JP3006120B2 - Ti−Al系合金およびその製造方法 - Google Patents

Ti−Al系合金およびその製造方法

Info

Publication number
JP3006120B2
JP3006120B2 JP3073990A JP7399091A JP3006120B2 JP 3006120 B2 JP3006120 B2 JP 3006120B2 JP 3073990 A JP3073990 A JP 3073990A JP 7399091 A JP7399091 A JP 7399091A JP 3006120 B2 JP3006120 B2 JP 3006120B2
Authority
JP
Japan
Prior art keywords
nitrogen
weight
alloy
content
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3073990A
Other languages
English (en)
Other versions
JPH04218634A (ja
Inventor
勇 結城
稔 魚住
良次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3073990A priority Critical patent/JP3006120B2/ja
Priority to US07/698,096 priority patent/US5152960A/en
Priority to DE69111685T priority patent/DE69111685T2/de
Priority to EP91107992A priority patent/EP0457340B1/en
Priority to US07/907,618 priority patent/US5252150A/en
Publication of JPH04218634A publication Critical patent/JPH04218634A/ja
Application granted granted Critical
Publication of JP3006120B2 publication Critical patent/JP3006120B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、軽量で耐熱性に優れタ
−ビンホイールのような回転部品やエンジンバルブのよ
うな動弁系回転部品などの製造に有用なチタン−アルミ
ニウム系合金およびその製造方法に関する。
【0002】
【従来の技術】従来、チタンとアルミニウムの2元系合
金にはTi3 Al、TiAl、TiAl3 の3種の金属
間化合物が存在することが知られている。このうちTi
Alは、比重が3.8と軽く高温での強度が高いことか
ら、軽量耐熱材料として有望視されている。しかしこの
材料は常温延性が不足するため塑性加工が困難である。
しかしながら、上記の合金で鋳造により成形品を形成す
ると、内部にひけ巣が発生しやすく、良好な鋳造品が得
られない。従来よりこの点を改良する試みがなされてい
る。例えば、特開昭63−125634号広報には、ア
ルミニウムとほう素を含有し、残部がチタンからなる合
金の開示がある。さらに特開昭64−79335号広報
には、アルミニウムと、ニッケルまたはケイ素の少なく
とも1種を含み残部がチタンからなるTi−Al系合金
が開示されている。しかし、Ti−Al系合金にほう素
を添加すると共に炭素、酸素、窒素の量を規定すると常
温延性はいくぶん改善されるが、鋳造時のひけ巣は改善
されない。
【0003】
【発明が解決しようとする課題】本発明は、Ti−Al
系合金の強度、延性を向上させることを目的とする。
【0004】
【課題を解決するための手段】本発明の強度と延性に
れたTi−Al系合金は、Al:30〜38重量%に加
えてN:0.2〜1.0重量%を含有し、残部が実質的
にTiとからなり結晶粒径が0.1μm以下である。本
発明の強度と延性に優れたTi−Al系合金の製造方法
は、800℃以上で融点以下の温度に加熱された金属チ
タンを窒素ガス雰囲気中に保持して窒素をチタンに固溶
させる固溶化工程と、窒素が固溶された該金属チタンに
真空中または不活性ガス雰囲気中でアルミニウムを添加
溶解してTi−Al系合金とする合金化工程と、からな
る。
【0005】この合金中にアルミニウムは、30〜38
重量%含まれる。アルミニウムの含量が38重量%を超
えると合金の延性が低下し加工性が劣るので好ましくな
い。より好ましくは37重量%未満である。一方、アル
ミニウムが30重量%未満であるとTi3 Alが多量に
生成して合金が脆化するために好ましくない。この合金
中に固溶される窒素の量は、0.2〜1.0重量%の範
囲である。従来のTi−Al系合金では、窒素量の上限
は0.2%未満とされ、これを超えて含まれる場合に
は、延性などが低下するため好ましくないとされてい
る。しかし本発明者らの研究によれば、窒素を従来のも
のよりも多く含むことにより内部組織を微細化すること
ができることが見出され、本発明が完成されるにいたっ
た。
【0006】合金中の窒素含量が0.2重量%未満であ
ると添加による延性が向上するという効果が認められず
好ましくない。また、1.0重量%を超えるとチタンと
窒素との反応による窒化物と推定される介在物の生成が
増加し、強度、延性が低下し、鋳造品としたとき介在物
と通常の組織部との界面での圧漏れがおきるため好まし
くない。
【0007】このTi−Al系合金は、窒素が0.2〜
1.0重量%、より好ましくは0.25重量%を超え〜
1.0重量%の範囲で固溶されることにより合金の組織
が微細化して均一となり機械的性質が向上する。このT
i−Al系合金の製造方法は、金属チタンに窒素を固溶
する固溶化工程と、窒素が固溶化された金属チタンにア
ルミニウムを添加溶解する合金化工程とからなる。
【0008】固溶化工程では、金属チタンを800℃以
上で融点以下の温度範囲に加熱して窒素ガスに接触処理
することにより窒素の固溶量を制御することができる。
この場合金属チタンが他のガス、たとえば酸素などと反
応するのを避けるとともに、窒素のガス圧の制御を容易
にするために真空中でおこなうことが好ましい。固溶化
工程での金属チタンの温度が800℃未満であると、窒
素は金属チタンにほとんど固溶化しないため好ましくな
い。一方、金属チタンの融点以上の温度になると金属チ
タンと窒素とが爆発的に反応するため制御が困難となり
好ましくない。したがって金属チタンの温度を800℃
〜融点以下の範囲として、窒素ガス圧およびその接触時
間を調整することにより窒素の固溶量を制御することが
できる。また、金属チタンは窒素を固溶化するために表
面積が大きいものであることが好ましい。たとえば、微
粉末、スポンジ状物などを用いる。
【0009】窒素の固溶化後、金属チタンの雰囲気をア
ルゴンガスなどの不活性ガス雰囲気とての反応の進行を
制御する。合金化工程では、窒素を固溶した金属チタン
を不活性ガス雰囲気中で、たとえばアルゴンガス雰囲気
中でアルミニウムを加えて溶解して合金を形成する。こ
の際に窒素の固溶量は変動することはない。このため所
定の窒素含量のTi−Al系合金が容易に製造できる。
【0010】
【作用】本発明のTi−Al系合金では、窒素を特定量
含むことにより合金の組織が微細化し良好な合金とな
る。そのため合金の強度や延性などの物性が向上する。
またこの合金を鋳物としたとき介在物が少なく合金組織
が均一となり、ひけ巣の発生がなく圧漏れのない製品が
形成できる。
【0011】本発明の製造方法では、Ti−Al系合金
に直接窒素を固溶するのでなく、金属チタンを特定の温
度領域で窒素処理することにより所定量の窒素を固溶す
ることができる。そしてこの窒素を固溶した金属チタン
にアルミニウムを添加溶解する。そのため所定の窒素含
量のTi−Al系合金を容易に製造することができる。
【0012】
【実施例】以下、実施例により具体的に説明する。 (実施例No.1〜12、20〜23)Ti−Al系合
金としてアルミニウム量を30重量%、32重量%、3
4重量%、36重量%、38重量%に設定し窒素ガス圧
を変化させて窒素含量が0.2〜1.0重量%範囲の合
金を以下の方法で作製した。
【0013】(固溶化工程) 高周波真空溶解炉を用い、原料のスポンジ状の金属チタ
ンを投入し真空度5×10-4Torrの雰囲気で加熱し
た。金属チタンの温度が1300℃に到達した時点で所
定のガス圧(表1および表2)の窒素を導入した。この
雰囲気で1分間保持した後、高周波真空溶解炉内の窒素
ガスを排気し、次にアルゴンガスを導入して1気圧とし
て固溶化の進行を停止した。 (合金化工程) 次いでアルミニウムを含量30重量%(No.1〜
4)、32重量%(No.20)、34重量%(No.
5〜8、22〜23)、36重量%(No.21)、3
8重量%(No.9〜12)となるような量添加溶解し
てTi−Al合金を形成した。
【0014】このTi−Al系合金の溶湯を1気圧のア
ルゴンガス雰囲気中で、セラミックス鋳型に鋳込みテス
トピ−スを作製した。表1表および表2に作製した合金
のアルミニウム設定添加量および固溶化工程での窒素ガ
ス圧を示す。 比較例(No.14〜19、24〜27)実施例の高周
波真空溶解炉でスポンジ状の金属チタンを同様に真空中
で加熱した後、アルゴンガスを導入して所定量のアルミ
ニウムを加えて溶解して合金(No.17〜19)を作
製した。
【0015】また実施例において窒素ガス圧(100T
orr)を高くして窒素含量の多い合金(No.14〜
16)も同様に作製した。No.24、25はアルミニ
ウム量を32、36重量%に変え窒素を固溶しない場合
であり、No.26はアルミニウム量は34重量%で3
Torrの窒素ガス下で合金化した場合で窒素量が不足
した例である。No.27はNo.18にさらに第3成
分としてB(ほう素)を0.05重量%添加した場合で
ある。
【0016】得られたテストピ−スについて以下の評価
をおこなった。結果を表1および表2に示す。
【0017】
【表1】
【0018】
【表2】
【0019】評価項目は、化学成分の分析(合金中のア
ルミニウム量、窒素量)、常温引張試験(試験片平行部
φ5×l30mm、歪み速度10-3-1)、圧漏れ試験
(内部のひけ巣の有無の尺度:試験片は自動車用ケ−シ
ング、空気圧:3気圧)、組織観察(粒径、介在物の有
無を光学顕微鏡で観察)、ひけ巣の有無の観察をおこな
った。
【0020】アルミニウムの分析値は、表1および表2
に示すように添加量に対して誤差範囲内の値を示してい
る。窒素量は、実施例の窒素ガス圧が5〜50Torr
の範囲内では、圧を高くするにしたがい含量は多くなっ
ている。しかし比較例(No.14〜16)に示すよう
に窒素ガス圧が100Torrとなると合金中の窒素量
が1.0重量%を超えている。また窒素ガス圧が3To
rrでは0.2重量%未満であり、少なくとも5Tor
r以上の圧が必要である。したがって固溶化工程での窒
素ガス圧の調整により窒素量は0.2〜1.0重量%の
範囲内に保持することができる。
【0021】なお、上記窒素ガス圧は、金属チタンの加
熱温度が1300℃の時の値であり、加熱温度が異なれ
ば窒素ガス圧は異なる。また固溶化工程で窒素ガスを導
入しないと、比較例(No.17〜19)に示すように
窒素含量は0.01重量%となり窒素はほとんど含まれ
てない。したがって、本発明の製造方法により合金中の
窒素量を所定の範囲に調整することができる。
【0022】窒素量が約0.4重量%のときのアルミニ
ウム量と引張強度および伸びとの関係を図1のグラフに
示す(No.2、6、10、20、21の測定値)。ア
ルミニウム含量が34重量%をピークとする最適量が存
在することを示している。図2はアルミニウム含量が3
4重量%のときの窒素量と強度および伸び関係を調べた
もので(No.5、6、7、8、22、23の測定
値)、本発明の範囲が強度および伸びに優れていること
を示している。
【0023】引張試験では、合金のアルミニウム含量が
同じで、窒素含量が少ない比較例(No.18)、窒素
含量が多い比較例(No.15)と、実施例(No.5
〜8)を比較すると、実施例では強度、伸びが大幅に向
上している。圧漏れ試験では、実施例のものはいずれも
圧漏れが認められないが、窒素含量が多い比較例のもの
は介在物が存在しいずれも圧漏れが大きく、特に窒素含
量の少ない比較例の場合には粒径が大きくなり鋳造時の
ひけ巣が多く圧漏れが大きくなる。
【0024】No.27は特開昭63−125634号
の記載にしたがって表2に示すようにほう素を0.05
重量%添加した場合である。No.27の伸びは0.7
%とほう素や窒素を添加しないベース材の比較例No.
18よりは優れている。しかし、実施例の窒素を添加し
たNo.5〜8、22、23に比べれば劣る。組織観察
では、実施例のものでは粒径が0.1mm以下と小さ
い。しかし窒素含量が少ない比較例No.17〜19の
場合は粒径が大きい。また窒素量が1.0重量%を超え
た比較例No.14〜16の場合は粒径が小さいが、窒
化物と思われる介在物が存在する。このため比較例の合
金の鋳造品ではこの介在物の界面や、ひけ巣の発生によ
り圧漏れかおきているものと推定される。特に窒素量を
添加しない場合には、ひけ巣が存在していた。したがっ
て比較例のものでは良好な鋳物とはならない。
【0025】さらに、窒素の添加の有無の金属組織の1
00倍の写真を比較すると、Al34.1重量%、窒素
0.37重量%の100倍の図3では組織が非常に細か
く(0.05〜0.1mm)なっている。このためひけ
性が改善されているものと推定される。一方窒素を含ま
ないAl33.9重量%、窒素0.01重量%の100
倍の図4では組織は粗く(0.5〜2mm)なってい
る。このためひけ巣が発生しやすく、圧漏れが発生する
ものと考えられる。
【0026】このTiAl合金でバルブを作製してエン
ジンに取りつけて表5に示す実機による耐久試験をおこ
なった。使用したバルブの化学分析値を表3に示す。使
用したエンジンの種類を表4に、その試験法およびその
結果を表5に示す。
【0027】
【表3】
【0028】
【表4】
【0029】
【表5】 この試験によりTi−Al合金のバルブは折損などの問
題が発生せず、従来のバルブ鋼と同程度の強度を示し
た。
【0030】
【発明の効果】本発明の製造方法で得られるTi−Al
系合金は、窒素含量が調整されて0.2〜1.0重量%
の範囲で形成される。このTi−Al系合金は窒素の含
量が従来のTi−Al系合金より多く含まれることによ
り、合金の組織が微細化しひけ巣が大幅に減少するので
物性の優れた金属間化合物が形成できる。その結果、合
金の強度、延性が大幅に向上できる。
【0031】したがってこのTi−Al系合金は、軽量
な耐熱材として回転体などの鋳造品として実用化するこ
とができる。
【図面の簡単な説明】
【図1】 特定の窒素含量ときのAl量と引張強度およ
び伸びとの関係のグラフである。
【図2】 Al34重量%のときの窒素量と引張強度お
よび伸びとの関係のグラフである。
【図3】 本実施例No.6の合金の鋳造品の金属組織
の写真である。
【図4】 比較例のNo.18の合金の鋳造品の金属組
織の写真である。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−258939(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 14/00 C22F 1/08

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】 Al:30〜38重量%に加えてN:
    0.2〜1.0重量%を含有し、残部が実質的にTiと
    からなり結晶粒径が0.1μm以下で、強度と延性に優
    れたTi−Al系合金。
  2. 【請求項2】 該N含量は0.25重量%を超え〜1.
    0重量%以下である請求項1に記載のTi−Al系合
    金。
  3. 【請求項3】 該Al含量は30重量%〜37重量%未
    満である請求項1および請求項2に記載のTi−Al系
    合金。
  4. 【請求項4】 800℃以上で融点以下の温度に加熱さ
    れた金属チタンを窒素ガス雰囲気中に保持して窒素をチ
    タンに固溶させる固溶化工程と、窒素が固溶された該金
    属チタンに真空中または不活性ガス雰囲気中でアルミニ
    ウムを添加溶解してTi−Al系合金とする合金化工程
    と、からなるTi−Al系合金の製造方法。
JP3073990A 1990-05-18 1991-03-12 Ti−Al系合金およびその製造方法 Expired - Fee Related JP3006120B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3073990A JP3006120B2 (ja) 1990-05-18 1991-03-12 Ti−Al系合金およびその製造方法
US07/698,096 US5152960A (en) 1990-05-18 1991-05-10 Titanium-aluminum intermetallic having nitrogen in solid solution
DE69111685T DE69111685T2 (de) 1990-05-18 1991-05-17 Titan-Aluminium-Legierung und Verfahren zu ihrer Herstellung.
EP91107992A EP0457340B1 (en) 1990-05-18 1991-05-17 Titanium-aluminium alloy and process for producing the same
US07/907,618 US5252150A (en) 1990-05-18 1992-07-02 Process for producing nitrogen containing Ti--Al alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-130093 1990-05-18
JP13009390 1990-05-18
JP3073990A JP3006120B2 (ja) 1990-05-18 1991-03-12 Ti−Al系合金およびその製造方法

Publications (2)

Publication Number Publication Date
JPH04218634A JPH04218634A (ja) 1992-08-10
JP3006120B2 true JP3006120B2 (ja) 2000-02-07

Family

ID=26415134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073990A Expired - Fee Related JP3006120B2 (ja) 1990-05-18 1991-03-12 Ti−Al系合金およびその製造方法

Country Status (4)

Country Link
US (1) US5152960A (ja)
EP (1) EP0457340B1 (ja)
JP (1) JP3006120B2 (ja)
DE (1) DE69111685T2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367179A (en) * 1990-04-25 1994-11-22 Casio Computer Co., Ltd. Thin-film transistor having electrodes made of aluminum, and an active matrix panel using same
JPH05271830A (ja) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd TiAl系金属間化合物基合金部材
JP3143727B2 (ja) * 1994-03-30 2001-03-07 工業技術院長 軽量耐熱材料、およびその製造方法
US5417781A (en) * 1994-06-14 1995-05-23 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
US6040613A (en) * 1996-01-19 2000-03-21 Micron Technology, Inc. Antireflective coating and wiring line stack
US8685501B2 (en) 2004-10-07 2014-04-01 Lockheed Martin Corporation Co-continuous metal-metal matrix composite material using timed deposition processing
US20070012138A1 (en) * 2004-10-28 2007-01-18 Lockheed Martin Corporation Gas-phase alloying of metallic materials
US20060075850A1 (en) * 2004-10-07 2006-04-13 Lockheed Martin Corporation Nitrogen-modified titanium and method of producing same
US8389072B2 (en) * 2004-10-28 2013-03-05 Lockheed Martin Corporation System, method, and apparatus for variable hardness gradient armor alloys
US10213837B2 (en) * 2014-01-24 2019-02-26 Hi-Lex Corporation Titanium powder containing solid-soluted nitrogen, titanium material, and method for producing titanium powder containing solid-soluted nitrogen
CN104328311B (zh) * 2014-10-30 2016-04-27 西北工业大学 具有过包晶凝固特征的抗热裂型中铌铸造TiAl合金
CN109280784A (zh) * 2018-10-30 2019-01-29 南通众福新材料科技有限公司 一种高强度铸造铝合金材料及其制备方法
CN110951974B (zh) * 2019-11-20 2021-07-13 湖南金天钛业科技有限公司 钛合金铸锭及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008823A (en) * 1955-11-23 1961-11-14 Joseph B Mcandrew Titanium base alloy
US3203794A (en) * 1957-04-15 1965-08-31 Crucible Steel Co America Titanium-high aluminum alloys
US3625679A (en) * 1970-04-23 1971-12-07 Rmi Co Method of raising the content of nitrogen and oxygen in titanium
JPS63125634A (ja) * 1986-11-12 1988-05-28 Kawasaki Heavy Ind Ltd 溶製材用Ti―Al系耐熱合金
EP0275391B1 (en) * 1986-11-12 1992-08-26 Kawasaki Jukogyo Kabushiki Kaisha Titanium-aluminium alloy
JPH02258939A (ja) * 1989-03-30 1990-10-19 Osamu Izumi 耐熱性材料

Also Published As

Publication number Publication date
EP0457340A1 (en) 1991-11-21
DE69111685D1 (de) 1995-09-07
DE69111685T2 (de) 1996-01-25
US5152960A (en) 1992-10-06
JPH04218634A (ja) 1992-08-10
EP0457340B1 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US5624505A (en) Titanium matrix composites
EP0804627B1 (en) Oxidation resistant molybdenum alloy
JP3006120B2 (ja) Ti−Al系合金およびその製造方法
US5429796A (en) TiAl intermetallic articles
US6174387B1 (en) Creep resistant gamma titanium aluminide alloy
EP1752551A1 (en) High melting point metal based alloy material exhibiting high strength and high crystallization temperature and method for production thereof
JPH0593231A (ja) ニオブおよびホウ素を含有するアルミニウム化チタンの製造方法
JPH0593232A (ja) ホウ素の接種によつて可鋳性を付与したニオブ含有アルミニウム化チタン
JP2952924B2 (ja) TiAl基耐熱合金及びその製造方法
JP7334896B2 (ja) 耐熱軽量高強度焼結体製造方法
US5015305A (en) High temperature hydrogenation of gamma titanium aluminide
JP6660042B2 (ja) Ni基超耐熱合金押出材の製造方法およびNi基超耐熱合金押出材
US5252150A (en) Process for producing nitrogen containing Ti--Al alloy
Stefanescu et al. Solidification structures of titanium alloys
KR101923477B1 (ko) 질화 타이타늄 또는 질화 타이타늄 알루미나이드를 포함하는 합금의 제조방법
JPH06240428A (ja) Ti−Al系金属間化合物基合金の製造方法
JP3743019B2 (ja) Fe,Vを含む精密鋳造用チタンアルミナイド
JP2732934B2 (ja) 高温強度および高温耐酸化性のすぐれたNi基合金製恒温鍛造金型
JPH05140670A (ja) Ti−Al系合金の製造方法
JPH05247562A (ja) Ti−Al系金属間化合物の製造方法
JPH06271901A (ja) 焼結性に優れたTi−Al系金属間化合物粉末およびその焼結体
JP7233658B2 (ja) 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法
JP2580689B2 (ja) Ti−Al合金粉末焼結体およびその製造方法
JP4481075B2 (ja) 炭化処理による高強度・高靭性の高融点金属系合金材料とその製造法
WO1996030551A1 (en) Castable gamma titanium-aluminide alloy containing niobium, chromium and silicon and turbocharger wheels made thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees