CN108788144A - 增材制造中的散射减少 - Google Patents
增材制造中的散射减少 Download PDFInfo
- Publication number
- CN108788144A CN108788144A CN201810399387.0A CN201810399387A CN108788144A CN 108788144 A CN108788144 A CN 108788144A CN 201810399387 A CN201810399387 A CN 201810399387A CN 108788144 A CN108788144 A CN 108788144A
- Authority
- CN
- China
- Prior art keywords
- powder
- energy beam
- deflector
- energy
- voltage source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000000843 powder Substances 0.000 claims abstract description 147
- 238000010276 construction Methods 0.000 claims abstract description 75
- 239000002245 particle Substances 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 25
- 230000004927 fusion Effects 0.000 claims abstract description 9
- 230000005611 electricity Effects 0.000 claims description 33
- 239000004744 fabric Substances 0.000 claims 1
- 238000010894 electron beam technology Methods 0.000 description 34
- 230000005684 electric field Effects 0.000 description 22
- 239000006185 dispersion Substances 0.000 description 16
- 239000002184 metal Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/49—Scanners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/50—Means for feeding of material, e.g. heads
- B22F12/52—Hoppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- General Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
Abstract
提供了用于减少粉末床熔合(PBF)系统中的带电的粉末颗粒散射的系统和方法。PBF装置可以包括支撑具有多个粉末颗粒的粉末材料层的结构。例如,所述结构可以是构造板、构造底板、构造件等。该装置还可以包括生成能量束的能量束源和施加所述能量束来熔合所述粉末材料层中的粉末材料区域的偏转器。能量束可以在电气上使粉末颗粒带电。该装置还可以包括电气系统,其在所述结构与带电的粉末颗粒之间生成电力。例如,该电气系统可以包括向所述结构施加第一电压的电压源。
Description
相关申请的交叉引用
此申请要求于2017年4月28日提交的且题为“SCATTER REDUCTION IN ADDITIVEMANUFACTURING”的美国专利申请号15/582,493的权益,通过引用将其全部内容明确地并入本文。
技术领域
本公开一般地涉及增材制造(additive manufacturing,AM),并且更具体地涉及减少AM应用(诸如粉末床熔合,powder-bed fusion,PBF)中的带电粉末散射。
背景技术
PBF系统可以生产具有几何学上的复杂形状(包括用常规制造工艺难以或不可能创建的一些形状)的结构(被称为构造件)。PBF系统逐层地创建构造件。通过沉积粉末层并将该粉末的部分暴露于能量束而形成每个层或‘片(slice)’。施加能量束来熔化与层中的构造件的横截面相一致的粉末层的区域。熔化的粉末层冷却并熔合以形成构造件的片。该工艺可以被重复以形成构造件的下一片。每个层被沉积在先前层的顶部上。所得到的结构是从头开始逐片组装的构造件。
用于熔合粉末层的一些能量束也可能导致粉末颗粒中的一些散射或飞离该层。例如,向粉末层施加电子束可以使粉末颗粒中的一些带电。粉末颗粒上的电荷相互排斥,并导致颗粒中的一些飞离该粉末层,也被称为‘发烟(smoking)’的一种现象。在一些情况下,散射的粉末干扰AM操作并且可以造成差质量的构造件。
发明内容
在下文中将更加全面地描述用于减少PBF系统中的粉末散射的装置和方法的若干方面。
在各种方面,用于粉末床熔合的装置可以包括支撑具有多个粉末颗粒的粉末材料层的结构、生成能量束的能量束源以及施加能量束以熔合该粉末材料层中的粉末材料区域的偏转器。能量束可以在电气上使粉末颗粒带电。该装置还可以包括在所述结构与带电的粉末颗粒之间生成电力的电气系统。
在各种方面,用于PBF的装置可以包括包括粉末材料支撑结构的一个或多个结构、被导向粉末材料支撑表面的能量束源、与所述能量束源可操作地耦合的偏转器以及与所述结构中的至少一个相连接的电压源。
其他方面根据下面的详细描述对于本领域技术人员来说将变得显而易见,其中,通过图示方式示出和描述了仅若干示例性实施例。如本领域技术人员将意识到的那样,本文所描述的概念能够具有其他和不同的实施例,并且若干细节能够具有各种其他方面的修改,所有的这些不脱离本公开。相应地,附图和详细描述在本质上要被认为是说明性的而不是限制性的。
附图说明
现在将在附图中在作为示例而非限制的详细描述中呈现各种方面,其中:
图1A-图1D示出了在操作的不同阶段期间的示例PBF系统。
图2显示了示出PBF中的颗粒散射的示例的特写视图。
图3示出了用于减少粉末散射的电气系统实施方式的另一示例性实施例。
图4显示了示出减少颗粒散射的示例性实施例的特写视图。
图5示出了用于减少粉末散射的电气系统实施方式的另一示例性实施例。
图6示出了用于减少粉末散射的电气系统实施方式的另一示例性实施例。
图7示出了由电场导致的示例束误差。
图8示出了包括束补偿系统的电气系统的示例性实施例。
图9是用于减小PBF系统中的粉末散射的方法的示例性实施例的流程图。
具体实施方式
下面结合附图阐述的详细描述旨在提供本文所公开的概念的各种示例性实施例的描述,并且并不旨在代表其中可以实践本公开的仅有的实施例。此公开中使用的术语“示例性”意味着“用作示例、实例或图示”,并且不应该一定被解释为比此公开中呈现的其他示例性实施例更优选或更有利。出于向本领域技术人员提供充分传达概念范围的彻底且完整的公开内容的目的,详细描述包括具体细节。然而,可以在没有这些具体细节的情况下实践本公开。在一些实例中,众所周知的结构和部件可以以框图形式示出,或者完全省略,以避免模糊在整个此公开中所呈现的各种概念。
此公开涉及减少PBF系统中的带电的粉末散射,即,发烟。例如,可以构造PBF系统,使得该系统中的一个或多个结构可以带电,以在带电的粉末颗粒与该粉末层之间创建电力(electrical force)。该电力可以阻止带电的粉末颗粒飞离该粉末层。例如,可以在电气上使构造件带电,使得该构造件是阳极或伪阳极(pseudo-anode),以导致电荷累积的粉末颗粒被吸引至床而不是被排斥。另外,静电屏蔽件可以带有负电位,用接近均匀的场来减少束偏转,以防止电荷累积的颗粒被吸引至构造腔。由这些机构创建的任何偏转可以被PBF系统的控制系统表征,并且可以在原始束偏转命令中提供补偿。
图1A-图1D示出了在不同操作阶段期间的示例PBF系统100。PBF系统100可以包括:沉积器101,其可以沉积金属粉末的每个层;能量束源103,其可以生成能量束;偏转器105,其可以施加能量束以熔合粉末材料;以及构造板107,其可以支撑诸如构造件109的一个或多个构造件。PBF系统100还可以包括被定位在粉末床容器内的构造底板111。粉末床容器的壁被示出为粉末床容器壁112。构造底板111可以使构造板107降低,使得沉积器101可以沉积下一层,并且腔113可以包封其他部件。沉积器101可以包括:漏斗115,其容纳诸如金属粉末的粉末117;和校平器119,其可以校平每个粉末层的顶部。
具体参照图1A,此图示出了在构造件109的一片已经被熔合之后但下一个粉末层被沉积之前的PBF系统100。事实上,图1A示出了PBF系统100已经沉积并熔合了多层(例如,50层)中的片以形成构造件109的当前状态(例如,由50片形成)的时间。已经沉积的多层创建了粉末床121,其包括被沉积但未被熔合的粉末。
图1B示出了处于其中构造底板111可以降低粉末层厚度123的阶段的PBF系统100。构造底板111的降低导致构造件109和粉末床121下降粉末层厚度123,使得构造件和粉末床的顶部比粉末床容器壁112的顶部低粉末层厚度。以这种方式,例如,可以在构造件109和粉末床121的顶部上方创建具有等于粉末层厚度123的一致厚度的空间。
图1C示出了处于其中沉积器101可以在被创建在构造件109和粉末床121的顶部上方的空间中沉积粉末117的阶段的PBF系统100。在此示例中,沉积器101可以在从漏斗115释放粉末117的同时横跨(cross over)此空间。校平器119可以校平所释放的粉末,以形成具有粉末层厚度123的厚度的粉末层125。因此,PBF系统中的粉末可以被粉末材料支撑结构所支撑,所述粉末材料支撑结构可以包括例如构造板、构造底板、构造件等。应该注意的是,图1A-图1D以及此公开中的其他图的要素不一定按照比例绘制,而出于更好图示本文所描述的概念的目的可以被绘制得较大或较小。例如,所示出的粉末层125的厚度(即,粉末层厚度123)大于用于示例性的50个先前沉积的层的实际厚度。
图1D示出了处于其中能量束源103可以生成能量束127并且偏转器105可以施加能量束以熔合构造件109中的下一片的阶段的PBF系统100。在各种实施例中,能量束源103可以是电子束源,能量束127可以是电子束,并且偏转器105可以包括偏转板,其可以生成使电子束偏转以跨待熔合区域扫描的电场或磁场。在各种实施例中,能量束源103可以是激光,能量束127可以是激光束,并且偏转器105可以包括光学系统,其可以使激光束反射和/或折射以跨待熔合区域进行扫描。在各种实施例中,偏转器可以包括一个或多个平衡环(gimbal)和致动器,其可以旋转和/或转变能量束源以定位能量束。在各种实施例中,能量束源103和/或偏转器105可以调制能量束,例如,当偏转器扫描时开启和关闭能量束,使得仅在粉末层的适当区域中施加能量束。例如,在各种实施例中,可以由数字信号处理器(DSP)来调制能量束。
能量束127的施加可以导致粉末颗粒从该粉末层飞走,在图1D中被示出为散射的粉末颗粒129。如上面所指出的,散射的粉末颗粒129可以干扰打印操作并且可以造成更差质量的构造件。
图2示出了示出PBF中的颗粒散射的示例的特写视图。特别是,图2示出了在粗箭头方向上(即,向右扫描)跨粉末层203扫描的能量束201。当施加能量束201时,粉末被熔合到熔合的粉末205中以形成构造件207。在图2中示出的视图中,可以看到先前片209的顶部以及到当前为止已经被熔合的当前片211的部分。当能量束201被施加至粉末层203的区域以加热并熔合该区域时,粉末颗粒中的一些可以变成带电的。在此示例中,粉末颗粒中的一些可以变成带负电的,并且这些带电的粉末颗粒由“-”符号表示。例如,能量束201可以是电子束,其是电子(即,带负电的颗粒)的束。电子束中的电子可以被粉末颗粒捕获,使得该粉末颗粒变成带负电的。
带负电的物体由于静电力而相互排斥。如图2中所示,如果足够多的带负电的粉末颗粒处于非常接近,则它们之间的排斥静电力可以克服重力,导致带电的粉末颗粒中的一些从粉末层203中向上飞出。这些粉末颗粒被示出为散射的粉末颗粒213。
图3示出了用于减少粉末散射的电气系统实施方式的另一示例性实施例。电气系统300可以包括电压源301和电压源303。在此示例中,电压源301的正端子可以通过构造底板307中的开口而被连接至构造板305。构造板305和构造底板307可以支撑粉末床309和导电构造件311。例如,导电构造件311可以由金属或其他导电材料形成。
在此示例中,构造板305可以是导电的,并且可以电连接到导电构造件311。例如,导电构造件311可以被熔合到构造板305。构造板305到电压源301的连接可以导致正电荷在该构造板上以及在导电构造件上聚集。正电荷可以创建由电场线312示出的电场。在该示例中,因为正电荷可以在导电构造件311的顶部处聚集,所以穿过构造件顶部上的粉末层的电场可以与图3的示例中的电场相比更强,特别是如果构造件的顶部远离构造板。这可以允许电气系统300更有效率地减少粉末散射。
作为用于创建电子束的加速电压的电压源303可以被施加至电子束源313,所述电子束可以被偏转器315扫描以熔合粉末。在此情况下,电压源303的正端子是电子束源313的阳极。电压源301也被连接至电子束源313的阳极,使得电压源301被施加在阳极与构造板305之间。以此方式,例如,由电压源301施加的电压可以帮助减少粉末散射和通过对该束进一步加速来增大调制增益以获得较大的束能量。
图4示出了示出减少颗粒散射的示例性实施例的特写视图。特别地,图4示出了诸如上面的导电构造件311的导电构造件400的顶部。能量束401在粗箭头的方向(即,向右扫描)上跨粉末层403扫描。当施加能量束401时,粉末被熔合到熔合的粉末405中以形成构造件400。在图4中示出的视图中,可以看到先前的片409的顶部以及到当前为止已经被熔合的当前片411的部分。当能量束401被施加至粉末层403的区域以加热并熔合该区域时,粉末颗粒中的一些可以变成带电的。在此示例中,粉末颗粒中的一些可以变成带负电的,如由“-”符号表示的。例如,能量束201可以是电子束,并且电子束中的电子可以被粉末颗粒捕获,使得粉末颗粒变成带负电的。
在此示例中,导电构造件400可以被连接至诸如上面图3中的电气系统300的电气系统,使得正电荷在导电构造件的顶部处聚集。该正电荷可以创建如电场线413所示的电场,其可以吸引带负电的粉末颗粒。在图4中由正电荷与负电荷之间的电场线413示出了该吸引。由电场施加在带负电的粉末颗粒上的吸引力可以大于粉末颗粒之间的排斥力,并且可以防止带负电的粉末颗粒向上飞,如固定化的粉末颗粒415所示。以此方式,例如,粉末散射可以被减少或消除。
图5示出了用于减少粉末散射的电气系统实施方式的另一示例性实施例。电气系统500可以包括电压源501和电压源503。在此示例中,电压源501的正端子可以被连接至构造底板505,其支撑构造板507、粉末床509和构造件511。在此实施方式中,构造底板505可以是导电的。在其他实施方式中,构造板507也可以是导电的。在其他实施方式中,构造板507和构造件511也可以是导电的。可以以不同的实施方式生成不同的电场,以减少或消除粉末散射.
作为用于创建电子束的加速电压的电压源503可以被施加至电子束源513,所述电子束可以被偏转器515扫描以熔合粉末。在此情况下,电压源503的正端子是电子束源513的阳极。电压源501也被连接至电子束源513的阳极,使得电压源501被施加在该阳极与构造底板505之间。以此方式,例如,由电压源501施加的电压可以帮助减少粉末散射和通过对该束进一步加速来增大调制增益以获得较大的束能量。
图6示出了用于减少粉末散射的电气系统实施方式的另一示例性实施例。电气系统600可以包括电压源601和电压源603。在此示例中,电压源601的正端子可以穿过构造底板607中的开口而被连接至不导电构造板605中的导电插头604。不导电构造板605和构造底板607可以支撑粉末床609和导电构造件611。例如,导电构造件611可以由金属或其他导电材料形成。
在此示例中,当打印导电构造件611的前几个层时,PBF系统该还打印导电延伸部612,其可以将导电构造件连接至导电插头604。以此方式,例如,电压源601可以被连接至导电构造件611,以导致正电荷在导电构造件上聚集。由在导电构造件611上聚集的正电荷生成的电场(未示出)可以帮助减少或消除来自构造件顶部上的粉末层的粉末散射。因为,正电荷被聚集在导电构造件611上,而不是在不导电构造板605上,所以电场可以被集中在构造件中,而不要求构造板是带电的。以此方式,例如,由电压源601生成的电压可以被减小。
作为用于创建电子束的加速电压的电压源603可以被施加至电子束源613,所述电子束可以被偏转器615扫描以熔合粉末。在此情况下,电压源603的正端子是电子束源613的阳极。电压源601也被连接至电子束源613的阳极,使得电压源601被施加在阳极和构造板605之间。以此方式,例如,由电压源601施加的电压可以帮助减少粉末散射和通过对该束进一步加速来增大调制增益以获得较大的束能量。
在各种实施例中,可以以各种形状和构造来形成一个或多个导电延伸部,以将一个或多个构造件连接至电压源。例如,可以通过导电延伸部的晶格连接多个构造件。在各种实施例中,导电延伸部不需要被直接连接在每个构造件与电压源之间。例如,第一导电延伸部可以将第一构造件连接至电压源(例如,直接连接至诸如图6中的导电插头),并且第二导电延伸部可以将第一构造件直接连接至第二构造件。以此方式,例如,第二构造件可以通过第一构造件而被连接至电压源(即,未被直接连接)。
图7示出了由电场导致的示例束误差。电气系统700包括电压源701和电压源703。电压源701的正端子可以通过构造底板707中的开口而被连接至导电构造板705。导电构造板705和构造底板707可以支撑粉末床709和导电构造件711。导电构造板705可以被电连接至导电构造件711,诸如被熔合至该构造件,并且相应地,正电荷可以在构造板上和导电构造件上聚集,以创建类似于图7示例的电场。出于清楚的目的,在图7中未示出电场线。
作为用于创建电子束715的加速电压的电压源703可以被施加至电子束源715,所述电子束715可以被偏转器717扫描以熔合粉末。在此情况下,电压源703的正端子是电子束源713的阳极。电压源701也被连接至电子束源713的阳极,使得电压源701被施加在阳极与构造板705之间。以此方式,例如,由电压源701施加的电压可以帮助减少粉末散射和通过对该束进一步加速来增大调制增益以获得较大的束能量。
在一些情况下,由各种实施例生成的电场可以导致电子束弯曲。在此示例中,电子束715中的电子可以被吸引至带正电的导电构造件711并且可以弯曲。图7示出了零场束719,其表示电子束路径将采取零电场形式击中目标点721。可以根据电场的强度来确定能量束715弯曲的量。因此,偏转器717可以对预估的束弯曲的量进行补偿,并且可以通过以与零场束719不同的方向瞄准电子束来击中目标点721,如图7中所示。
图8示出了包括束补偿系统的电气系统的示例性实施例。如同图7的示例,电气系统800可以包括电压源801和电压源803。作为用于创建电子束815的加速电压的电压源803可以被施加至电子束源813,所述电子束可以被偏转器817扫描以熔合粉末。电压源801可以通过构造底板807中的开口将电压施加在电子束源813的阳极与导电构造板805之间。导电构造板805和构造底板807可以支撑粉末床809和导电构造件811。导电构造板805可以被电连接至导电构造件811,诸如被熔合至构造件,并且相应地,正电荷可以在构造板上和在导电构造件上聚集,以创建类似于图3示例的电场。出于清楚的目的,在图8中未示出电场线。
电气系统800可以包括具有可以是带电的以提供另外的散射减少的附加结构的系统。在此示例中,附加结构可以包括屏蔽件819和屏蔽件820,其可以被连接至电压源801的负端子。负电压可以导致负电荷在屏蔽件819和屏蔽件820上聚集,这可以排斥粉末床809的粉末层中的带负电的粉末颗粒。换言之,附加的带电结构可以创建电场,其导致在带电的粉末颗粒与粉末层之间的力,所述力可以将带电的粉末颗粒朝向粉末层推动。以此方式,例如,带电的粉末颗粒散射可以被进一步减少。在各种实施例中,可以围绕在偏转器与粉末材料支撑结构之间延伸的法向轴对称地布置附加结构。以此方式,例如,电子束815的偏转可以被最小化。在各种实施例中,例如,单个屏蔽件可以包括对称地环绕在偏转器与粉末材料支撑结构之间延伸的法向轴的导电材料的环。恒定电压源可以被施加至所述环。环的形状可以是例如圆形、矩形、圆环等。在各种实施例中,所述环的形状可以模拟粉末床的表面的形状。
图9是减少PBF系统中的粉末散射的方法的示例性实施例的流程图。PBF系统可以在结构上支撑(901)粉末材料层。例如,粉末材料层可以被放置在粉末床和一个或多个构造件的顶部表面上,并且可以由构造板来支撑所述粉末床和所述一个或多个构造件。PBF系统可以生成(902)能量束。例如,PBF系统可以包括电子束源,其可以生成电子束。PBF系统可以扫描(903)该能量束以熔合该粉末材料层中的粉末材料的区域。例如,PBF系统可以包括偏转器,其偏转电子束以跨粉末材料层扫描该束。该能量束可以在电气上使粉末颗粒带电。PBF系统可以在该结构与带电的粉末颗粒之间生成电场。例如,PBF系统可以包括电气系统,其在电子束源与结构(诸如构造底板、构造板、构造件等)施加电压,该电压导致产生将带电的粉末颗粒吸引至粉末材料层的静电力的电场。以此方式,例如,带电粉末散射可以被减少或消除。
提供先前的描述以使本领域的任何技术人员能够实践本文所描述的各种方面。对于本领域技术人员来说,对在整个此公开中呈现的这些示例性实施例的各种修改将是显而易见的。因此,权利要求不旨在被局限于在整个此公开中呈现的示例性实施例,而是要被赋予与语言权利要求相一致的全部范围。本领域普通技术人员已知或以后将知道的在整个此公开中描述的示例性实施例的要素的结构和功能等价物均旨在被权利要求所涵盖。而且,在本文所公开的任何内容都不旨在奉献于公众,不管此类公开是否在权利要求中明确叙述。除非使用短语“用于…的装置”对要素进行明确叙述,或者在方法权利要求的情况下使用短语“用于…的步骤”对要素进行明确叙述,否则,权利要求要素不根据35U.S.C.§112(f)或可适用的司法权中类似的规定进行解释。
Claims (24)
1.一种用于粉末床熔合的装置,包括:
结构,其支撑具有多个粉末颗粒的粉末材料层;
能量束源,其生成能量束;
偏转器,其施加所述能量束来熔合所述层中的粉末材料的区域,其中,所述能量束在电气上使所述粉末颗粒带电;以及
电气系统,其在所述结构与带电的粉末颗粒之间生成电力。
2.根据权利要求1所述的装置,其中,所述电气系统包括将第一电压施加至所述结构的电压源。
3.根据权利要求2所述的装置,还包括与所述偏转器布置在一起的一个或多个附加结构,并且其中,所述电压源被配置为将第二电压施加至所述一个或多个附加结构。
4.根据权利要求1所述的装置,还包括与所述偏转器布置在一起的一个或多个附加结构,并且其中,所述电气系统还包括将电压施加至所述一个或多个附加结构的电压源。
5.根据权利要求4所述的装置,其中,将所述一个或多个附加结构与所述偏转器布置在一起,以减少对所述能量束的影响。
6.根据权利要求4所述的装置,还包括控制系统,其与所述偏转器一起操作以补偿所述一个或多个附加结构对所述能量束的影响。
7.根据权利要求1所述的装置,其中,所述偏转器包括屏蔽件,其被配置为带电的以偏转所述能量束。
8.根据权利要求1所述的装置,其中,所述偏转器被配置为定位地控制所述能量束源,以施加所述能量束来熔合所述粉末材料的区域。
9.一种用于粉末床熔合的装置,包括:
一个或多个结构,其包括粉末材料支撑结构;
能量束源,其被导向所述粉末材料支撑表面;
偏转器,其与所述能量束源可操作地耦合;以及
电压源,其与所述一个或多个结构中的至少一个相连接。
10.根据权利要求9所述的装置,其中,所述电压源与所述粉末材料支撑结构相连接。
11.根据权利要求10所述的装置,其中,所述一个或多个结构还包括至少一个屏蔽件,并且其中,所述电压源还与所述至少一个屏蔽件中的每一个相连接。
12.根据权利要求9所述的装置,其中,所述至少一个或多个结构还包括多个屏蔽件,并且其中,所述电压源与所述屏蔽件中的每一个相连接。
13.根据权利要求12所述的装置,其中,围绕在所述偏转器与所述粉末材料支撑结构之间延伸的法向轴对称地布置所述屏蔽件。
14.根据权利要求12所述的装置,还包括控制系统,其与所述偏转器可操作地耦合,以补偿所述多个屏蔽件对所述能量束的影响。
15.根据权利要求9所述的装置,其中,所述偏转器包括屏蔽件。
16.根据权利要求9所述的装置,其中,所述偏转器被配置为定位地控制所述能量束源。
17.一种粉末床熔合的方法,包括:
在结构上支撑粉末材料层,粉末材料具有多个粉末颗粒;
生成能量束;
扫描所述能量束以熔合所述层中的粉末材料的区域,其中,所述能量束在电气上使所述粉末颗粒带电;以及
在所述结构与带电的粉末颗粒之间生成电力。
18.根据权利要求17所述的方法,其中,所述生成电力包括向所述结构施加第一电压。
19.根据权利要求18所述的方法,还包括向与所述粉末材料层布置在一起的一个或多个附加结构施加第二电压。
20.根据权利要求17所述的方法,还包括向与所述粉末材料层布置在一起的一个或多个附加结构施加电压。
21.根据权利要求20所述的方法,其中,所述一个或多个附加结构与所述粉末材料层布置在一起,以减少对所述能量束的影响。
22.根据权利要求20所述的方法,还包括补偿所述能量束,以补偿所述一个或多个附加结构对所述能量束的影响。
23.根据权利要求17所述的方法,其中,所述能量束的扫描包括偏转所述能量束。
24.根据权利要求17所述的方法,其中,所述能量束的扫描包括定位地控制能量束源。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/582,493 US10898968B2 (en) | 2017-04-28 | 2017-04-28 | Scatter reduction in additive manufacturing |
US15/582,493 | 2017-04-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108788144A true CN108788144A (zh) | 2018-11-13 |
CN108788144B CN108788144B (zh) | 2022-09-20 |
Family
ID=63916366
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820628456.6U Active CN208644069U (zh) | 2017-04-28 | 2018-04-28 | 用于粉末床熔合的装置 |
CN201810399387.0A Active CN108788144B (zh) | 2017-04-28 | 2018-04-28 | 增材制造中的散射减少 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820628456.6U Active CN208644069U (zh) | 2017-04-28 | 2018-04-28 | 用于粉末床熔合的装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10898968B2 (zh) |
EP (1) | EP3615308A4 (zh) |
JP (1) | JP7088960B2 (zh) |
KR (1) | KR102497102B1 (zh) |
CN (2) | CN208644069U (zh) |
WO (1) | WO2018200303A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111266584A (zh) * | 2020-04-14 | 2020-06-12 | 天津清研智束科技有限公司 | 一种增材制造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10898968B2 (en) * | 2017-04-28 | 2021-01-26 | Divergent Technologies, Inc. | Scatter reduction in additive manufacturing |
EP3967474A1 (en) * | 2020-09-14 | 2022-03-16 | The Boeing Company | Additive manufacturing methods and systems for detection and extraction of impurities and production of compositions |
GB2602458B (en) * | 2020-12-22 | 2023-01-18 | Wayland Additive Ltd | Additive manufacturing using powder bed fusion |
US20230106346A1 (en) * | 2021-10-05 | 2023-04-06 | Hamilton Sundstrand Corporation | Additive manufacturing electrostatic powder deposition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103846437A (zh) * | 2012-12-01 | 2014-06-11 | 阿尔斯通技术有限公司 | 通过增材激光制造来制造金属部件的方法 |
CN104903030A (zh) * | 2012-11-30 | 2015-09-09 | 斯奈克玛 | 通过熔化粉末制造部件的方法,该粉末颗粒以冷却状态到达熔池 |
EP2918396A1 (en) * | 2014-03-10 | 2015-09-16 | JEOL Ltd. | Machine and method for additive manufacturing |
CA2961395A1 (en) * | 2014-09-19 | 2016-03-24 | Moog Inc. | Control of laser ablation condensate products within additive manufacturing systems |
CN205310848U (zh) * | 2016-01-29 | 2016-06-15 | 吉林大学 | 一种适用于多材料多工艺3d打印装置 |
CN105665708A (zh) * | 2016-04-07 | 2016-06-15 | 桂林狮达机电技术工程有限公司 | 电子束快速成型机的铺粉装置 |
CN205464331U (zh) * | 2016-04-07 | 2016-08-17 | 桂林狮达机电技术工程有限公司 | 电子束快速成型机的铺粉装置 |
JP6019267B1 (ja) * | 2015-11-13 | 2016-11-02 | 技術研究組合次世代3D積層造形技術総合開発機構 | 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム |
CN208644069U (zh) * | 2017-04-28 | 2019-03-26 | 戴弗根特技术有限公司 | 用于粉末床熔合的装置 |
Family Cites Families (305)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6019267B2 (ja) | 1981-03-14 | 1985-05-15 | 松下電工株式会社 | 電気かみそり |
US5203226A (en) | 1990-04-17 | 1993-04-20 | Toyoda Gosei Co., Ltd. | Steering wheel provided with luminous display device |
DE29507827U1 (de) | 1995-05-16 | 1995-07-20 | Edag Engineering + Design Ag, 36039 Fulda | Zum Zuführen von Schweißbolzen zu einer Schweißpistole bestimmte Zuführvorrichtung |
DE19518175A1 (de) | 1995-05-19 | 1996-11-21 | Edag Eng & Design Ag | Verfahren zum automatischen Einbau eines Bauteils einer Kraftfahrzeugkarosserie |
DE19519643B4 (de) | 1995-05-30 | 2005-09-22 | Edag Engineering + Design Ag | Behälter-Wechselvorrichtung |
US5990444A (en) | 1995-10-30 | 1999-11-23 | Costin; Darryl J. | Laser method and system of scribing graphics |
US6252196B1 (en) | 1996-10-11 | 2001-06-26 | Technolines Llc | Laser method of scribing graphics |
US5742385A (en) | 1996-07-16 | 1998-04-21 | The Boeing Company | Method of airplane interiors assembly using automated rotating laser technology |
WO1998024958A1 (fr) | 1996-12-05 | 1998-06-11 | Teijin Limited | Procede de moulage d'agregats de fibres |
US6010155A (en) | 1996-12-31 | 2000-01-04 | Dana Corporation | Vehicle frame assembly and method for manufacturing same |
US6140602A (en) | 1997-04-29 | 2000-10-31 | Technolines Llc | Marking of fabrics and other materials using a laser |
SE509041C2 (sv) | 1997-10-23 | 1998-11-30 | Ssab Hardtech Ab | Krockskyddsbalk för fordon |
DE19907015A1 (de) | 1999-02-18 | 2000-08-24 | Edag Eng & Design Ag | In Fertigungslinien für Kraftfahrzeuge einsetzbare Spannvorrichtung und Fertigungslinie mit einer solchen Spannvorrichtung |
US6811744B2 (en) | 1999-07-07 | 2004-11-02 | Optomec Design Company | Forming structures from CAD solid models |
US6391251B1 (en) | 1999-07-07 | 2002-05-21 | Optomec Design Company | Forming structures from CAD solid models |
US6468439B1 (en) | 1999-11-01 | 2002-10-22 | Bmc Industries, Inc. | Etching of metallic composite articles |
US6409930B1 (en) | 1999-11-01 | 2002-06-25 | Bmc Industries, Inc. | Lamination of circuit sub-elements while assuring registration |
US6365057B1 (en) | 1999-11-01 | 2002-04-02 | Bmc Industries, Inc. | Circuit manufacturing using etched tri-metal media |
US6318642B1 (en) | 1999-12-22 | 2001-11-20 | Visteon Global Tech., Inc | Nozzle assembly |
US6585151B1 (en) | 2000-05-23 | 2003-07-01 | The Regents Of The University Of Michigan | Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects |
US6919035B1 (en) | 2001-05-18 | 2005-07-19 | Ensci Inc. | Metal oxide coated polymer substrates |
JP3889940B2 (ja) | 2001-06-13 | 2007-03-07 | 株式会社東海理化電機製作所 | 金型装置、金型装置の使用方法、及び金型装置の共用方法 |
DE50207123D1 (de) | 2001-08-31 | 2006-07-20 | Edag Eng & Design Ag | Rollfalzkopf und verfahren zum falzen eines flansches |
ATE463322T1 (de) | 2001-11-02 | 2010-04-15 | Boeing Co | Vorrichtung und verfahren zum herstellen einer schweissverbindung mit muster bildenden restdruckspannungen |
US6644721B1 (en) | 2002-08-30 | 2003-11-11 | Ford Global Technologies, Llc | Vehicle bed assembly |
DE10325906B4 (de) | 2003-06-05 | 2007-03-15 | Erwin Martin Heberer | Vorrichtung zur Abschirmung von kohärenter elektromagnetischer Strahlung sowie Laserkabine mit einer solchen Vorrichtung |
DE102004014662A1 (de) | 2004-03-25 | 2005-10-13 | Audi Ag | Anordnung mit einer Fahrzeug-Sicherung und einem Analog/Digital-Wandler |
US7745293B2 (en) | 2004-06-14 | 2010-06-29 | Semiconductor Energy Laboratory Co., Ltd | Method for manufacturing a thin film transistor including forming impurity regions by diagonal doping |
ATE375830T1 (de) | 2004-09-24 | 2007-11-15 | Edag Eng & Design Ag | Bördelvorrichtung und bördelverfahren mit bauteilschutz |
US20060108783A1 (en) | 2004-11-24 | 2006-05-25 | Chi-Mou Ni | Structural assembly for vehicles and method of making same |
DE102005004474B3 (de) | 2005-01-31 | 2006-08-31 | Edag Engineering + Design Ag | Bördelvorrichtung und Bördelverfahren zum Umlegen eines Bördelstegs eines Bauteils um eine Bördelkante |
DE102005030944B4 (de) | 2005-06-30 | 2007-08-02 | Edag Engineering + Design Ag | Verfahren und Vorrichtung zum Fügen von Fügestrukturen, insbesondere in der Montage von Fahrzeugbauteilen |
WO2007036942A2 (en) | 2005-09-28 | 2007-04-05 | Dip Tech. Ltd. | Ink providing etch-like effect for printing on ceramic surfaces |
US7716802B2 (en) | 2006-01-03 | 2010-05-18 | The Boeing Company | Method for machining using sacrificial supports |
DE102006014279A1 (de) | 2006-03-28 | 2007-10-04 | Edag Engineering + Design Ag | Spannvorrichtung zum Aufnehmen und Spannen von Bauteilen |
DE102006014282A1 (de) | 2006-03-28 | 2007-10-04 | Edag Engineering + Design Ag | Spannvorrichtung zum Aufnehmen und Spannen von Bauteilen |
JP2007292048A (ja) | 2006-03-29 | 2007-11-08 | Yamaha Motor Co Ltd | 鞍乗型車両用排気装置および鞍乗型車両 |
US8599301B2 (en) | 2006-04-17 | 2013-12-03 | Omnivision Technologies, Inc. | Arrayed imaging systems having improved alignment and associated methods |
DE102006021755A1 (de) | 2006-05-10 | 2007-11-15 | Edag Engineering + Design Ag | Energiestrahl-Löten oder -Schweißen von Bauteilen |
JP2007317750A (ja) | 2006-05-23 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 撮像装置 |
DE102006038795A1 (de) | 2006-08-18 | 2008-03-20 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Überwachungsvorrichtung für eine Laserbearbeitungsvorrichtung |
EP1900709B1 (en) | 2006-09-14 | 2010-06-09 | Ibiden Co., Ltd. | Method for manufacturing honeycomb structured body and material composition for honeycomb fired body |
DE202006018552U1 (de) | 2006-12-08 | 2007-02-22 | Edag Engineering + Design Ag | Bördelhandgerät |
US7344186B1 (en) | 2007-01-08 | 2008-03-18 | Ford Global Technologies, Llc | A-pillar structure for an automotive vehicle |
DE102007002856B4 (de) | 2007-01-15 | 2012-02-09 | Edag Gmbh & Co. Kgaa | Vorrichtung zum Bördeln und Schweißen oder Löten von Bauteilen |
EP1949981B1 (en) | 2007-01-18 | 2015-04-29 | Toyota Motor Corporation | Composite of sheet metal parts |
DE202007003110U1 (de) | 2007-03-02 | 2007-08-02 | Edag Engineering + Design Ag | Automobil mit erleichtertem Fahrgastausstieg |
US7710347B2 (en) | 2007-03-13 | 2010-05-04 | Raytheon Company | Methods and apparatus for high performance structures |
DE102007022102B4 (de) | 2007-05-11 | 2014-04-10 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Bördeln von Bauteilen in Serienfertigungen mit kurzen Taktzeiten |
DE202007007838U1 (de) | 2007-06-01 | 2007-09-13 | Edag Engineering + Design Ag | Rollbördelwerkzeug |
US20090014919A1 (en) | 2007-07-13 | 2009-01-15 | Advanced Ceramics Manufacturing Llc | Aggregate-based mandrels for composite part production and composite part production methods |
WO2009014233A1 (ja) | 2007-07-20 | 2009-01-29 | Nippon Steel Corporation | ハイドロフォーム加工方法及びハイドロフォーム加工部品 |
US9626487B2 (en) | 2007-12-21 | 2017-04-18 | Invention Science Fund I, Llc | Security-activated production device |
US9128476B2 (en) | 2007-12-21 | 2015-09-08 | The Invention Science Fund I, Llc | Secure robotic operational system |
US8286236B2 (en) | 2007-12-21 | 2012-10-09 | The Invention Science Fund I, Llc | Manufacturing control system |
US9071436B2 (en) | 2007-12-21 | 2015-06-30 | The Invention Science Fund I, Llc | Security-activated robotic system |
US8429754B2 (en) | 2007-12-21 | 2013-04-23 | The Invention Science Fund I, Llc | Control technique for object production rights |
US8752166B2 (en) | 2007-12-21 | 2014-06-10 | The Invention Science Fund I, Llc | Security-activated operational components |
US9818071B2 (en) | 2007-12-21 | 2017-11-14 | Invention Science Fund I, Llc | Authorization rights for operational components |
DE102008003067B4 (de) | 2008-01-03 | 2013-05-29 | Edag Gmbh & Co. Kgaa | Verfahren und Biegewerkzeug zum Biegen eines Werkstücks |
EP2231352B1 (en) * | 2008-01-03 | 2013-10-16 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US7908922B2 (en) | 2008-01-24 | 2011-03-22 | Delphi Technologies, Inc. | Silicon integrated angular rate sensor |
DE102008008306A1 (de) | 2008-02-07 | 2009-08-13 | Edag Gmbh & Co. Kgaa | Drehtisch |
DE102008013591B4 (de) | 2008-03-11 | 2010-02-18 | Edag Gmbh & Co. Kgaa | Werkzeug, Anlage und Verfahren zur Herstellung eines Kabelbaums |
DE102008047800B4 (de) | 2008-05-09 | 2021-11-18 | Fft Produktionssysteme Gmbh & Co. Kg | Verfahren und Werkzeug zur Herstellung einer Fixierverbindung an formschlüssig gefügten Bauteilen |
EP2279061B1 (de) | 2008-05-21 | 2014-07-16 | FFT EDAG Produktionssysteme GmbH & Co. KG | Spannrahmenloses fügen von bauteilen |
WO2009154484A2 (en) | 2008-06-20 | 2009-12-23 | Business Intelligence Solutions Safe B.V. | Methods, apparatus and systems for data visualization and related applications |
US8383028B2 (en) | 2008-11-13 | 2013-02-26 | The Boeing Company | Method of manufacturing co-molded inserts |
US8452073B2 (en) | 2009-04-08 | 2013-05-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Closed-loop process control for electron beam freeform fabrication and deposition processes |
DE102009018619B4 (de) | 2009-04-27 | 2014-07-17 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Roboterabstützung |
DE102009018618B4 (de) | 2009-04-27 | 2018-09-06 | Fft Produktionssysteme Gmbh & Co. Kg | Spannvorrichtung, Anlage und Verfahren zur Bearbeitung wechselnder Bauteiltypen |
DE102009024344B4 (de) | 2009-06-09 | 2011-02-24 | Edag Gmbh & Co. Kgaa | Verfahren und Werkzeug zum Bördeln eines Werkstücks |
DE202009012432U1 (de) | 2009-09-15 | 2010-01-28 | Edag Gmbh & Co. Kgaa | Karosseriebauteil |
US8354170B1 (en) | 2009-10-06 | 2013-01-15 | Hrl Laboratories, Llc | Elastomeric matrix composites |
US8610761B2 (en) | 2009-11-09 | 2013-12-17 | Prohectionworks, Inc. | Systems and methods for optically projecting three-dimensional text, images and/or symbols onto three-dimensional objects |
US8606540B2 (en) | 2009-11-10 | 2013-12-10 | Projectionworks, Inc. | Hole measurement apparatuses |
US8755923B2 (en) | 2009-12-07 | 2014-06-17 | Engineering Technology Associates, Inc. | Optimization system |
US8686997B2 (en) | 2009-12-18 | 2014-04-01 | Sassault Systemes | Method and system for composing an assembly |
EP2383669B1 (en) | 2010-04-02 | 2018-07-11 | Dassault Systèmes | Design of a part modeled by parallel geodesic curves |
CN103384898A (zh) | 2010-06-21 | 2013-11-06 | 约翰·吉利斯 | 计算机实现的工具箱系统和方法 |
US8289352B2 (en) | 2010-07-15 | 2012-10-16 | HJ Laboratories, LLC | Providing erasable printing with nanoparticles |
US8978535B2 (en) | 2010-08-11 | 2015-03-17 | Massachusetts Institute Of Technology | Articulating protective system for resisting mechanical loads |
EP2799150B1 (en) | 2013-05-02 | 2016-04-27 | Hexagon Technology Center GmbH | Graphical application system |
US9858604B2 (en) | 2010-09-24 | 2018-01-02 | Amazon Technologies, Inc. | Vendor interface for item delivery via 3D manufacturing on demand |
US9684919B2 (en) | 2010-09-24 | 2017-06-20 | Amazon Technologies, Inc. | Item delivery using 3D manufacturing on demand |
US9898776B2 (en) | 2010-09-24 | 2018-02-20 | Amazon Technologies, Inc. | Providing services related to item delivery via 3D manufacturing on demand |
US9672550B2 (en) | 2010-09-24 | 2017-06-06 | Amazon Technologies, Inc. | Fulfillment of orders for items using 3D manufacturing on demand |
US9566758B2 (en) | 2010-10-19 | 2017-02-14 | Massachusetts Institute Of Technology | Digital flexural materials |
US9502993B2 (en) | 2011-02-07 | 2016-11-22 | Ion Geophysical Corporation | Method and apparatus for sensing signals |
EP2495292B1 (de) | 2011-03-04 | 2013-07-24 | FFT EDAG Produktionssysteme GmbH & Co. KG | Fügeflächenvorbehandlungsvorrichtung und Fügeflächenvorbehandlungsverfahren |
GB2489493B (en) * | 2011-03-31 | 2013-03-13 | Norsk Titanium Components As | Method and arrangement for building metallic objects by solid freeform fabrication |
EP2714375A1 (en) | 2011-06-02 | 2014-04-09 | A. Raymond et Cie | Fasteners manufactured by three-dimensional printing |
US9246299B2 (en) | 2011-08-04 | 2016-01-26 | Martin A. Stuart | Slab laser and amplifier |
US9101979B2 (en) | 2011-10-31 | 2015-08-11 | California Institute Of Technology | Methods for fabricating gradient alloy articles with multi-functional properties |
US10011089B2 (en) | 2011-12-31 | 2018-07-03 | The Boeing Company | Method of reinforcement for additive manufacturing |
DE102012101939A1 (de) | 2012-03-08 | 2013-09-12 | Klaus Schwärzler | Verfahren und Vorrichtung zum schichtweisen Aufbau eines Formkörpers |
US9566742B2 (en) | 2012-04-03 | 2017-02-14 | Massachusetts Institute Of Technology | Methods and apparatus for computer-assisted spray foam fabrication |
WO2013173742A1 (en) | 2012-05-18 | 2013-11-21 | 3D Systems, Inc. | Adhesive for 3d printing |
US8873238B2 (en) | 2012-06-11 | 2014-10-28 | The Boeing Company | Chassis system and method for holding and protecting electronic modules |
US9533526B1 (en) | 2012-06-15 | 2017-01-03 | Joel Nevins | Game object advances for the 3D printing entertainment industry |
WO2013192599A1 (en) | 2012-06-21 | 2013-12-27 | Massachusetts Institute Of Technology | Methods and apparatus for digital material skins |
US9672389B1 (en) | 2012-06-26 | 2017-06-06 | The Mathworks, Inc. | Generic human machine interface for a graphical model |
EP2689865B1 (de) | 2012-07-27 | 2016-09-14 | FFT Produktionssysteme GmbH & Co. KG | Bördelpresse |
WO2014019998A1 (en) | 2012-07-30 | 2014-02-06 | Materialise Nv | Systems and methods for forming and utilizing bending maps for object design |
US8437513B1 (en) | 2012-08-10 | 2013-05-07 | EyeVerify LLC | Spoof detection for biometric authentication |
US10029415B2 (en) | 2012-08-16 | 2018-07-24 | Stratasys, Inc. | Print head nozzle for use with additive manufacturing system |
US9389315B2 (en) | 2012-12-19 | 2016-07-12 | Basf Se | Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region |
US9329020B1 (en) | 2013-01-02 | 2016-05-03 | Lockheed Martin Corporation | System, method, and computer program product to provide wireless sensing based on an aggregate magnetic field reading |
US9244986B2 (en) | 2013-01-11 | 2016-01-26 | Buckyball Mobile, Inc. | Method and system for interactive geometric representations, configuration and control of data |
US9609755B2 (en) | 2013-01-17 | 2017-03-28 | Hewlett-Packard Development Company, L.P. | Nanosized particles deposited on shaped surface geometries |
US9626489B2 (en) | 2013-03-13 | 2017-04-18 | Intertrust Technologies Corporation | Object rendering systems and methods |
US20140277669A1 (en) | 2013-03-15 | 2014-09-18 | Sikorsky Aircraft Corporation | Additive topology optimized manufacturing for multi-functional components |
US9764415B2 (en) | 2013-03-15 | 2017-09-19 | The United States Of America As Represented By The Administrator Of Nasa | Height control and deposition measurement for the electron beam free form fabrication (EBF3) process |
US9555580B1 (en) | 2013-03-21 | 2017-01-31 | Temper Ip, Llc. | Friction stir welding fastener |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
EP3725497B1 (en) | 2013-03-22 | 2024-07-03 | Markforged, Inc. | Three-dimensional printer |
WO2014169238A1 (en) | 2013-04-11 | 2014-10-16 | Digimarc Corporation | Methods for object recognition and related arrangements |
KR20160003785A (ko) | 2013-04-26 | 2016-01-11 | 디에스엠 아이피 어셋츠 비.브이. | 분말 코팅 조성물을 위한 비닐 작용성화된 우레탄 수지 |
EP2805800B1 (de) | 2013-05-22 | 2015-09-16 | FFT EDAG Produktionssysteme GmbH & Co. KG | Fügen eines Werkstücks mit versteckter Fügenaht |
ES2541428T3 (es) | 2013-06-07 | 2015-07-20 | Fft Produktionssysteme Gmbh & Co. Kg | Dispositivo para su uso en la manipulación de una carga y procedimiento para fabricar un dispositivo de este tipo |
KR102252336B1 (ko) | 2013-06-13 | 2021-05-14 | 바스프 에스이 | 광학 검출기 및 그의 제조 방법 |
EP2813432B1 (en) | 2013-06-13 | 2017-12-20 | Airbus Operations GmbH | Method of installing a fixture |
KR102246139B1 (ko) | 2013-06-13 | 2021-04-30 | 바스프 에스이 | 적어도 하나의 물체를 광학적으로 검출하기 위한 검출기 |
US9724877B2 (en) | 2013-06-23 | 2017-08-08 | Robert A. Flitsch | Methods and apparatus for mobile additive manufacturing of advanced structures and roadways |
US9688032B2 (en) | 2013-07-01 | 2017-06-27 | GM Global Technology Operations LLC | Thermoplastic component repair |
GB201313840D0 (en) | 2013-08-02 | 2013-09-18 | Rolls Royce Plc | Method of Manufacturing a Component |
GB201313839D0 (en) | 2013-08-02 | 2013-09-18 | Rolls Royce Plc | Method of Manufacturing a Component |
GB201313841D0 (en) | 2013-08-02 | 2013-09-18 | Rolls Royce Plc | Method of Manufacturing a Component |
US9665182B2 (en) | 2013-08-19 | 2017-05-30 | Basf Se | Detector for determining a position of at least one object |
AU2014310703B2 (en) | 2013-08-19 | 2018-09-27 | Basf Se | Optical detector |
US10197338B2 (en) | 2013-08-22 | 2019-02-05 | Kevin Hans Melsheimer | Building system for cascading flows of matter and energy |
US10052820B2 (en) | 2013-09-13 | 2018-08-21 | Made In Space, Inc. | Additive manufacturing of extended structures |
US9248611B2 (en) | 2013-10-07 | 2016-02-02 | David A. Divine | 3-D printed packaging |
US9823143B2 (en) | 2013-10-07 | 2017-11-21 | United Technologies Corporation | Additively grown enhanced impact resistance features for improved structure and joint protection |
US10725451B2 (en) | 2013-10-21 | 2020-07-28 | Made In Space, Inc. | Terrestrial and space-based manufacturing systems |
US10086568B2 (en) | 2013-10-21 | 2018-10-02 | Made In Space, Inc. | Seamless scanning and production devices and methods |
DE102013223407A1 (de) * | 2013-11-15 | 2015-05-21 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts sowie zum Auspacken des fertiggestellten Objekts |
AU2014351882B2 (en) | 2013-11-21 | 2017-11-30 | Covestro (Netherlands) B.V. | Thermosetting powder coating compositions comprising methyl-substituted benzoyl peroxide |
EP3071393A1 (en) | 2013-11-21 | 2016-09-28 | SABIC Global Technologies B.V. | Reduced density article |
WO2015074158A1 (en) | 2013-11-25 | 2015-05-28 | 7D Surgical Inc. | System and method for generating partial surface from volumetric data for registration to surface topology image data |
US9604124B2 (en) | 2013-12-05 | 2017-03-28 | Aaron Benjamin Aders | Technologies for transportation |
US9555315B2 (en) | 2013-12-05 | 2017-01-31 | Aaron Benjamin Aders | Technologies for transportation |
EP2886448B1 (en) | 2013-12-20 | 2017-03-08 | Airbus Operations GmbH | A load bearing element and a method for manufacturing a load bearing element |
TW201527070A (zh) | 2014-01-06 | 2015-07-16 | Prior Company Ltd | 裝飾薄膜及其製造方法以及加飾成型品的製造方法 |
WO2015105024A1 (ja) | 2014-01-10 | 2015-07-16 | 勝義 近藤 | チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法 |
CN106413944B (zh) | 2014-01-24 | 2019-06-14 | 近藤胜义 | 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 |
US9424503B2 (en) | 2014-08-11 | 2016-08-23 | Brian Kieser | Structurally encoded component and method of manufacturing structurally encoded component |
WO2015126329A1 (en) | 2014-02-24 | 2015-08-27 | Singapore University Of Technology And Design | Verification methods and verification devices |
US9782936B2 (en) | 2014-03-01 | 2017-10-10 | Anguleris Technologies, Llc | Method and system for creating composite 3D models for building information modeling (BIM) |
US9817922B2 (en) | 2014-03-01 | 2017-11-14 | Anguleris Technologies, Llc | Method and system for creating 3D models from 2D data for building information modeling (BIM) |
US9703896B2 (en) | 2014-03-11 | 2017-07-11 | Microsoft Technology Licensing, Llc | Generation of custom modular objects |
US10006156B2 (en) | 2014-03-21 | 2018-06-26 | Goodrich Corporation | Systems and methods for calculated tow fiber angle |
US9765226B2 (en) | 2014-03-27 | 2017-09-19 | Disney Enterprises, Inc. | Ultraviolet printing with luminosity control |
US10294982B2 (en) | 2014-03-28 | 2019-05-21 | The Boeing Company | Systems, methods, and apparatus for supported shafts |
KR101588762B1 (ko) | 2014-04-09 | 2016-01-26 | 현대자동차 주식회사 | 차체 전방 구조물 |
US10018576B2 (en) | 2014-04-09 | 2018-07-10 | Texas Instruments Incorporated | Material detection and analysis using a dielectric waveguide |
US9597843B2 (en) | 2014-05-15 | 2017-03-21 | The Boeing Company | Method and apparatus for layup tooling |
JP6675325B2 (ja) | 2014-05-16 | 2020-04-01 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | 車両用シャーシ用のモジュール式に形成されたノード及びそれらの使用方法 |
US9643361B2 (en) | 2014-05-27 | 2017-05-09 | Jian Liu | Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser |
US10074128B2 (en) | 2014-06-08 | 2018-09-11 | Shay C. Colson | Pre-purchase mechanism for autonomous vehicles |
DE202014102800U1 (de) | 2014-06-17 | 2014-06-27 | Fft Produktionssysteme Gmbh & Co. Kg | Segmentierte Bauteilauflage |
KR101795994B1 (ko) | 2014-06-20 | 2017-12-01 | 벨로3디, 인크. | 3차원 프린팅 장치, 시스템 및 방법 |
SG11201700024UA (en) | 2014-07-09 | 2017-02-27 | Applied Materials Inc | Layerwise heating, linewise heating, plasma heating and multiple feed materials in additive manufacturing |
CN111746446B (zh) | 2014-07-25 | 2023-10-10 | 沙特基础工业全球技术有限公司 | 可压碎聚合物纵梁延伸件、系统及其制作和使用方法 |
EP3177863B1 (en) | 2014-08-04 | 2023-10-11 | Washington State University | Vapor cooled shielding liner for cryogenic storage in composite pressure vessels |
US9783324B2 (en) | 2014-08-26 | 2017-10-10 | The Boeing Company | Vessel insulation assembly |
JP5688669B1 (ja) | 2014-09-09 | 2015-03-25 | グラフェンプラットフォーム株式会社 | グラフェン前駆体として用いられる黒鉛系炭素素材、これを含有するグラフェン分散液及びグラフェン複合体並びにこれを製造する方法 |
US9696238B2 (en) | 2014-09-16 | 2017-07-04 | The Boeing Company | Systems and methods for icing flight tests |
JP5917636B2 (ja) * | 2014-09-17 | 2016-05-18 | 株式会社東芝 | 積層造形装置の材料供給装置、積層造形装置、及び材料供給方法 |
MX2017003309A (es) | 2014-09-24 | 2017-06-23 | Holland Lp | Conector de rejilla y aparato, sistema separador y metodos de uso de los mismos. |
US10285219B2 (en) | 2014-09-25 | 2019-05-07 | Aurora Flight Sciences Corporation | Electrical curing of composite structures |
US9854828B2 (en) | 2014-09-29 | 2018-01-02 | William Langeland | Method, system and apparatus for creating 3D-printed edible objects |
US10081140B2 (en) | 2014-10-29 | 2018-09-25 | The Boeing Company | Apparatus for and method of compaction of a prepreg |
US10108766B2 (en) | 2014-11-05 | 2018-10-23 | The Boeing Company | Methods and apparatus for analyzing fatigue of a structure and optimizing a characteristic of the structure based on the fatigue analysis |
EP3018051A1 (en) | 2014-11-06 | 2016-05-11 | Airbus Operations GmbH | Structural component and method for producing a structural component |
US10022792B2 (en) | 2014-11-13 | 2018-07-17 | The Indian Institute of Technology | Process of dough forming of polymer-metal blend suitable for shape forming |
EP3218248B1 (en) | 2014-11-13 | 2019-01-09 | SABIC Global Technologies B.V. | Drag reducing aerodynamic vehicle components and methods of making the same |
US10016852B2 (en) | 2014-11-13 | 2018-07-10 | The Boeing Company | Apparatuses and methods for additive manufacturing |
US9915527B2 (en) | 2014-11-17 | 2018-03-13 | The Boeing Company | Detachable protective coverings and protection methods |
DE102014116938A1 (de) | 2014-11-19 | 2016-05-19 | Airbus Operations Gmbh | Herstellung von Komponenten eines Fahrzeugs unter Anwendung von Additive Layer Manufacturing |
US9600929B1 (en) | 2014-12-01 | 2017-03-21 | Ngrain (Canada) Corporation | System, computer-readable medium and method for 3D-differencing of 3D voxel models |
US9595795B2 (en) | 2014-12-09 | 2017-03-14 | Te Connectivity Corporation | Header assembly |
DE102014225488A1 (de) | 2014-12-10 | 2016-06-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Polymerzusammensetzung mit verzögertem Kristallisationsverhalten, das Kristallisationsverhalten beeinflussende Additivzusammensetzung, Verfahren zur Herabsetzung des Kristallisationspunktes sowie Verwendung einer Additivzusammensetzung |
US10160278B2 (en) | 2014-12-16 | 2018-12-25 | Aktv8 LLC | System and method for vehicle stabilization |
US9789922B2 (en) | 2014-12-18 | 2017-10-17 | The Braun Corporation | Modified door opening of a motorized vehicle for accommodating a ramp system and method thereof |
US9486960B2 (en) | 2014-12-19 | 2016-11-08 | Palo Alto Research Center Incorporated | System for digital fabrication of graded, hierarchical material structures |
US9821339B2 (en) | 2014-12-19 | 2017-11-21 | Palo Alto Research Center Incorporated | System and method for digital fabrication of graded, hierarchical material structures |
US9854227B2 (en) | 2015-01-08 | 2017-12-26 | David G Grossman | Depth sensor |
DE102015100659B4 (de) | 2015-01-19 | 2023-01-05 | Fft Produktionssysteme Gmbh & Co. Kg | Bördelsystem, Bördeleinheit und Bördelverfahren für ein autarkes Bördeln |
US9718434B2 (en) | 2015-01-21 | 2017-08-01 | GM Global Technology Operations LLC | Tunable energy absorbers |
GB2534582A (en) | 2015-01-28 | 2016-08-03 | Jaguar Land Rover Ltd | An impact energy absorbing device for a vehicle |
US10449737B2 (en) | 2015-03-04 | 2019-10-22 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US9616623B2 (en) | 2015-03-04 | 2017-04-11 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US10124546B2 (en) | 2015-03-04 | 2018-11-13 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US9731773B2 (en) | 2015-03-11 | 2017-08-15 | Caterpillar Inc. | Node for a space frame |
EP3271419B1 (en) | 2015-03-16 | 2022-08-03 | SHPP Global Technologies B.V. | Fibrillated polymer compositions and methods of their manufacture |
US10065367B2 (en) | 2015-03-20 | 2018-09-04 | Chevron Phillips Chemical Company Lp | Phonon generation in bulk material for manufacturing |
US10040239B2 (en) | 2015-03-20 | 2018-08-07 | Chevron Phillips Chemical Company Lp | System and method for writing an article of manufacture into bulk material |
US9611667B2 (en) | 2015-05-05 | 2017-04-04 | West Virginia University | Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members |
WO2016179441A1 (en) | 2015-05-07 | 2016-11-10 | Massachusetts Institute Of Technology | Digital material assembly by passive means and modular isotropic lattice extruder system (miles) |
EP3090948A1 (en) | 2015-05-08 | 2016-11-09 | Raymond R M Wang | Airflow modification apparatus and method |
US9481402B1 (en) | 2015-05-26 | 2016-11-01 | Honda Motor Co., Ltd. | Methods and apparatus for supporting vehicle components |
US9796137B2 (en) | 2015-06-08 | 2017-10-24 | The Boeing Company | Additive manufacturing methods |
US9963978B2 (en) | 2015-06-09 | 2018-05-08 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
WO2016205719A1 (en) * | 2015-06-19 | 2016-12-22 | Applied Materials, Inc. | Additive manufacturing with electrostatic compaction |
US10166752B2 (en) | 2015-07-31 | 2019-01-01 | The Boeing Company | Methods for additively manufacturing composite parts |
US10343355B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
US10232550B2 (en) | 2015-07-31 | 2019-03-19 | The Boeing Company | Systems for additively manufacturing composite parts |
US10289875B2 (en) | 2015-07-31 | 2019-05-14 | Portland State University | Embedding data on objects using surface modulation |
US10201941B2 (en) | 2015-07-31 | 2019-02-12 | The Boeing Company | Systems for additively manufacturing composite parts |
US10343330B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
CN107922014B (zh) | 2015-08-14 | 2020-11-27 | 斯克拉佩阿莫尔股份有限公司 | 运载工具保护设备 |
EP3135442B1 (en) | 2015-08-26 | 2018-12-19 | Airbus Operations GmbH | Robot system and method of operating a robot system |
EP3135566B1 (de) | 2015-08-28 | 2020-11-25 | EDAG Engineering GmbH | Fahrzeugleichtbaustruktur in flexibler fertigung |
US9789548B2 (en) | 2015-08-31 | 2017-10-17 | The Boeing Company | Geodesic structure forming systems and methods |
US9957031B2 (en) | 2015-08-31 | 2018-05-01 | The Boeing Company | Systems and methods for manufacturing a tubular structure |
DE202015104709U1 (de) | 2015-09-04 | 2015-10-13 | Edag Engineering Gmbh | Mobile Kommunikationseinrichtung und Softwarecode sowie Verkehrsentität |
US9590699B1 (en) | 2015-09-11 | 2017-03-07 | Texas Instuments Incorporated | Guided near field communication for short range data communication |
WO2017046121A1 (en) | 2015-09-14 | 2017-03-23 | Trinamix Gmbh | 3d camera |
US9718302B2 (en) | 2015-09-22 | 2017-08-01 | The Boeing Company | Decorative laminate with non-visible light activated material and system and method for using the same |
GB201517188D0 (en) | 2015-09-29 | 2015-11-11 | Renishaw Plc | Additive manufacturing apparatus and methods |
CN108368469A (zh) | 2015-10-07 | 2018-08-03 | 加利福尼亚大学校董会 | 石墨烯系多模态传感器 |
EP3360118B1 (en) | 2015-10-07 | 2021-03-31 | Michael D. Velez | Flow alarm |
DE202015105595U1 (de) | 2015-10-21 | 2016-01-14 | Fft Produktionssysteme Gmbh & Co. Kg | Absolutes robotergestütztes Positionsverfahren |
US9676145B2 (en) | 2015-11-06 | 2017-06-13 | Velo3D, Inc. | Adept three-dimensional printing |
US10022912B2 (en) | 2015-11-13 | 2018-07-17 | GM Global Technology Operations LLC | Additive manufacturing of a unibody vehicle |
US9846933B2 (en) | 2015-11-16 | 2017-12-19 | General Electric Company | Systems and methods for monitoring components |
US10048769B2 (en) | 2015-11-18 | 2018-08-14 | Ted Selker | Three-dimensional computer-aided-design system user interface |
WO2017087036A1 (en) | 2015-11-20 | 2017-05-26 | University Of South Florida | Shape-morphing space frame apparatus using unit cell bistable elements |
JP2018537596A (ja) | 2015-11-21 | 2018-12-20 | エーティーエス エムイーアール,エルエルシー | 固体基材の表面上に層を形成するためのシステムおよび方法ならびにこれにより形成される生成物 |
US10436038B2 (en) | 2015-12-07 | 2019-10-08 | General Electric Company | Turbine engine with an airfoil having a tip shelf outlet |
WO2017100695A1 (en) | 2015-12-10 | 2017-06-15 | Velo3D, Inc. | Skillful three-dimensional printing |
JP6797642B2 (ja) | 2015-12-10 | 2020-12-09 | キヤノン株式会社 | 原料粉体の処理方法、および三次元造形物の製造方法 |
US10343331B2 (en) | 2015-12-22 | 2019-07-09 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
US10350823B2 (en) | 2015-12-22 | 2019-07-16 | Carbon, Inc. | Dual precursor resin systems for additive manufacturing with dual cure resins |
US10289263B2 (en) | 2016-01-08 | 2019-05-14 | The Boeing Company | Data acquisition and encoding process linking physical objects with virtual data for manufacturing, inspection, maintenance and repair |
US10294552B2 (en) | 2016-01-27 | 2019-05-21 | GM Global Technology Operations LLC | Rapidly solidified high-temperature aluminum iron silicon alloys |
US10339266B2 (en) | 2016-02-16 | 2019-07-02 | Board Of Regents Of The University Of Texas Systems | Mechanisms for constructing spline surfaces to provide inter-surface continuity |
US20170239719A1 (en) | 2016-02-18 | 2017-08-24 | Velo3D, Inc. | Accurate three-dimensional printing |
US10336050B2 (en) | 2016-03-07 | 2019-07-02 | Thermwood Corporation | Apparatus and methods for fabricating components |
US9976063B2 (en) | 2016-03-11 | 2018-05-22 | The Boeing Company | Polyarylether ketone imide sulfone adhesives |
US10011685B2 (en) | 2016-03-11 | 2018-07-03 | The Boeing Company | Polyarylether ketone imide adhesives |
EP3248717B1 (en) | 2016-03-25 | 2020-09-02 | Technology Research Association for Future Additive Manufacturing | 3d additive manufacturing device, control method for 3d additive manufacturing device, and control program for 3d additive manufacturing device |
US10234342B2 (en) | 2016-04-04 | 2019-03-19 | Xerox Corporation | 3D printed conductive compositions anticipating or indicating structural compromise |
WO2017184778A1 (en) | 2016-04-20 | 2017-10-26 | Arconic Inc. | Fcc materials of aluminum, cobalt and nickel, and products made therefrom |
CA3016761A1 (en) | 2016-04-20 | 2017-10-26 | Arconic Inc. | Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom |
US10393315B2 (en) | 2016-04-26 | 2019-08-27 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
CN113001987B (zh) | 2016-05-24 | 2023-12-26 | 戴弗根特技术有限公司 | 用于运输结构的增材制造的系统和方法 |
EP3248758B1 (en) | 2016-05-24 | 2021-02-17 | Airbus Operations GmbH | System and method for handling a component |
US10384393B2 (en) | 2016-05-27 | 2019-08-20 | Florida State University Research Foundation, Inc. | Polymeric ceramic precursors, apparatuses, systems, and methods |
JP2019527138A (ja) | 2016-06-09 | 2019-09-26 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | アークおよびノードの設計ならびに製作のためのシステムおよび方法 |
US10275564B2 (en) | 2016-06-17 | 2019-04-30 | The Boeing Company | System for analysis of a repair for a structure |
US10286452B2 (en) | 2016-06-29 | 2019-05-14 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
WO2018027166A2 (en) | 2016-08-04 | 2018-02-08 | The Regents Of The University Of Michigan | Fiber-reinforced 3d printing |
US10254499B1 (en) | 2016-08-05 | 2019-04-09 | Southern Methodist University | Additive manufacturing of active devices using dielectric, conductive and magnetic materials |
US9933092B2 (en) | 2016-08-18 | 2018-04-03 | Deflecto, LLC | Tubular structures and knurling systems and methods of manufacture and use thereof |
US10359756B2 (en) | 2016-08-23 | 2019-07-23 | Echostar Technologies Llc | Dynamic 3D object recognition and printing |
US10179640B2 (en) | 2016-08-24 | 2019-01-15 | The Boeing Company | Wing and method of manufacturing |
US10220881B2 (en) | 2016-08-26 | 2019-03-05 | Ford Global Technologies, Llc | Cellular structures with fourteen-cornered cells |
US10392131B2 (en) | 2016-08-26 | 2019-08-27 | The Boeing Company | Additive manufactured tool assembly |
US10291193B2 (en) | 2016-09-02 | 2019-05-14 | Texas Instruments Incorporated | Combining power amplifiers at millimeter wave frequencies |
US10429006B2 (en) | 2016-10-12 | 2019-10-01 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
US10214248B2 (en) | 2016-11-14 | 2019-02-26 | Hall Labs Llc | Tripartite support mechanism for frame-mounted vehicle components |
US9879981B1 (en) | 2016-12-02 | 2018-01-30 | General Electric Company | Systems and methods for evaluating component strain |
US10015908B2 (en) | 2016-12-07 | 2018-07-03 | The Boeing Company | System and method for cryogenic cooling of electromagnetic induction filter |
US10210662B2 (en) | 2016-12-09 | 2019-02-19 | Fyusion, Inc. | Live augmented reality using tracking |
US9996945B1 (en) | 2016-12-12 | 2018-06-12 | Fyusion, Inc. | Live augmented reality guides |
US10017384B1 (en) | 2017-01-06 | 2018-07-10 | Nanoclear Technologies Inc. | Property control of multifunctional surfaces |
DE102017200191A1 (de) | 2017-01-09 | 2018-07-12 | Ford Global Technologies, Llc | Glätten einer aus einem Kunststoff gebildeten Oberfläche eines Artikels |
US10071525B2 (en) | 2017-02-07 | 2018-09-11 | Thermwood Corporation | Apparatus and method for printing long composite thermoplastic parts on a dual gantry machine during additive manufacturing |
US10392097B2 (en) | 2017-02-16 | 2019-08-27 | The Boeing Company | Efficient sub-structures |
US10087320B2 (en) | 2017-02-17 | 2018-10-02 | Polydrop, Llc | Conductive polymer-matrix compositions and uses thereof |
US10337542B2 (en) | 2017-02-28 | 2019-07-02 | The Boeing Company | Curtain retention bracket |
US20180250745A1 (en) | 2017-03-02 | 2018-09-06 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10356395B2 (en) | 2017-03-03 | 2019-07-16 | Fyusion, Inc. | Tilts as a measure of user engagement for multiview digital media representations |
US10068316B1 (en) | 2017-03-03 | 2018-09-04 | Fyusion, Inc. | Tilts as a measure of user engagement for multiview digital media representations |
US10343725B2 (en) | 2017-03-03 | 2019-07-09 | GM Global Technology Operations LLC | Automotive structural component and method of manufacture |
US10440351B2 (en) | 2017-03-03 | 2019-10-08 | Fyusion, Inc. | Tilts as a measure of user engagement for multiview interactive digital media representations |
US20180281282A1 (en) | 2017-03-28 | 2018-10-04 | Velo3D, Inc. | Material manipulation in three-dimensional printing |
US10178800B2 (en) | 2017-03-30 | 2019-01-08 | Honeywell International Inc. | Support structure for electronics having fluid passageway for convective heat transfer |
WO2018187611A1 (en) | 2017-04-05 | 2018-10-11 | Aerion Intellectual Property Management Corporation | Solid modeler that provides spatial gradients of 3d cad models of solid objects |
US10237477B2 (en) | 2017-05-22 | 2019-03-19 | Fyusion, Inc. | Loop closure |
US10313651B2 (en) | 2017-05-22 | 2019-06-04 | Fyusion, Inc. | Snapshots at predefined intervals or angles |
US10200677B2 (en) | 2017-05-22 | 2019-02-05 | Fyusion, Inc. | Inertial measurement unit progress estimation |
US10343724B2 (en) | 2017-06-02 | 2019-07-09 | Gm Global Technology Operations Llc. | System and method for fabricating structures |
US10221530B2 (en) | 2017-06-12 | 2019-03-05 | Driskell Holdings, LLC | Directional surface marking safety and guidance devices and systems |
US10391710B2 (en) | 2017-06-27 | 2019-08-27 | Arevo, Inc. | Deposition of non-uniform non-overlapping curvilinear segments of anisotropic filament to form non-uniform layers |
US10425793B2 (en) | 2017-06-29 | 2019-09-24 | Texas Instruments Incorporated | Staggered back-to-back launch topology with diagonal waveguides for field confined near field communication system |
US10389410B2 (en) | 2017-06-29 | 2019-08-20 | Texas Instruments Incorporated | Integrated artificial magnetic launch surface for near field communication system |
US10461810B2 (en) | 2017-06-29 | 2019-10-29 | Texas Instruments Incorporated | Launch topology for field confined near field communication system |
US10171578B1 (en) | 2017-06-29 | 2019-01-01 | Texas Instruments Incorporated | Tapered coax launch structure for a near field communication system |
US10572963B1 (en) | 2017-07-14 | 2020-02-25 | Synapse Technology Corporation | Detection of items |
DE202017104785U1 (de) | 2017-08-09 | 2017-09-07 | Edag Engineering Gmbh | Lager für Fahrerhaus eines Fahrzeugs |
DE202017105281U1 (de) | 2017-09-01 | 2017-09-11 | Fft Produktionssysteme Gmbh & Co. Kg | Fahrwagen zum Befördern und Positionieren eines Flugzeugbauteils |
DE102017120384B4 (de) | 2017-09-05 | 2023-03-16 | Fft Produktionssysteme Gmbh & Co. Kg | Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 |
DE102017120422B4 (de) | 2017-09-05 | 2020-07-23 | Edag Engineering Gmbh | Schwenkgelenk mit zusätzlichem Freiheitsgrad |
DE202017105475U1 (de) | 2017-09-08 | 2018-12-12 | Edag Engineering Gmbh | Generativ gefertigte Batteriehalterung |
DE202017105474U1 (de) | 2017-09-08 | 2018-12-14 | Edag Engineering Gmbh | Materialoptimierter Verbindungsknoten |
US10421496B2 (en) | 2017-09-15 | 2019-09-24 | Honda Motor Co., Ltd. | Panoramic roof stiffener reinforcement |
US10356341B2 (en) | 2017-10-13 | 2019-07-16 | Fyusion, Inc. | Skeleton-based effects and background replacement |
US10382739B1 (en) | 2018-04-26 | 2019-08-13 | Fyusion, Inc. | Visual annotation using tagging sessions |
US10310197B1 (en) | 2018-09-17 | 2019-06-04 | Waymo Llc | Transmitter devices having bridge structures |
-
2017
- 2017-04-28 US US15/582,493 patent/US10898968B2/en active Active
-
2018
- 2018-04-19 WO PCT/US2018/028332 patent/WO2018200303A1/en active Application Filing
- 2018-04-19 KR KR1020197034288A patent/KR102497102B1/ko active IP Right Grant
- 2018-04-19 EP EP18791416.3A patent/EP3615308A4/en active Pending
- 2018-04-19 JP JP2019558759A patent/JP7088960B2/ja active Active
- 2018-04-28 CN CN201820628456.6U patent/CN208644069U/zh active Active
- 2018-04-28 CN CN201810399387.0A patent/CN108788144B/zh active Active
-
2020
- 2020-12-17 US US17/125,796 patent/US20210170517A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104903030A (zh) * | 2012-11-30 | 2015-09-09 | 斯奈克玛 | 通过熔化粉末制造部件的方法,该粉末颗粒以冷却状态到达熔池 |
CN103846437A (zh) * | 2012-12-01 | 2014-06-11 | 阿尔斯通技术有限公司 | 通过增材激光制造来制造金属部件的方法 |
EP2918396A1 (en) * | 2014-03-10 | 2015-09-16 | JEOL Ltd. | Machine and method for additive manufacturing |
CA2961395A1 (en) * | 2014-09-19 | 2016-03-24 | Moog Inc. | Control of laser ablation condensate products within additive manufacturing systems |
JP6019267B1 (ja) * | 2015-11-13 | 2016-11-02 | 技術研究組合次世代3D積層造形技術総合開発機構 | 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム |
CN205310848U (zh) * | 2016-01-29 | 2016-06-15 | 吉林大学 | 一种适用于多材料多工艺3d打印装置 |
CN105665708A (zh) * | 2016-04-07 | 2016-06-15 | 桂林狮达机电技术工程有限公司 | 电子束快速成型机的铺粉装置 |
CN205464331U (zh) * | 2016-04-07 | 2016-08-17 | 桂林狮达机电技术工程有限公司 | 电子束快速成型机的铺粉装置 |
CN208644069U (zh) * | 2017-04-28 | 2019-03-26 | 戴弗根特技术有限公司 | 用于粉末床熔合的装置 |
Non-Patent Citations (1)
Title |
---|
PEEYUSH NANDWANA等: "Recyclability Study on Inconel 718 and Ti-6Al-4V", 《METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111266584A (zh) * | 2020-04-14 | 2020-06-12 | 天津清研智束科技有限公司 | 一种增材制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US10898968B2 (en) | 2021-01-26 |
CN208644069U (zh) | 2019-03-26 |
KR102497102B1 (ko) | 2023-02-06 |
CN108788144B (zh) | 2022-09-20 |
US20180311758A1 (en) | 2018-11-01 |
EP3615308A4 (en) | 2020-11-18 |
WO2018200303A1 (en) | 2018-11-01 |
EP3615308A1 (en) | 2020-03-04 |
JP2020518723A (ja) | 2020-06-25 |
JP7088960B2 (ja) | 2022-06-21 |
KR20190136088A (ko) | 2019-12-09 |
US20210170517A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN208644069U (zh) | 用于粉末床熔合的装置 | |
CN110301027B (zh) | 关于使用带电粒子束的添加层制造的改进 | |
JP4504344B2 (ja) | X線源 | |
EP2911181B1 (en) | Method of controlling an electron gun and electron beam additive manufacturing machine | |
JP4685115B2 (ja) | 電子ビーム露光方法 | |
JPS59501604A (ja) | 底電圧電界放出電子銃 | |
US9099280B2 (en) | X-ray tube and method of controlling X-ray focal spot using the same | |
WO2000019482A1 (fr) | Microscope electronique a balayage | |
JP2006286264A (ja) | マイクロフォーカスx線管 | |
JP4052731B2 (ja) | 電子銃 | |
CN111957959A (zh) | 一种电子束增材制造装置及方法 | |
JPH0211972B2 (zh) | ||
EP3226277A1 (en) | Angled flat emitter for high power cathode with electrostatic emission control | |
US2914696A (en) | Electron beam device | |
JPS63266733A (ja) | 撮像管システムとその電子銃 | |
JP2005190757A (ja) | X線発生装置 | |
CN101877298B (zh) | 显示板、显示装置、电视装置以及制造该显示板的方法 | |
US20240321542A1 (en) | X-ray generation device | |
KR100349901B1 (ko) | 칼라 음극선관용 전자총 | |
TW202244970A (zh) | 閘化場發射陰極裝置能量調諧器及相關方法 | |
Herbert | The Cathode-Ray Tube | |
JP2023545683A (ja) | 電界放出陰極装置および電界放出陰極装置の形成方法 | |
JP3247159B2 (ja) | 電子線加熱蒸着装置 | |
JPS59203353A (ja) | 電子ビ−ム発生装置 | |
JPH1197332A (ja) | 電子銃 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |