CN106413944B - 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 - Google Patents

固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 Download PDF

Info

Publication number
CN106413944B
CN106413944B CN201480073907.9A CN201480073907A CN106413944B CN 106413944 B CN106413944 B CN 106413944B CN 201480073907 A CN201480073907 A CN 201480073907A CN 106413944 B CN106413944 B CN 106413944B
Authority
CN
China
Prior art keywords
nitrogen
titanium
powder
powder material
titanium valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480073907.9A
Other languages
English (en)
Other versions
CN106413944A (zh
Inventor
近藤胜义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hi Lex Corp
Original Assignee
Hi Lex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hi Lex Corp filed Critical Hi Lex Corp
Publication of CN106413944A publication Critical patent/CN106413944A/zh
Application granted granted Critical
Publication of CN106413944B publication Critical patent/CN106413944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

固溶有氮的钛粉末材料的制造方法以将由钛粉末粒子构成的钛粉末材料在含氮的气氛下加热并使氮原子固溶于钛粉末粒子的基质中为特征。

Description

固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的 制备方法
技术领域
本发明涉及一种钛粉末材料以及钛材,特别涉及一种固溶了氮的高强度钛粉末材料、钛材以及其制备方法。
背景技术
钛是有着钢的大约1/2的低比重的轻量原材,具有耐腐蚀性和高强度优异的特征,因此,被利用于对轻量化有较高需求的飞机、铁路车辆、二轮车辆、汽车等的部件、家电产品或建筑用构件。另外,从优秀的耐腐蚀性的观点出发,也作为医疗用原材使用。
但是,与钢铁材料或铝合金相比,由于钛的材料成本较高,因此,其使用对象受到了限制。特别是钛合金虽然具有超出1000MPa的较高的抗拉强度,但其存在没有充分的延展性(断裂伸长率)、以及缺少在常温或低温范围内的塑性加工性的问题。另一方面,纯钛在常温下具有超出25%的较高的断裂伸长率,并且在低温范围内具有优异的塑性加工性,但其存在抗拉强度为较低的400~600MPa左右的问题。
由于对钛的高强度和高延展性的兼顾、以及材料成本的降低的要求十分强烈,因此进行了各种研究。特别是从低成本化的观点出发,作为现有技术,多数研究了基于氧、氮这样比较廉价的元素而不是钒、钪、铌等高价的元素进行的高强度化。
例如,在日本金属学会会刊第72卷第12号(2008)949-954页(非专利文献1)记载了以《氮对钛的拉伸变形行为及变形组织发展的影响》为题、利用氮作为钛合金的合金元素的技术。具体来说,记载了以下内容,即,称量海绵钛以及钛粉末,使其成为规定的组成,通过电弧溶解制备具有各种氮浓度的Ti-N合金。在这种情况下,当氮原子均匀地固溶于Ti的基质中,则能够实现高强度和高延展性的兼顾。
作为其他方法,还有向Ti熔融金属添加TiN粒子、在其凝固时使氮原子向Ti的基质中固溶的技术。在这种情况下,当氮原子均匀地固溶于Ti的基质中,则能够实现高强度和高延展性的兼顾。
现有技术文献
非专利文献
非专利文献1:日本金属学会会刊第72卷第12号(2008)949-954页
发明内容
发明要解决的技术问题
在现有的溶解制法(特别是向Ti熔融金属添加TiN粒子的方法)中,由于氮原子的扩散显著,氮原子在熔融金属的上部稠化,其结果,氮难以在大型铸块(ingot)中的均匀分散,延展性显著降低。
本发明的目的在于提供一种能够使氮原子均匀地扩散且固溶在Ti粉末粒子的基质中的固溶有氮的钛粉末材料的制备方法。
本发明的其他目的在于提供一种通过使氮原子均匀地扩散且固溶于Ti粉末粒子的基质中、而兼具高强度和高延展性的钛粉末材料以及钛材。
解决技术问题的手段
根据本发明的固溶有氮的钛粉末材料的制备方法,其特征在于,在含氮的气氛中加热由钛粉末粒子构成的钛粉末材料并使氮原子固溶于所述钛粉末粒子的基质中。使所述氮原子固溶于钛粉末粒子的基质中的加热温度优选为400℃以上且800℃以下。
在通过上述方法制备的固溶有氮的钛粉末材料中,优选各钛粉末粒子的含氮量在质量基准下为0.1%~0.65%。另外,为了便于参考,在日本工业规格(JIS)中规定的4种纯钛的含氮量如下。
JIS H 4600 1种:0.03质量%以下
JIS H 4600 2种:0.03质量%以下
JIS H 4600 3种:0.05质量%以下
JIS H 4600 4种:0.05质量%以下
钛材是通过使上述固溶有氮的钛粉末材料形成规定的形状的原材。在一实施形态中,钛材为纯Ti粉末挤出材,相对于挤出材整体的含氮量在质量基准下为0.1%~0.65%,断裂伸长率为10%以上。
作为使固溶有氮的钛粉末材料固化并形成钛材的方法,例如有压粉成形·烧结、热挤出加工、热轧加工、喷镀、金属注塑成型、粉末层叠造型等。
通过下述的内容说明上述特征的作用效果和技术性意义。
附图说明
图1是示意地表示本发明的特征的图;
图2是表示通过差热热重分析装置的测定数据的图;
图3是表示进行了氮固溶化热处理时的Ti衍射峰的变化的图;
图4是表示通过结晶取向解析(SEM-EBSD)的测定结果的图;
图5是表示应力和应变之间关系的图;
图6是表示热处理的时间、氮量以及氧量之间关系的图;
图7是表示含氮量和显微维氏硬度Hv之间关系的图;
图8是表示氧气流量比率、氮量以及氧量之间关系的图。
具体实施方式
图1是示意地表示本发明的特征的图。首先,利用图1说明本发明的概要,之后再说明详细的数据等。
[准备钛粉末材料]
准备由大量的钛粉末粒子构成的钛粉末材料。在这里,“钛粉末粒子”可以是纯钛粉末粒子或钛合金粉末粒子的任意一者。
[固溶化热处理]
通过在含氮的气氛中加热并保持由钛粉末粒子构成的钛粉末材料,使氮原子均匀地向各钛粉末粒子的基质中扩散并固溶,得到作为最终目标的固溶有氮的钛粉末材料。
加热条件例如为下述。
加热气氛:100vol.%N2气体
气体流量:5L/min.
加热温度:400~600℃
保持时间:1~2hr.
通过上述固溶化热处理,氮原子均匀地扩散并固溶至各钛粉末粒子的基质中。在上述加热过程中,由于不会发生钛粉末之间的烧结现象,因此,也可以使用管状式加热炉(非旋转式)或旋转式回转窑炉的任意一者。
按照上述那样得到的固溶有氮的钛粉末材料的固化,可以利用例如压粉成形·烧结、热挤出加工、热轧加工、喷镀、金属注塑成型、粉末层叠造型等。
[通过差热热重分析装置(TG-DTA)验证]
向炉内投入纯Ti原料粉末,以150mL/min.的流量流入氮气,在该状态下使温度从常温上升至800℃(1073K),这时,能够确认重量从400℃(673K)附近开始增加,之后,伴随着温度的上升,重量显著增加。其结果如图2所示。在图2中,TG(Thermogravimetry)表示重量变化,DTA(Differential Thermal Analysis)表示发热·吸热行为。
[含氮量及含氧量的测定]
在以5L/min.的流量向管状加热炉内流入氮气的状态下,测定了在400℃(673K)、500℃(773K)、600℃(873K)的各温度下加热1小时纯Ti粉末后的含氮量及含氧量。其结果如表1所示。
[表1]
样本(Specimens) 含氮量(质量%) 含氧量(质量%)
原料纯Ti粉末 0.018 0.270
673K for 1 hr 0.041 0.276
773K for 1hr 0.129 0.275
873K for 1hr 0.292 0.290
从表1能够明确得知,含氮量随着加热温度的增加而增大。但是,由于含氧量基本不发生变化,因此,加热过程中的Ti粉末的氧化被抑制。
表1的结果与差热热重分析装置(TG-DTA)的结果非常一致,为了使氮原子固溶于Ti粉末的基质中,使加热温度为400℃(673K)以上较为理想。但是,当加热温度超过800℃时,Ti粉末之间部分地烧结,因此,800℃以下的加热温度较为理想。
[通过衍射峰进行验证]
图3是表示进行了氮固溶化热处理时的Ti衍射峰的变化的图。具体来说,进行了在管状加热炉内以5L/min.的流量流入氮气的状态下、以600℃(873K)的温度加热纯Ti粉末1小时、以及加热2小时后的Ti粉末的XRD(X射线衍射)分析。
通过图3可以明确得知,当对纯钛原料粉末进行氮固溶化热处理时,Ti的衍射峰向低角度侧移动。这些峰值的移动表示了氮原子固溶于Ti的基底材料(基质)中。
测定上述样本的含氧量及含氮量,其结果如表2所示。
[表2]
氮量(质量%) 氧量(质量%)
原料粉末 0.018 0.260
加热1hr的粉末 0.290 0.263
加热2hr的粉末 0.479 0.262
通过表2的结果可以明确得知,氧量基本不变,氮量随着加热时间的增加而增大。
[通过结晶取向解析(SEM-EBSD)进行验证]
通过放电等离子烧结使各Ti粉末成形固化,实施热挤出加工制备直径φ7mm的挤出材。
在进行放电等离子烧结时,在真空气氛中加热800℃×30分钟,在该过程中施加30MPa的压力。
在进行热挤出加工时,在氩气气氛中加热上述烧结体1000℃×5分钟,并立刻以挤出比37的条件进行挤出加工,制备直径φ7mm的挤出材。
通过结晶取向解析(SEM-EBSD)测定晶粒直径的结果,在含氮量增加的同时晶粒减少,换言之,能够确认进行了晶粒的细微化。其结果如表4所示。这是由于固溶后的氮原子的一部分向Ti的晶界扩散·稠化,通过溶质拖曳(solute drag)的效果而抑制晶粒的粗大化。
[强度测定]
对使用了进行1小时的氮固溶化热处理且含氮量为0.290质量%的“加热1hr的Ti粉末”、进行2小时的氮固溶化热处理且含氮量为0.479质量%的“加热2hr的Ti粉末”以及未进行氮固溶化热处理的“原料Ti粉末”(含氮量为0.018质量%)的挤出材进行强度的测定。其结果如图5和表3所示。
[表3]
样本(Specimen) 0.2%YS,oy/MPa UTS,o/MPa 伸长率Elongation,ε(%) 硬度HardnessHv
原料Ti粉末 479±8.1 653±6.6 28±1.7 264±26.3
加热1hr的Ti粉末 903±17.4 1008±6.1 28±1.5 479±34.2
加热2hr的Ti粉末 1045±13.6 1146±7.1 11±2.3 539±45.5
通过图5和表3可以明确得知,进行了氮固溶化热处理的Ti粉末中确认到通过氮原子的固溶的强度增加。另外,虽然其伸长率减少,但仍超过了10%,确认到作为Ti原材具有高的延展性。
另一方面,在使用了进行3小时的氮固溶化热处理的“加热3hr的Ti粉末”(含氮量:0.668质量%、含氧量:0.265质量%)的挤出材中,抗拉强度(UTS)增加至1264MPa、0.2%屈服强度(YS)增加至1204MPa,但伸长率明显降低至1.2%。因此,含氮量的优选上限为0.65质量%。另外,从提高强度的观点出发,含氮量的优选下限值为0.1质量%。
[热处理时间与含氮量及含氧量之间的关系]
以纯Ti粉末(平均粒径:28μm、纯度>95%)为起始原料,在流入氮气(气体流量:3L/min.)的状态下向管状炉内投入Ti原料粉末,在600℃下进行10分钟~180分钟的氮固溶化热处理。测定包含于所得到的各Ti粉末中的含氮量及含氧量与热处理时间之间的关系,其结果如图6和表4所示。
[表4]
热处理时间(分钟) 0 10 30 60 120 180
氮量(质量%) 0.023 0.225 0.350 0.518 0.742 0.896
氧量(质量%) 0.217 0.252 0.246 0.225 0.224 0.229
通过图6和表4可以明确得知,含氮量相对于热处理时间基本线性地增加,能够确认通过热处理时间控制包含于Ti粉末的含氮量。另一方面,确认了含氧量不增加而基本维持稳定,在热处理过程中不发生氧化。由此,通过本制备方法,能够制备包含目标的氮量的Ti粉末。
[含氮量和显微维氏硬度Hv之间的关系]
使用放电等离子烧结(SPS)装置,对表4所记载的含氮的Ti粉末进行加热及加压,制备烧结体(直径40mm、厚度10mm)。
放电等离子烧结的条件如下所述。
温度:1000℃
加压力:30PMa
烧结时间:30分钟
真空度:6Pa
测定了该烧结体的显微维氏硬度(负荷50g)。其结果如图7及表5所示。
[表5]
通过图7及表5可以明确得知,Ti粉末中的含氮量的增加的同时,维氏硬度大致线性地增加,氮原子固溶于Ti粉末,由此,烧结体的硬度明显增加。
[氧气流量比率与氮量及氧量之间的关系]
以纯Ti粉末(平均粒径:28μm、纯度>95%)为起始原料,在改变氮气和氧气的混合比并使其流入管状炉内的状态下,投入Ti原料粉末,在600℃进行60分钟的加热处理。测定了包含于所得的各Ti粉末的氮量、氧量。其结果如图8及表6所示。
[表6]
氮气流量(lit/min) 3 2.94 2.85 2.76 2.7 2.55 2.4 2.25
氧气流量(lit/min) 0 0.06 0.15 0.24 0.3 0.45 0.6 0.75
氧气流量比率(%) 0 2 5 8 10 15 20 25
氮量(质量%) 0.518 0.512 0.519 0.522 0.514 0.491 0.465 0.433
氧量(质量%) 0.225 0.232 0.236 0.242 0.246 0.278 0.292 0.319
通过图8和表6可以明确得知,在氧气的比率为10vol.%以下的条件下,氧量没有明显增加,仅氮原子向Ti粉末的基质中固溶。另一方面,当氧气的比率超过15vol.%时,氧量增加,能够向Ti粉末的基质中固溶氮和氧两种原子。由此,根据本制备方法,能够通过调整热处理气氛中的氮气量和氧气量的混合比率,制备不仅固溶氮原子,也固溶氧原子的Ti粉末。
产业上的可利用性
本发明能够有利地被用于制备氮在基质中均匀地扩散并固溶、维持适当的延展性的高强度固溶有氮的钛粉末材料以及钛材。

Claims (3)

1.一种固溶有氮的钛粉末材料的制备方法,其特征在于,具备:
准备由钛粉末粒子构成的钛粉末材料的工序;
将所述钛粉末材料在400℃以上且600℃以下的温度范围内在含氮的气氛中加热10分钟~2小时,使氮原子均匀地扩散且固溶于所述钛粉末粒子的基质中的工序,
所述各钛粉末粒子的含氮量在质量基准下为0.1%~0.65%。
2.根据权利要求1所述的固溶有氮的钛粉末材料的制备方法,其中,
在管状式加热炉或旋转式回转窑炉中进行用于使所述氮原子固溶于钛粉末粒子的基质中的加热处理。
3.一种钛材,其为使通过权利要求1或2所述的方法而制造的固溶有氮的钛粉末材料形成规定的形状并烧结而成的钛材,
氮原子固溶于所述各钛粉末粒子的基质中,
所述各钛粉末粒子的含氮量在质量基准下为0.1%~0.65%,断裂伸长率为10%以上。
CN201480073907.9A 2014-01-24 2014-12-26 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 Active CN106413944B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-011362 2014-01-24
JP2014011362 2014-01-24
PCT/JP2014/084530 WO2015111361A1 (ja) 2014-01-24 2014-12-26 窒素固溶チタン粉末材料、チタン素材及び窒素固溶チタン粉末材料の製造方法

Publications (2)

Publication Number Publication Date
CN106413944A CN106413944A (zh) 2017-02-15
CN106413944B true CN106413944B (zh) 2019-06-14

Family

ID=53681177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480073907.9A Active CN106413944B (zh) 2014-01-24 2014-12-26 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法

Country Status (7)

Country Link
US (1) US10213837B2 (zh)
EP (1) EP3097998B1 (zh)
JP (1) JP6261618B2 (zh)
CN (1) CN106413944B (zh)
BR (1) BR112016016577B1 (zh)
MX (1) MX2016009440A (zh)
WO (1) WO2015111361A1 (zh)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105024A1 (ja) 2014-01-10 2015-07-16 勝義 近藤 チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法
JP2015160970A (ja) * 2014-02-26 2015-09-07 学校法人立命館 金属材料およびその製造方法
EP3145798B1 (en) 2014-05-16 2019-11-13 Divergent Technologies, Inc. Modular formed nodes for vehicle chassis and their methods of use
CN117021566A (zh) 2014-07-02 2023-11-10 迪根特技术公司 用于制造接头构件的系统和方法
JP6669471B2 (ja) 2015-11-02 2020-03-18 勝義 近藤 窒素固溶チタン焼結体の製造方法
US10173255B2 (en) 2016-06-09 2019-01-08 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
JP6564763B2 (ja) * 2016-12-27 2019-08-21 勝義 近藤 焼結刃物素材およびその製造方法
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
JP7078220B2 (ja) * 2017-02-22 2022-05-31 学校法人トヨタ学園 金属製品の製造方法
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
CN112048638B (zh) * 2020-07-29 2022-04-22 北京科技大学 钛基合金粉末及制备方法、钛基合金制件的制备方法
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
CN116917129A (zh) 2021-03-09 2023-10-20 戴弗根特技术有限公司 旋转式增材制造系统和方法
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214086A (zh) * 1996-03-26 1999-04-14 西铁城时计株式会社 钛或钛合金部件及其表面处理方法
WO2012169305A1 (ja) * 2011-06-07 2012-12-13 日本発條株式会社 チタン合金部材およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110734A (ja) * 1984-11-02 1986-05-29 Shinroku Saito チタン系複合材料の製造方法
JPS6360296A (ja) * 1986-08-30 1988-03-16 Nippon Steel Corp 耐錆性に優れた表面処理鋼板の製造方法
JPS6360269A (ja) * 1986-09-01 1988-03-16 Nippon Steel Corp 金属チタンの熱処理方法
JP3006120B2 (ja) * 1990-05-18 2000-02-07 トヨタ自動車株式会社 Ti−Al系合金およびその製造方法
JP4408184B2 (ja) * 2001-03-26 2010-02-03 株式会社豊田中央研究所 チタン合金およびその製造方法
JP5172465B2 (ja) * 2008-05-20 2013-03-27 三菱電機株式会社 放電表面処理用電極の製造方法および放電表面処理用電極
CN101602108B (zh) * 2009-07-10 2012-01-04 西北工业大学 一种制备钛基硬质材料粉末的方法
US8158964B2 (en) * 2009-07-13 2012-04-17 Seagate Technology Llc Schottky diode switch and memory units containing the same
JP5808894B2 (ja) * 2010-08-20 2015-11-10 日本発條株式会社 高強度チタン合金部材およびその製造方法
JP5871490B2 (ja) * 2011-06-09 2016-03-01 日本発條株式会社 チタン合金部材およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214086A (zh) * 1996-03-26 1999-04-14 西铁城时计株式会社 钛或钛合金部件及其表面处理方法
WO2012169305A1 (ja) * 2011-06-07 2012-12-13 日本発條株式会社 チタン合金部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Surface Hardening of Ti Alloys by Gas-Phase Nitridation;L.liu等;《METALLURGICAL AND MATERIALS TRANSACTIONS A》;20050901(第36A期);2429-2434页

Also Published As

Publication number Publication date
US10213837B2 (en) 2019-02-26
JPWO2015111361A1 (ja) 2017-03-23
US20170008087A1 (en) 2017-01-12
CN106413944A (zh) 2017-02-15
MX2016009440A (es) 2016-10-28
BR112016016577B1 (pt) 2021-05-04
EP3097998B1 (en) 2024-02-07
EP3097998A1 (en) 2016-11-30
BR112016016577A2 (pt) 2017-09-26
EP3097998A4 (en) 2017-09-20
JP6261618B2 (ja) 2018-01-17
WO2015111361A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
CN106413944B (zh) 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法
CN105899314B (zh) 钛粉末材料、钛材以及氧固溶钛粉末材料的制备方法
Boland et al. Industrial processing of a novel Al–Cu–Mg powder metallurgy alloy
WO2010122960A1 (ja) 高強度銅合金
CN105143482A (zh) 镍-钴合金
Wang et al. Effects of heat treatment processes on the microstructures and properties of powder metallurgy produced Cu–Ni–Si–Cr alloy
Savvakin et al. Effect of iron content on sintering behavior of Ti-V-Fe-Al near-β titanium alloy
TW201504449A (zh) 鎳-鈦合金之熱機械處理
JP4666271B2 (ja) チタン板
JP2021080569A (ja) 高強度で均一な銅−ニッケル−錫合金および製造プロセス
Xue et al. Characterization of fracture toughness and toughening mechanisms in Laves phase Cr2Nb based alloys
Mallik et al. Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys
CN112654443A (zh) NiTi系合金材料、NiTi系合金材料的制造方法及由NiTi系合金材料形成的线材或管材
Nakaş et al. Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique
JP5759426B2 (ja) チタン合金及びその製造方法
CN102690976A (zh) 一种钛锆铌铁形状记忆合金及其制备方法
CN106756377B (zh) 一种W/TiNi记忆合金复合材料及其制备方法
Wu et al. Microstructures and elevated temperature properties of rapidly solidified Cu-3Ag-0.5 Zr and Cu-3Ag-0.5 Zr-0.4 Cr-0.35 Nb alloys
Alshammari et al. Behaviour of novel low-cost blended elemental Ti–5Fe-xAl alloys fabricated via powder metallurgy
Paul et al. New ternary powder metallurgy Ti alloys via eutectoid and isomorphous beta stabilisers additions
Kim Mechanical properties of highly porous Ti49. 5Ni50. 5 biomaterials
CN101914704A (zh) 一种含Cr的抗蠕变挤压锌合金及其制备方法
Bitzer et al. Phase transformation behavior of hot isostatically pressed NiTi-X (X= Ag, Nb, W) alloys for functional engineering applications
TWI516318B (zh) Rolling plate of titanium alloy head and its manufacturing method
Pan et al. Microstructure and transformation temperatures in rapid solidified Ni–Ti alloys. Part II: The effect of copper addition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant