作。或者,也可以是对计数器31的输出信号CTQ进行某些信号处理而输出输出使能信号QEN的处理电路(逻辑电路)。
3.输出控制电路的第2详细结构例
图7是输出控制电路30的第2详细结构例。在图7中,计数使能信号生成电路34的检测电路38包含反相器IVC2、NAND电路NAC(“与非”电路)以及施密特触发电路SHC。另外,本实施方式不限于图7的结构,可以实施省略其构成要素的一部分或追加其他构成要素等各种变形。
在本实施方式中,在输出使能信号QEN变为有效的情况下,检测电路38使计数使能信号CEN无效。具体来说,平滑化电路36的输出信号FLQ和反相器IVC2使输出使能信号QEN逻辑反转后的信号被输入到NAND电路NAC,NAND电路NAC的输出信号NACQ被输入到施密特触发电路SHC。
这样,在输出使能信号QEN从无效变为有效的情况下,能够利用从输出使能信号QEN到计数使能信号CEN的反馈来禁止计数电路32(输出控制电路30)的动作。一旦在第1振荡电路10的启动之后开始时钟信号CLKO的输出,则之后不需要时钟信号CLKO的输出控制,因此,也可以如本实施方式那样禁止计数电路32的动作。并且,能够通过禁止计数电路32的动作来减少无用的功耗,能够减少电路装置100的功耗。
图8是用于说明图7的输出控制电路30的动作的波形例(电压波形例)。
如图8的B1所示,随着第1振荡电路10的输出信号OSQ的振幅变大,平滑化电路36的输出信号FLQ的电压电平也上升。虽然振荡频率的成分在平滑化电路36中衰减,但有一部分通过,因此,输出信号FLQ以振荡频率进行振动。
在复位信号POR从有效变为无效时(第1振荡电路10启动时),输出使能信号QEN为低电平(无效)。由于逻辑电平在平滑化电路36的输出信号FLQ的电压电平超过逻辑阈值之前为低电平,所以,如B3所示,NAND电路NAC的输出信号NACQ为高电平。
当平滑化电路36的输出信号FLQ的电压电平超过逻辑阈值时,如B4所示,NAND电路NAC的输出信号NACQ从高电平变化为低电平。在平滑化电路36的输出信号FLQ中残留振荡频率的成分,但由于NAND电路NAC的驱动能力变低,所以,进行一种低通滤波器那样的动作,抑制输出信号NACQ的尖峰(spike)的产生等。当NAND电路NAC的输出信号NACQ从高电平变化为低电平时,如B5所示,作为施密特触发电路SHC的输出信号的计数使能信号CEN从高电平(无效)变化为低电平(有效)。
当计数器31的计数值达到给定的设定值而使输出使能信号QEN从低电平(无效)变化为高电平(有效)时,如B6所示,NAND电路NAC的输出信号NACQ从低电平变化为高电平。由此,如B7所示,计数使能信号CEN从低电平(有效)变化为高电平(无效)。
4.计数器
图9是计数器31的详细结构例。计数器31包含钟控反相器CID、反相器IVD1、IVD2、IVE1~IVE3、晶体管PTD(P型晶体管、第1导电型晶体管)以及触发器电路FFD1~FFD6。另外,本实施方式不限于图9的结构,可以实施省略其构成要素的一部分或追加其他构成要素等各种变形。
在计数使能信号CEN为高电平(无效)的情况下,触发器电路FFD1~FFD6为复位状态。并且,钟控反相器CID的输出为高阻状态,晶体管PTD导通,反相器IVD1的输入成为电源VRD的电压电平(高电平)。即,不将第2振荡电路70的输出信号OSCR输入到触发器电路FFD1~FFD6。这样,在计数使能信号CEN为高电平的情况下,计数器31成为非动作状态。
当计数使能信号CEN为低电平(有效)时,触发器电路FFD1~FFD6的复位被解除,触发器电路FFD1~FFD6成为动作状态。并且,晶体管PTD截止,第2振荡电路70的输出信号OSCR经由钟控反相器CID和反相器IVD1输入到触发器电路FFD1。由此,触发器电路FFD1~FFD6根据第2振荡电路70的输出信号OSCR进行动作。
触发器电路FFD1将反相输出信号QB作为输入信号D进行反馈,并且输入到下一级的触发器电路FFD2的时钟。触发器电路FFD2~FFD5也同样,反相输出信号QB作为输入信号D进行反馈,并且输入到下一级的触发器电路的时钟。并且,触发器电路FFD6将反相输出信号QB作为输入信号D进行反馈,输出信号Q经由反相器IVE3作为计数器31的输出信号CTQ输出。即,触发器电路FFD1~FFD6为6级的二进制计数器,也可以认为是对作为输入的第2振荡电路70的输出信号OSCR进行26-1=32分频的分频电路。在开始第2振荡电路70的输出信号OSCR的计数之后进行了32个时钟计数时,计数器31的输出信号CTQ从低电平切换成高电平。
在从计数使能信号CEN变为有效起经过规定的期间TKD之后,能够利用图9的计数器31使输出使能信号QEN有效。例如,如果第2振荡电路70的振荡频率为260kHz,则期间TKD的长度大约为123μsec。
另外,也可考虑利用计数器31对第1振荡电路10的输出信号OSQ进行计数的变形实施。但是,第1振荡电路10的振荡频率比第2振荡电路70的振荡频率大。因此,在进行上述变形实施的情况下,需要使计数器31的可计数的最大值(认为是分频电路时的分频比)比本实施方式大,计数器31的电路规模变大。并且,在不使计数器31的电路规模变大的情况下,期间TKD变短,可能在占空比不稳定时输出时钟信号CLKO。
也就是说,本实施方式的方法在以下方面非常有利:能够利用6级的二进制计数器等简单的电路结构的计数器31来确保足以使占空比稳定的长度的期间TKD。另外,图9的结构是计数器31的一例,具体的电路结构可实施各种变形。
5.输出控制电路的变形例
图10是输出控制电路30的变形例以及应用了该变形例的情况下的电路装置100的结构例。在图10中,电路装置100包含输出控制电路30、温度传感器40、设定电路50、A/D转换电路60以及温度补偿电路150(温度补偿电路)。并且,输出控制电路30的计数电路32包含计数器35和输出电路33。另外,本实施方式不限于图10的结构,可以实施省略其构成要素的一部分或追加其他构成要素等各种变形。例如,也可以在电路装置100的外部设置温度传感器40或A/D转换电路60。
如上述那样,在计数处理中的计数值达到给定的设定值的情况下,计数电路32使输出使能信号QEN有效。在本变形例中,能够改变给定的设定值。即,设定电路50可变地设定设定值STC,将该设定值STC输出到计数器35,计数器35对计数值和设定值STC进行比较,在判定为计数值达到设定值STC的情况下使输出使能信号QEN(输出信号CTQ)有效。
从第1振荡电路10的启动到获得适当的时钟信号CLKO(例如适当的占空比的时钟信号)的时间可能因环境因素等发生改变。关于这一点,根据本变形例,能够根据各种环境因素等设定适当的给定的设定值(即,图2的期间TKD)。
例如,在本变形例中,根据电路装置100的环境温度(温度传感器40检测到的温度)可变地设定给定的设定值。具体来说,温度补偿电路150根据来自温度传感器40的温度检测信号VT进行第1振荡电路10的振荡频率的温度补偿。在进行这样的温度补偿的情况下,根据温度检测信号VT来可变地设定给定的设定值。在图10中,A/D转换电路60对温度检测信号VT的电压电平进行A/D转换,输出作为其A/D转换结果的温度检测数据DVT。设定电路50根据温度检测数据DVT输出设定值STC。例如,参照使温度检测数据DVT和设定值STC关联起来的查找表来输出设定值STC。或者,也可以进行根据温度检测数据DVT求出设定值STC的运算处理而输出设定值STC。
当环境温度(例如振荡元件XTAL的温度)发生变化时,从第1振荡电路10的启动到获取适当的时钟信号CLKO为止的时间会发生变化。关于这一点,根据本变形例,能够根据来自温度传感器40的温度检测信号VT设定适当的给定的设定值(即,图2的期间TKD)。例如,温度越高,则越增大给定的设定值,使图2的期间变长。
另外,以上,以根据环境温度来可变地设定给定的设定值的情况为例进行说明,但并不限于此。例如,可以想到根据振荡元件XTAL或电路装置100的个体差(工艺变动等)可变地设定给定的设定值等(与各种环境因素对应的设定方法)。并且,以上,以设定电路50根据温度传感器40检测到的温度设定给定的设定值的情况为例进行了说明,但并不限于此。例如,也可以利用来自电路装置100的外部(CPU等)的寄存器设定来可变地设定给定的设定值。或者,也可以通过在制造时等对非易失性存储器写入给定的设定值而可变地设定给定的设定值。
6.时钟信号输出电路
图11是时钟信号输出电路20的详细结构例。时钟信号输出电路20包含选择电路22(选择器)、分频电路24、输出缓冲器26以及开关电路SWB。
分频电路24对第1振荡电路10的输出信号OSQ进行分频,将该分频后的信号作为分频信号BKQ输出。例如分频电路24的分频比为1/2或1/4等。在输出使能信号QEN无效的情况下,选择电路22为高阻输出状态,开关电路SWB将选择电路22的输出(输出信号SLQ)设定为给定的电压电平。例如,给定的电压电平为电源VRB(高电位侧电源)的电压电平。在输出使能信号QEN有效的情况下,选择电路22选择第1振荡电路10的输出信号OSQ和分频信号BKQ中的一个信号,将该选择出的信号作为输出信号SLQ输出。
具体来说,开关电路SWB是晶体管TPB1(P型晶体管、第1导电型晶体管)。在输出使能信号QEN为低电平(有效)的情况下,晶体管TPB1截止,选择电路22选择的信号被输入到输出缓冲器26。
在输出使能信号QEN有效的情况下,选择电路22根据选择信号SEL来选择第1振荡电路10的输出信号OSQ和分频信号BKQ中的一个信号。例如,从电路装置100的控制电路(例如图17的控制电路130)输入选择信号SEL。例如,在制造时等将选择信号SEL的信息存储到非易失性存储器中,控制电路根据该信息来输出选择信号SEL。
输出缓冲器26包含反相器IVB1~IVB3、晶体管TPB2(P型晶体管、第1导电型晶体管)以及晶体管TNB1、TNB2(N型晶体管、第2导电型晶体管)。在该输出缓冲器26中,晶体管TPB2、TNB1、TNB2对负荷进行驱动而输出时钟信号CLKO。这些晶体管的电源VCL例如是1V左右的低电压。因此,将晶体管TPB2、TNB1并联(像传输门那样)连接,确保了驱动能力。如上述那样,输出缓冲器26输出削峰正弦波的时钟信号CLKO。
根据本实施方式,在输出使能信号QEN无效的情况下,利用开关电路SWB来固定输出缓冲器26的输入电压电平,所以,能够使时钟信号CLKO无效(非输出状态)。另一方面,在输出使能信号QEN有效的情况下,选择电路22所选择出的第1振荡电路10的输出信号OSQ或分频信号BKQ被输入到输出缓冲器26,因此能够使时钟信号CLKO成为有效(输出状态)。
7.选择电路
图12是选择电路22的详细结构例。选择电路22包含反相器IVF1~IVF3、晶体管TPF1~TPF7(P型晶体管、第1导电型晶体管)以及晶体管TNF1~TNF7(N型晶体管、第2导电型晶体管)。
这里,将由晶体管TPF1、TPF2、TNF1构成的电路称为电路CCF1。将由反相器IVF2、晶体管TPF3、TPF4、TNF2、TNF3构成的电路称为电路CCF2。将由晶体管TPF5、TPF6、TNF4构成的电路称为电路CCF3。将由反相器IVF3、晶体管TPF7、TNF5构成的电路称为开关电路SWF。
在输出使能信号QEN为低电平(无效)的情况下,电路CCF1的晶体管TNF1导通,因此,电路CCF1的输出为低电平。于是,电路CCF2的晶体管TPF4、TNF2截止,电路CCF2的输出为高阻状态。并且,由于电路CCF3的晶体管TNF4导通,所以,电路CCF3的输出为低电平。于是,开关电路SWF的晶体管TPF7、TNF5截止。以上,选择电路22的输出为高阻状态。
在输出使能信号QEN为高电平(有效)的情况下,动作根据选择信号SEL而不同。即,在选择信号SEL为低电平的情况下,电路CCF1的晶体管TPF1、TPF2导通,因此,电路CCF1的输出为高电平。于是,电路CCF2的晶体管TPF4、TNF2导通,电路CCF2对第1振荡电路10的输出信号OSQ进行缓冲而将其输出。并且,由于设置在电路CCF3的输出节点与低电位侧电源之间的晶体管TNF7导通,所以,电路CCF3的输出为低电平,开关电路SWF的晶体管TPF7、TNF5截止。由此,选择电路22的输出信号SLQ成为第1振荡电路10的输出信号OSQ。
另一方面,在输出使能信号QEN为高电平且选择信号SEL为高电平的情况下,设置在电路CCF1的输出节点与低电位侧电源之间的晶体管TNF6导通,因此电路CCF1的输出为低电平。于是,电路CCF2的晶体管TPF4、TNF2截止,电路CCF2的输出为高阻状态。并且,由于电路CCF3的晶体管TPF5、TPF6导通,所以电路CCF3的输出为高电平。于是,开关电路SWF的晶体管TPF7、TNF5导通,开关电路SWF使分频信号BKQ通过。由此,选择电路22的输出信号SLQ成为分频信号BKQ。
8.第1振荡电路
图13是第1振荡电路10的详细结构例。第1振荡电路10包含振荡部12(振荡电路主体)和缓冲器14(放大部)。
振荡部12包含由晶体管TPA1、TPA2(P型晶体管、第1导电型晶体管)和电阻元件RA2构成的电流镜电路(电流源)。该电流镜电路对流过电阻元件RA2的电流IRA进行镜像而输出偏置电流IBA。
并且,振荡部12包含双极晶体管TRA、电阻元件RA1、电容器CA1~CA3以及变容二极管CVA1、CVA2(可变电容二极管、电容可变电容器)。双极晶体管TRA的集电极端子经由端子XO(焊盘)与振荡元件XTAL的一端连接,基极端子经由端子XI(焊盘)与振荡元件XTAL的另一端连接。在双极晶体管TRA中流过因振荡元件XTAL的振荡而产生的基极-发射极间电流。当基极-发射极间电流增加时,集电极-发射极间电流增加,偏置电流IBA中的分支到电阻元件RA1的偏置电流减少,因此,集电极电压VCA降低。另一方面,当基极-发射极间电流减少时,集电极-发射极间电流减少,偏置电流IBA中的分支到电阻元件RX的偏置电流增加,因此,集电极电压VCA上升。由于集电极电压VCA被反馈到振荡元件XTAL,振荡元件XTAL进行振荡。
振荡元件XTAL的振荡频率具有温度特性,该温度特性由温度补偿电路150所产生的温度补偿用电压VCOMP来补偿。即,温度补偿用电压VCOMP输入到变容二极管CVA1、CVA2的一端,利用该温度补偿用电压VCOMP控制变容二极管CVA1、CVA2的电容值。变容二极管CVA1、CVA2的另一端与双极晶体管TRA的基极端子、集电极端子连接。当变容二极管CVA1、CVA2的电容值发生变化时,振荡环路的共振频率会发生变化,因此,振荡元件XTAL的温度特性引起的振荡频率的变动得到补偿。
另外,本实施方式的第1振荡电路10并不限于图13的结构,能够采用各种振荡电路。并且,在图13中,以将CVA1、CVA2设为电容可变电容器的情况为例进行了说明,但本实施方式不限于此,也可以仅将CVA1和CVA2中的一方设为由温度补偿用电压VCOMP控制的电容可变电容器。
缓冲器14包含电容器CA4、电阻元件RA3以及反相器IVA1、IVA2。经由电容器CA4对反相器IVA1输入集电极电压VCA(振荡信号)。反相器IVA1的输出经由电阻元件RA3被反馈到输入端,由此控制反相器IVA1的输入的偏置点。反相器IVA2对反相器IVA1的输出进行缓冲,将该缓冲后的信号作为输出信号OSQ输出。
9.第2振荡电路
图14是第2振荡电路70的详细结构例。第2振荡电路70包含差分放大电路AMP1、电阻R1~R4、电容器C1、P型晶体管PTD1、N型晶体管NTD1、NAND电路NAD3、反相器IVG1、以及电平移位器LS1、LS2。
在差分放大电路AMP1的输出端子与反相输入端子之间设置有作为反馈电阻的电阻R3。并且,在反相输入端子与低电位侧电源之间设置有电容器C1。在反相输入端子与低电位侧电源之间与电容器C1并联地设置有N型晶体管NTD1。
在电源VRE(高电位侧电源)与低电位侧电源之间串联设置有P型晶体管PTD1和电阻R1、R2,电阻R1与电阻R2之间的节点与差分放大电路AMP1的同相输入端子连接。
计数使能信号CEN输入到电平移位器LS1。电平移位器LS1从端子O输出将计数使能信号CEN移位到电源VRE电平的信号。并且,电平移位器LS1从端子XO输出将计数使能信号CEN移位到电源VRE电平并且使极性反转的信号。即,来自端子O的信号在计数使能信号CEN变为有效(低电平)时成为低电平,来自端子XO的信号在计数使能信号CEN变为有效(低电平)时成为高电平。
来自端子O的信号被供给到差分放大电路AMP1的使能端子、P型晶体管PTD1的栅极端子以及N型晶体管NTD1的栅极端子。来自端子XO的信号被供给到NAND电路NAD3的一方的输入端子。
当计数使能信号CEN变为有效(低电平)时,利用从电平移位器LS1的端子O输出的信号使差分放大电路AMP1成为使能状态,第2振荡电路70(CR振荡电路)也成为使能状态。具体来说,利用差分放大电路AMP1的输出而通过电阻R3对电容器C1进行充电放电,从而进行振荡。
在使能状态下,由于从电平移位器LS1的端子XO输出的信号为高电平,所以,NAND电路NAD3作为反相器发挥功能。由电阻R3和电容器C1产生的振荡信号经由NAND电路NAD3和反相器IVG1输入到电平移位器LS2,电平移位后的信号作为第2振荡电路70的输出信号OSCR输出。
另一方面,当计数使能信号CEN无效(高电平)时,N型晶体管NTD1导通,P型晶体管PTD1截止。由此,储存于电容器C1的电荷被放电,并且差分放大电路AMP1的同相输入被下拉到低电位侧电源。并且,由于从电平移位器LS1的端子XO输出的信号为低电平,所以,NAND电路NAD3的输出被固定为高电平,第2振荡电路70的输出信号OSCR被固定为低电平。
如以上那样,第2振荡电路70也可以在计数使能信号CEN变为有效时开始振荡动作。这样,能够与计数电路32中的计数开始对应地使第2振荡电路70开始。因此,能够抑制计数的开始延迟,还能够抑制因在不需要计数的状况下进行振荡动作而使功耗增大。
并且,一旦开始时钟信号CLKO的输出,则之后不需要计数电路32的计数处理,第2振荡电路70进行动作的必要性较低。因此,第2振荡电路70也可以在振荡动作的开始之后(计数使能信号CEN变为有效之后),在输出使能信号QEN变为有效时停止振荡动作。这样,能够抑制第2振荡电路70中的功耗。
图15是基于以上的控制的第1振荡电路10的输出信号OSQ、计数使能信号CEN、第2振荡电路70的输出信号OSCR以及时钟信号CLKO的波形例。如在图2中所述的那样,在判断为第1振荡电路10的振荡已增加的时刻,计数使能信号CEN变为有效(低电平)(D1)。第2振荡电路70将计数使能信号CEN变为有效的情况作为触发而开始振荡(D2)。然后,在第2振荡电路70的输出信号OSCR的计数达到设定值(例如32)的定时,输出使能信号QEN变为有效,开始时钟信号CLKO的输出(D3)。第2振荡电路70将输出使能信号QEN变为有效的情况作为触发而停止振荡动作(D4)。
10.模式切换
以上,对从时钟信号的输出开始时利用输出控制电路30使占空比稳定的控制方法进行说明。但是,本实施方式的电路装置100不需要始终执行上述控制。例如,电路装置100也可以构成为能够切换作为进行上述控制的动作模式的占空比校正模式的设定/非设定。
在设定为占空比校正模式时,输出控制电路30将基于计数处理的结果的输出使能信号QEN输出到时钟信号输出电路20。另一方面,在未被设定为占空比校正模式时,输出控制电路30将输出使能信号QEN固定为有效电平。
图16是未被设定为占空比校正模式时的、第1振荡电路10的输出信号OSQ、计数使能信号CEN、第2振荡电路70的输出信号OSCR、时钟信号CLKO的波形例。在该情况下,由于输出使能信号QEN被固定为有效电平,所以,在第1振荡电路10的振荡增加到某种程度的时刻,开始时钟信号的输出(E1)。时钟信号CLKO在刚开始输出后的期间(E2)中,如图3所示,占空比不稳定,在经过规定时间后(E3)如图5所示,占空比稳定。也就是说,在未设定为占空比校正模式时,允许占空比不稳定的时钟信号的输出。
在该情况下,计数电路32、计数使能信号生成电路34以及第2振荡电路70不需要进行动作。因此,如图16所示,计数使能信号CEN被固定为无效(高电平)(E4),第2振荡电路70不进行振荡动作(E5)。这样,能够减少电路装置100的功耗。
也可以通过寄存器设定来切换占空比校正模式的设定/非设定。例如,在寄存器的给定的位为“1”(第1逻辑电平、高电平)的情况下,设定为占空比校正模式,在该给定的位为“0”(第2逻辑电平、低电平)的情况下,不设定为占空比校正模式。这样,通过寄存器设定,能够根据状况变更输出控制电路30的动作。
11.电路装置的详细结构例
图17是本实施方式的电路装置100的第1详细结构例。另外,以下,以将电路装置100应用于TCXO(或OCXO)的情况为例进行说明,但不限于此,在不进行温度补偿的情况下也能够应用上述的实施方式的方法。
电路装置100包含温度传感器40、温度补偿电路150(温度补偿电路)、控制电路130、存储部140(非易失性存储器)、第1振荡电路10、时钟信号输出电路20、输出控制电路30以及第2振荡电路70。另外,电路装置的结构不限于图17的结构,可以实施省略其一部分构成要素(例如温度传感器40、温度补偿电路150等)或追加其他构成要素等各种变形。
控制电路130进行电路装置100的各部的控制。并且,控制电路130也进行与电路装置100的外部(例如CPU等)的接口处理等。控制电路130例如由门阵列等的逻辑电路实现。
存储部140存储电路装置100的动作所需的各种信息。例如温度补偿电路150存储为了进行温度补偿处理而需要的信息(温度补偿用的多项式的系数)等,例如,在电路装置100的制造时、或对电路装置100和振荡元件XTAL进行封装的振荡器的制造时等,从外部(例如测试装置)写入该信息。
温度补偿电路150根据来自温度传感器40的温度检测信号VT(温度检测电压)来产生用于实现第1振荡电路10的振荡频率的温度补偿的温度补偿用电压VCOMP,将该温度补偿用电压VCOMP输出到第1振荡电路10。例如,利用测试装置对振荡元件XTAL所具有的振荡频率的温度特性进行测定,求出将该温度特性消除(抑制因温度特性导致的振荡频率的变动)的3次或5次多项式(近似式)。并且,预先将该多项式的系数写入存储部140。在温度补偿电路150进行温度补偿时,控制电路130从存储部140读出多项式的系数而输出到温度补偿电路150,温度补偿电路150根据该系数而产生将振荡频率的温度特性消除(抑制因温度特性导致的振荡频率的变动)的温度补偿用电压VCOMP。例如,当以3次多项式为例时,温度补偿电路150包含:1次成分产生电路,其产生1次成分;3次成分产生电路,其产生3次成分;1次成分放大电路,其对1次成分产生电路的输出进行放大;3次成分放大电路,其对3次成分产生电路的输出进行放大;以及加法电路,其将1次、3次成分放大电路的输出相加而输出温度补偿用电压VCOMP。
温度传感器40是检测电路装置100(半导体芯片)的温度的传感器。例如,温度传感器40可以由二极管(PN结)等构成。在该情况下,使用二极管的正向电压的温度依赖性来进行温度检测。即,根据二极管的正向电压来输出温度检测信号VT。另外,温度传感器40不限于此,可以采用热敏电阻等各种温度传感器。并且,本发明也包含如下的结构:使用频率温度特性不同的两个振荡电路,根据振荡频率的差分来检测温度。在该情况下,振荡电路可以是使用了振荡元件的振荡电路,也可以是环形振荡器或RC振荡电路等。并且,作为振荡电路的一方,也可以利用用于生成振荡信号的第1振荡电路10。
图18是本实施方式的电路装置100的第2详细结构例。图18是利用数字信号处理进行温度补偿的、所谓的数字TCXO(或者数字OCXO)的结构例。图18的电路装置100包含温度传感器40、A/D转换电路60(A/D转换电路)、处理部160(DSP部、处理电路)、存储部140(非易失性存储器)、振荡信号生成电路170、时钟信号输出电路20、输出控制电路30以及第2振荡电路70。另外,电路装置的结构不限于图18的结构,可以实施省略其一部分构成要素或追加其他构成要素等各种变形。
A/D转换电路60对温度检测信号VT进行A/D转换,将该A/D转换后的数字数据作为温度检测数据DVT输出。作为A/D转换方式,例如可以想到逐次比较型、二重积分型、FLash(快速)型、流水线(pipeline)型等。
处理部160进行各种数字信号处理而生成频率控制数据DDS,将该频率控制数据DDS输出到振荡信号生成电路170。例如,处理部160包含温度补偿电路162。温度补偿电路162根据温度检测数据DVT进行温度补偿处理,生成将振荡元件XTAL具有的振荡频率的温度特性消除(抑制因温度特性导致的振荡频率的变动)的频率控制数据DDS。在温度补偿处理中,根据将振荡频率的温度特性消除(抑制因温度特性导致的振荡频率的变动)的3次或5次多项式来计算频率控制数据DDS。该多项式的系数与图17同样在制造时等写入到存储部140中。
振荡信号生成电路170使用振荡元件XTAL和频率控制数据DDS生成振荡信号(输出信号OSQ)。具体来说,使用振荡元件XTAL生成与频率控制数据DDS对应的振荡频率的振荡信号(输出信号OSQ)。例如,振荡信号生成电路170包含D/A转换电路80和第1振荡电路10(VCO)。D/A转换电路80对频率控制数据DDS进行D/A转换,将该D/A转换后的电压作为温度补偿用电压VCOMP输出到第1振荡电路10。第1振荡电路10以与温度补偿用电压VCOMP对应的振荡频率使振荡元件XTAL振荡。
12.振荡器、电子设备、移动体
图19是包含本实施方式的电路装置的振荡器400的结构例。如图19所示,振荡器400包含振荡元件420(振子)和电路装置500。振荡元件420和电路装置500被安装在振荡器400的封装410内。并且,振荡元件420的端子和电路装置500(IC)的端子(焊盘)通过封装410的内部布线而电连接。
图20是包含本实施方式的电路装置的电子设备的结构例。该电子设备包含电路装置500、石英振子等振荡元件420、天线ANT、通信部510(通信装置)以及处理部520(处理装置)。并且,还可以包含操作部530(操作装置)、显示部540(显示装置)以及存储部550(存储器)。振荡器400由振荡元件420和电路装置500构成。另外,电子设备不限于图20的结构,可以实施省略其一部分构成要素或追加其他构成要素等各种变形。
作为图20的电子设备,例如可以想到以下的各种设备:内置有GPS的钟表、生物体信息测定设备(脉搏计、测步计等)或头戴式显示装置等可穿戴设备;智能手机、移动电话、便携式游戏装置、笔记本电脑或平板电脑等便携信息终端(移动终端);发布内容的内容提供终端;数字照相机或摄像机等影像设备;基站或路由器等网络相关设备等各种设备。
通信部510(无线电路)进行经由天线ANT从外部接收数据或向外部发送数据的处理。处理部520进行电子设备的控制处理、以及经由通信部510收发的数据的各种数字处理等。例如能够通过微型计算机等的处理器实现该处理部520的功能。操作部530用于由用户进行输入操作,能够通过操作按钮或触摸面板显示器等实现。显示部540显示各种信息,能够通过液晶或有机EL等显示器实现。另外,在使用触摸面板显示器作为操作部530的情况下,该触摸面板显示器兼具操作部530和显示部540的功能。存储部550存储数据,其功能能够通过RAM或ROM等半导体存储器或HDD(硬盘驱动器)等实现。
图21示出包含本实施方式的电路装置的移动体的例子。本实施方式的电路装置(振荡器)例如可以组装到汽车、飞机、摩托车、自行车或船舶等各种移动体中。移动体例如是具有发动机或马达等驱动机构、方向盘或舵等转向机构以及各种电子设备(车载设备)、且在地上、天空或海上移动的设备/装置。图21概略地示出作为移动体的具体例的汽车206。在汽车206中组装有具有本实施方式的电路装置和振子的振荡器(未图示)。控制装置208根据该振荡器所生成的时钟信号来进行动作。控制装置208例如根据车体207的姿势控制悬架的软硬度,或对各个车轮209的制动进行控制。例如,也可以利用控制装置208实现汽车206的自动运转。另外,组装有本实施方式的电路装置或振荡器的设备不限于这样的控制装置208,还可以组装到设置于汽车206等移动体的各种设备(车载设备)。
另外,如上述那样对本实施方式进行详细地说明,但本领域技术人员能够容易地理解可进行实际上不脱离本发明的新颖性和效果的很多变形。因此,这样的变形例全部包含在本发明的范围内。例如,可以将至少一次与更广义或同义的不同的术语一同记载于说明书或附图中的术语在说明书或附图的任何一个部位中替换成该不同的术语。并且,本实施方式和变形例的全部的组合也包含在本发明的范围内。并且,电路装置、振荡器、电子设备、移动体等的结构/动作等也并不限定于本实施方式中说明的内容,可以实施各种变形。

Claims (11)

1.一种电路装置,其特征在于,该电路装置包含:
第1振荡电路,其使振荡元件振荡;
第2振荡电路;
时钟信号输出电路,其输出基于所述第1振荡电路的输出信号的时钟信号;以及
输出控制电路,其进行所述时钟信号输出电路的输出控制,
所述输出控制电路具有:
计数电路,该计数电路根据所述第2振荡电路的输出信号进行计数处理;以及
计数使能信号生成电路,该计数使能信号生成电路生成所述计数电路的计数使能信号,
所述计数电路根据所述计数处理的结果,对所述时钟信号输出电路输出所述时钟信号的输出使能信号,
所述计数电路在所述计数使能信号变为有效时开始所述计数处理,
所述第2振荡电路在所述计数使能信号变为有效时开始振荡动作,之后,在所述输出使能信号变为有效时停止所述振荡动作。
2.根据权利要求1所述的电路装置,其特征在于,
所述计数使能信号生成电路根据所述第1振荡电路的所述输出信号生成所述计数使能信号。
3.根据权利要求1所述的电路装置,其特征在于,
所述计数电路在所述计数使能信号变为有效时开始所述计数处理,在所述计数处理中的计数值达到给定的设定值时使所述输出使能信号有效。
4.根据权利要求1所述的电路装置,其特征在于,
所述第2振荡电路是CR振荡电路。
5.根据权利要求1所述的电路装置,其特征在于,
所述第2振荡电路的振荡频率比所述第1振荡电路的振荡频率低。
6.根据权利要求1所述的电路装置,其特征在于,
在设定为占空比校正模式时,所述输出控制电路将基于所述计数处理的结果的所述输出使能信号输出到所述时钟信号输出电路,
在未设定为占空比校正模式时,所述输出控制电路将所述输出使能信号固定为有效电平。
7.根据权利要求1所述的电路装置,其特征在于,
在设从施加电源电压起到所述第1振荡电路的振荡频率处于容许频率偏差内为止的期间为T1、从施加所述电源电压起到所述输出使能信号变为有效为止的期间为T2时,T2<T1。
8.根据权利要求1所述的电路装置,其特征在于,
所述计数电路具有:
计数器,其根据所述第2振荡电路的所述输出信号进行计数动作;以及
输出电路,其在复位信号有效时,使所述输出使能信号无效,在所述复位信号变为无效之后所述计数器的输出信号变为有效时,使所述输出使能信号有效。
9.一种振荡器,其特征在于,该振荡器包含:
权利要求1~8中的任意一项所述的电路装置;以及
所述振荡元件。
10.一种电子设备,其特征在于,该电子设备包含权利要求1~8中的任意一项所述的电路装置。
11.一种移动体,其特征在于,该移动体包含权利要求1~8中的任意一项所述的电路装置。
CN201810385116.XA 2017-04-28 2018-04-26 电路装置、振荡器、电子设备以及移动体 Active CN108803775B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089278A JP6852547B2 (ja) 2017-04-28 2017-04-28 回路装置、発振器、電子機器及び移動体
JP2017-089278 2017-04-28

Publications (2)

Publication Number Publication Date
CN108803775A CN108803775A (zh) 2018-11-13
CN108803775B true CN108803775B (zh) 2023-06-02

Family

ID=63917519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810385116.XA Active CN108803775B (zh) 2017-04-28 2018-04-26 电路装置、振荡器、电子设备以及移动体

Country Status (3)

Country Link
US (1) US10516399B2 (zh)
JP (1) JP6852547B2 (zh)
CN (1) CN108803775B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788883B2 (en) * 2017-05-26 2020-09-29 Arm Ltd Timer for low-power communications systems
JP7214464B2 (ja) * 2018-12-20 2023-01-30 キオクシア株式会社 半導体記憶装置
JP7221759B2 (ja) * 2019-03-28 2023-02-14 アズビル株式会社 時間計測回路
JP7404632B2 (ja) * 2019-03-28 2023-12-26 セイコーエプソン株式会社 出力回路、回路装置、発振器、電子機器及び移動体
JP2021005746A (ja) * 2019-06-25 2021-01-14 セイコーエプソン株式会社 発振回路、発振器、通信装置及び発振回路の制御方法
JP7392311B2 (ja) * 2019-07-29 2023-12-06 セイコーエプソン株式会社 回路装置、発振器、電子機器、及び移動体
JP7404760B2 (ja) 2019-10-18 2023-12-26 セイコーエプソン株式会社 発振器、電子機器、及び移動体
US11258447B2 (en) * 2020-02-20 2022-02-22 Apple Inc. Integration of analog circuits inside digital blocks
WO2022024488A1 (ja) * 2020-07-30 2022-02-03 新日本無線株式会社 センサインターフェース回路及びセンサモジュール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398007A (en) * 1992-09-29 1995-03-14 Oki Electric Industry Co., Ltd. Low-power baud rate generator including two oscillators
CN103716041A (zh) * 2012-09-28 2014-04-09 精工爱普生株式会社 集成电路和切换方法、振动器件、电子设备、移动体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326802A (ja) * 1991-04-26 1992-11-16 Olympus Optical Co Ltd 発振回路
JP2776772B2 (ja) * 1995-09-28 1998-07-16 日本電気アイシーマイコンシステム株式会社 発振制御回路
JP2921494B2 (ja) * 1996-06-13 1999-07-19 日本電気株式会社 発振回路
JP2002314336A (ja) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd 発振回路
JP5048355B2 (ja) 2007-02-06 2012-10-17 新日本無線株式会社 発振回路
JP5078593B2 (ja) 2007-12-21 2012-11-21 ラピスセミコンダクタ株式会社 クロック信号生成装置
US8089318B2 (en) * 2008-10-17 2012-01-03 Marvell World Trade Ltd. Methods, algorithms, circuits, and systems for determining a reference clock frequency and/or locking a loop oscillator
JP2016042060A (ja) * 2014-08-18 2016-03-31 株式会社東芝 温度推定回路およびカウンタ回路
JP6585977B2 (ja) * 2015-09-18 2019-10-02 ラピスセミコンダクタ株式会社 半導体装置および発振回路の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398007A (en) * 1992-09-29 1995-03-14 Oki Electric Industry Co., Ltd. Low-power baud rate generator including two oscillators
CN103716041A (zh) * 2012-09-28 2014-04-09 精工爱普生株式会社 集成电路和切换方法、振动器件、电子设备、移动体

Also Published As

Publication number Publication date
CN108803775A (zh) 2018-11-13
US10516399B2 (en) 2019-12-24
JP2018191038A (ja) 2018-11-29
US20180316355A1 (en) 2018-11-01
JP6852547B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
CN108803775B (zh) 电路装置、振荡器、电子设备以及移动体
JP6439915B2 (ja) フラクショナルn−pll回路、発振器、電子機器及び移動体
US7895894B2 (en) Driver device, physical quantity measuring device, and electronic instrument
JP6536780B2 (ja) 半導体回路装置、発振器、電子機器および移動体
JP6540943B2 (ja) 半導体回路装置、発振器、電子機器および移動体
US9294101B2 (en) Integrated circuit, vibrating device, electronic apparatus, moving object, and method of switching modes of integrated circuit
US10027331B2 (en) Oscillator, electronic apparatus, and moving object
TW201526525A (zh) 振盪電路、振盪器、電子機器、移動體及振盪器之頻率調整方法
US9621106B2 (en) Oscillation circuit, oscillator, electronic apparatus and moving object
CN110739910B (zh) 电路装置、振荡器、电子设备和移动体
JP4882975B2 (ja) 駆動装置、物理量測定装置及び電子機器
US10394273B2 (en) Circuit device, oscillator, electronic apparatus, and vehicle
US20130335153A1 (en) Oscillator and ic chip
JP5200491B2 (ja) 駆動装置、物理量測定装置及び電子機器
US8674776B2 (en) Oscillator circuit, oscillator, electronic apparatus, and activation method oscillator circuit
CN111490734A (zh) 振荡器、电子设备以及移动体
US11664765B2 (en) Circuit device and oscillator
JP6508457B2 (ja) 発振器、電子機器および移動体
US20240313704A1 (en) Circuit Device And Oscillator
JP6540942B2 (ja) 発振回路、発振器、電子機器及び移動体
JP6870403B2 (ja) 発振回路、回路装置、発振器、電子機器及び移動体
JP5962895B2 (ja) 発振器及び電子機器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant