CN106413944A - 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 - Google Patents
固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 Download PDFInfo
- Publication number
- CN106413944A CN106413944A CN201480073907.9A CN201480073907A CN106413944A CN 106413944 A CN106413944 A CN 106413944A CN 201480073907 A CN201480073907 A CN 201480073907A CN 106413944 A CN106413944 A CN 106413944A
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- titanium
- powder
- solid solution
- powder material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/02—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Catalysts (AREA)
Abstract
固溶有氮的钛粉末材料的制造方法以将由钛粉末粒子构成的钛粉末材料在含氮的气氛下加热并使氮原子固溶于钛粉末粒子的基质中为特征。
Description
技术领域
本发明涉及一种钛粉末材料以及钛材,特别涉及一种固溶了氮的高强度钛粉末材料、钛材以及其制备方法。
背景技术
钛是有着钢的大约1/2的低比重的轻量原材,具有耐腐蚀性和高强度优异的特征,因此,被利用于对轻量化有较高需求的飞机、铁路车辆、二轮车辆、汽车等的部件、家电产品或建筑用构件。另外,从优秀的耐腐蚀性的观点出发,也作为医疗用原材使用。
但是,与钢铁材料或铝合金相比,由于钛的材料成本较高,因此,其使用对象受到了限制。特别是钛合金虽然具有超出1000MPa的较高的抗拉强度,但其存在没有充分的延展性(断裂伸长率)、以及缺少在常温或低温范围内的塑性加工性的问题。另一方面,纯钛在常温下具有超出25%的较高的断裂伸长率,并且在低温范围内具有优异的塑性加工性,但其存在抗拉强度为较低的400~600MPa左右的问题。
由于对钛的高强度和高延展性的兼顾、以及材料成本的降低的要求十分强烈,因此进行了各种研究。特别是从低成本化的观点出发,作为现有技术,多数研究了基于氧、氮这样比较廉价的元素而不是钒、钪、铌等高价的元素进行的高强度化。
例如,在日本金属学会会刊第72卷第12号(2008)949-954页(非专利文献1)记载了以《氮对钛的拉伸变形行为及变形组织发展的影响》为题、利用氮作为钛合金的合金元素的技术。具体来说,记载了以下内容,即,称量海绵钛以及钛粉末,使其成为规定的组成,通过电弧溶解制备具有各种氮浓度的Ti-N合金。在这种情况下,当氮原子均匀地固溶于Ti的基质中,则能够实现高强度和高延展性的兼顾。
作为其他方法,还有向Ti熔融金属添加TiN粒子、在其凝固时使氮原子向Ti的基质中固溶的技术。在这种情况下,当氮原子均匀地固溶于Ti的基质中,则能够实现高强度和高延展性的兼顾。
现有技术文献
非专利文献
非专利文献1:日本金属学会会刊第72卷第12号(2008)949-954页
发明内容
发明要解决的技术问题
在现有的溶解制法(特别是向Ti熔融金属添加TiN粒子的方法)中,由于氮原子的扩散显著,氮原子在熔融金属的上部稠化,其结果,氮难以在大型铸块(ingot)中的均匀分散,延展性显著降低。
本发明的目的在于提供一种能够使氮原子均匀地扩散且固溶在Ti粉末粒子的基质中的固溶有氮的钛粉末材料的制备方法。
本发明的其他目的在于提供一种通过使氮原子均匀地扩散且固溶于Ti粉末粒子的基质中、而兼具高强度和高延展性的钛粉末材料以及钛材。
解决技术问题的手段
根据本发明的固溶有氮的钛粉末材料的制备方法,其特征在于,在含氮的气氛中加热由钛粉末粒子构成的钛粉末材料并使氮原子固溶于所述钛粉末粒子的基质中。使所述氮原子固溶于钛粉末粒子的基质中的加热温度优选为400℃以上且800℃以下。
在通过上述方法制备的固溶有氮的钛粉末材料中,优选各钛粉末粒子的含氮量在质量基准下为0.1%~0.65%。另外,为了便于参考,在日本工业规格(JIS)中规定的4种纯钛的含氮量如下。
JIS H 4600 1种:0.03质量%以下
JIS H 4600 2种:0.03质量%以下
JIS H 4600 3种:0.05质量%以下
JIS H 4600 4种:0.05质量%以下
钛材是通过使上述固溶有氮的钛粉末材料形成规定的形状的原材。在一实施形态中,钛材为纯Ti粉末挤出材,相对于挤出材整体的含氮量在质量基准下为0.1%~0.65%,断裂伸长率为10%以上。
作为使固溶有氮的钛粉末材料固化并形成钛材的方法,例如有压粉成形·烧结、热挤出加工、热轧加工、喷镀、金属注塑成型、粉末层叠造型等。
通过下述的内容说明上述特征的作用效果和技术性意义。
附图说明
图1是示意地表示本发明的特征的图;
图2是表示通过差热热重分析装置的测定数据的图;
图3是表示进行了氮固溶化热处理时的Ti衍射峰的变化的图;
图4是表示通过结晶取向解析(SEM-EBSD)的测定结果的图;
图5是表示应力和应变之间关系的图;
图6是表示热处理的时间、氮量以及氧量之间关系的图;
图7是表示含氮量和显微维氏硬度Hv之间关系的图;
图8是表示氧气流量比率、氮量以及氧量之间关系的图。
具体实施方式
图1是示意地表示本发明的特征的图。首先,利用图1说明本发明的概要,之后再说明详细的数据等。
[准备钛粉末材料]
准备由大量的钛粉末粒子构成的钛粉末材料。在这里,“钛粉末粒子”可以是纯钛粉末粒子或钛合金粉末粒子的任意一者。
[固溶化热处理]
通过在含氮的气氛中加热并保持由钛粉末粒子构成的钛粉末材料,使氮原子均匀地向各钛粉末粒子的基质中扩散并固溶,得到作为最终目标的固溶有氮的钛粉末材料。
加热条件例如为下述。
加热气氛:100vol.%N2气体
气体流量:5L/min.
加热温度:400~600℃
保持时间:1~2hr.
通过上述固溶化热处理,氮原子均匀地扩散并固溶至各钛粉末粒子的基质中。在上述加热过程中,由于不会发生钛粉末之间的烧结现象,因此,也可以使用管状式加热炉(非旋转式)或旋转式回转窑炉的任意一者。
按照上述那样得到的固溶有氮的钛粉末材料的固化,可以利用例如压粉成形·烧结、热挤出加工、热轧加工、喷镀、金属注塑成型、粉末层叠造型等。
[通过差热热重分析装置(TG-DTA)验证]
向炉内投入纯Ti原料粉末,以150mL/min.的流量流入氮气,在该状态下使温度从常温上升至800℃(1073K),这时,能够确认重量从400℃(673K)附近开始增加,之后,伴随着温度的上升,重量显著增加。其结果如图2所示。在图2中,TG(Thermogravimetry)表示重量变化,DTA(Differential Thermal Analysis)表示发热·吸热行为。
[含氮量及含氧量的测定]
在以5L/min.的流量向管状加热炉内流入氮气的状态下,测定了在400℃(673K)、500℃(773K)、600℃(873K)的各温度下加热1小时纯Ti粉末后的含氮量及含氧量。其结果如表1所示。
[表1]
样本(Specimens) | 含氮量(质量%) | 含氧量(质量%) |
原料纯Ti粉末 | 0.018 | 0.270 |
673K for 1 hr | 0.041 | 0.276 |
773K for 1hr | 0.129 | 0.275 |
873K for 1hr | 0.292 | 0.290 |
从表1能够明确得知,含氮量随着加热温度的增加而增大。但是,由于含氧量基本不发生变化,因此,加热过程中的Ti粉末的氧化被抑制。
表1的结果与差热热重分析装置(TG-DTA)的结果非常一致,为了使氮原子固溶于Ti粉末的基质中,使加热温度为400℃(673K)以上较为理想。但是,当加热温度超过800℃时,Ti粉末之间部分地烧结,因此,800℃以下的加热温度较为理想。
[通过衍射峰进行验证]
图3是表示进行了氮固溶化热处理时的Ti衍射峰的变化的图。具体来说,进行了在管状加热炉内以5L/min.的流量流入氮气的状态下、以600℃(873K)的温度加热纯Ti粉末1小时、以及加热2小时后的Ti粉末的XRD(X射线衍射)分析。
通过图3可以明确得知,当对纯钛原料粉末进行氮固溶化热处理时,Ti的衍射峰向低角度侧移动。这些峰值的移动表示了氮原子固溶于Ti的基底材料(基质)中。
测定上述样本的含氧量及含氮量,其结果如表2所示。
[表2]
氮量(质量%) | 氧量(质量%) | |
原料粉末 | 0.018 | 0.260 |
加热1hr的粉末 | 0.290 | 0.263 |
加热2hr的粉末 | 0.479 | 0.262 |
通过表2的结果可以明确得知,氧量基本不变,氮量随着加热时间的增加而增大。
[通过结晶取向解析(SEM-EBSD)进行验证]
通过放电等离子烧结使各Ti粉末成形固化,实施热挤出加工制备直径φ7mm的挤出材。
在进行放电等离子烧结时,在真空气氛中加热800℃×30分钟,在该过程中施加30MPa的压力。
在进行热挤出加工时,在氩气气氛中加热上述烧结体1000℃×5分钟,并立刻以挤出比37的条件进行挤出加工,制备直径φ7mm的挤出材。
通过结晶取向解析(SEM-EBSD)测定晶粒直径的结果,在含氮量增加的同时晶粒减少,换言之,能够确认进行了晶粒的细微化。其结果如表4所示。这是由于固溶后的氮原子的一部分向Ti的晶界扩散·稠化,通过溶质拖曳(solute drag)的效果而抑制晶粒的粗大化。
[强度测定]
对使用了进行1小时的氮固溶化热处理且含氮量为0.290质量%的“加热1hr的Ti粉末”、进行2小时的氮固溶化热处理且含氮量为0.479质量%的“加热2hr的Ti粉末”以及未进行氮固溶化热处理的“原料Ti粉末”(含氮量为0.018质量%)的挤出材进行强度的测定。其结果如图5和表3所示。
[表3]
样本(Specimen) | 0.2%YS,oy/MPa | UTS,o/MPa | 伸长率Elongation,ε(%) | 硬度HardnessHv |
原料Ti粉末 | 479±8.1 | 653±6.6 | 28±1.7 | 264±26.3 |
加热1hr的Ti粉末 | 903±17.4 | 1008±6.1 | 28±1.5 | 479±34.2 |
加热2hr的Ti粉末 | 1045±13.6 | 1146±7.1 | 11±2.3 | 539±45.5 |
通过图5和表3可以明确得知,进行了氮固溶化热处理的Ti粉末中确认到通过氮原子的固溶的强度增加。另外,虽然其伸长率减少,但仍超过了10%,确认到作为Ti原材具有高的延展性。
另一方面,在使用了进行3小时的氮固溶化热处理的“加热3hr的Ti粉末”(含氮量:0.668质量%、含氧量:0.265质量%)的挤出材中,抗拉强度(UTS)增加至1264MPa、0.2%屈服强度(YS)增加至1204MPa,但伸长率明显降低至1.2%。因此,含氮量的优选上限为0.65质量%。另外,从提高强度的观点出发,含氮量的优选下限值为0.1质量%。
[热处理时间与含氮量及含氧量之间的关系]
以纯Ti粉末(平均粒径:28μm、纯度>95%)为起始原料,在流入氮气(气体流量:3L/min.)的状态下向管状炉内投入Ti原料粉末,在600℃下进行10分钟~180分钟的氮固溶化热处理。测定包含于所得到的各Ti粉末中的含氮量及含氧量与热处理时间之间的关系,其结果如图6和表4所示。
[表4]
热处理时间(分钟) | 0 | 10 | 30 | 60 | 120 | 180 |
氮量(质量%) | 0.023 | 0.225 | 0.350 | 0.518 | 0.742 | 0.896 |
氧量(质量%) | 0.217 | 0.252 | 0.246 | 0.225 | 0.224 | 0.229 |
通过图6和表4可以明确得知,含氮量相对于热处理时间基本线性地增加,能够确认通过热处理时间控制包含于Ti粉末的含氮量。另一方面,确认了含氧量不增加而基本维持稳定,在热处理过程中不发生氧化。由此,通过本制备方法,能够制备包含目标的氮量的Ti粉末。
[含氮量和显微维氏硬度Hv之间的关系]
使用放电等离子烧结(SPS)装置,对表4所记载的含氮的Ti粉末进行加热及加压,制备烧结体(直径40mm、厚度10mm)。
放电等离子烧结的条件如下所述。
温度:1000℃
加压力:30PMa
烧结时间:30分钟
真空度:6Pa
测定了该烧结体的显微维氏硬度(负荷50g)。其结果如图7及表5所示。
[表5]
通过图7及表5可以明确得知,Ti粉末中的含氮量的增加的同时,维氏硬度大致线性地增加,氮原子固溶于Ti粉末,由此,烧结体的硬度明显增加。
[氧气流量比率与氮量及氧量之间的关系]
以纯Ti粉末(平均粒径:28μm、纯度>95%)为起始原料,在改变氮气和氧气的混合比并使其流入管状炉内的状态下,投入Ti原料粉末,在600℃进行60分钟的加热处理。测定了包含于所得的各Ti粉末的氮量、氧量。其结果如图8及表6所示。
[表6]
氮气流量(lit/min) | 3 | 2.94 | 2.85 | 2.76 | 2.7 | 2.55 | 2.4 | 2.25 |
氧气流量(lit/min) | 0 | 0.06 | 0.15 | 0.24 | 0.3 | 0.45 | 0.6 | 0.75 |
氧气流量比率(%) | 0 | 2 | 5 | 8 | 10 | 15 | 20 | 25 |
氮量(质量%) | 0.518 | 0.512 | 0.519 | 0.522 | 0.514 | 0.491 | 0.465 | 0.433 |
氧量(质量%) | 0.225 | 0.232 | 0.236 | 0.242 | 0.246 | 0.278 | 0.292 | 0.319 |
通过图8和表6可以明确得知,在氧气的比率为10vol.%以下的条件下,氧量没有明显增加,仅氮原子向Ti粉末的基质中固溶。另一方面,当氧气的比率超过15vol.%时,氧量增加,能够向Ti粉末的基质中固溶氮和氧两种原子。由此,根据本制备方法,能够通过调整热处理气氛中的氮气量和氧气量的混合比率,制备不仅固溶氮原子,也固溶氧原子的Ti粉末。
产业上的可利用性
本发明能够有利地被用于制备氮在基质中均匀地扩散并固溶、维持适当的延展性的高强度固溶有氮的钛粉末材料以及钛材。
Claims (5)
1.一种固溶有氮的钛粉末材料的制备方法,其特征在于,
在含氮的气氛中加热由钛粉末粒子构成的钛粉末材料并使氮原子固溶于所述钛粉末粒子的基质中。
2.根据权利要求1所述的固溶有氮的钛粉末材料的制备方法,其中,
用于使所述氮原子固溶于钛粉末粒子的基质中的加热温度为400℃以上且800℃以下。
3.一种固溶有氮的钛粉末材料,是通过权利要求1或2所述的方法制备的固溶有氮的钛粉末材料,
所述各钛粉末粒子的含氮量在质量基准下为0.1%~0.65%。
4.一种钛材,其通过使用权利要求3所述的固溶有氮的钛粉末材料形成规定的形状。
5.根据权利要求4所述的钛材,其中,
所述钛材为纯Ti粉末挤出材,相对于挤出材整体的含氮量在质量基准下为0.1%~0.65%,断裂伸长率为10%以上。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014011362 | 2014-01-24 | ||
JP2014-011362 | 2014-01-24 | ||
PCT/JP2014/084530 WO2015111361A1 (ja) | 2014-01-24 | 2014-12-26 | 窒素固溶チタン粉末材料、チタン素材及び窒素固溶チタン粉末材料の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106413944A true CN106413944A (zh) | 2017-02-15 |
CN106413944B CN106413944B (zh) | 2019-06-14 |
Family
ID=53681177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480073907.9A Active CN106413944B (zh) | 2014-01-24 | 2014-12-26 | 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10213837B2 (zh) |
EP (1) | EP3097998B1 (zh) |
JP (1) | JP6261618B2 (zh) |
CN (1) | CN106413944B (zh) |
BR (1) | BR112016016577B1 (zh) |
MX (1) | MX2016009440A (zh) |
WO (1) | WO2015111361A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112048638A (zh) * | 2020-07-29 | 2020-12-08 | 北京科技大学 | 钛基合金粉末及制备方法、钛基合金制件的制备方法 |
TWI765962B (zh) * | 2017-02-22 | 2022-06-01 | 學校法人豐田學園 | 金屬製品的製造方法 |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015105024A1 (ja) * | 2014-01-10 | 2015-07-16 | 勝義 近藤 | チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法 |
JP2015160970A (ja) * | 2014-02-26 | 2015-09-07 | 学校法人立命館 | 金属材料およびその製造方法 |
JP6675325B2 (ja) | 2014-05-16 | 2020-04-01 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | 車両用シャーシ用のモジュール式に形成されたノード及びそれらの使用方法 |
CA2953815A1 (en) | 2014-07-02 | 2016-01-07 | Divergent Technologies, Inc. | Systems and methods for fabricating joint members |
JP6669471B2 (ja) * | 2015-11-02 | 2020-03-18 | 勝義 近藤 | 窒素固溶チタン焼結体の製造方法 |
JP2019527138A (ja) | 2016-06-09 | 2019-09-26 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | アークおよびノードの設計ならびに製作のためのシステムおよび方法 |
JP6564763B2 (ja) * | 2016-12-27 | 2019-08-21 | 勝義 近藤 | 焼結刃物素材およびその製造方法 |
US11155005B2 (en) | 2017-02-10 | 2021-10-26 | Divergent Technologies, Inc. | 3D-printed tooling and methods for producing same |
US10759090B2 (en) | 2017-02-10 | 2020-09-01 | Divergent Technologies, Inc. | Methods for producing panels using 3D-printed tooling shells |
US10898968B2 (en) | 2017-04-28 | 2021-01-26 | Divergent Technologies, Inc. | Scatter reduction in additive manufacturing |
US10703419B2 (en) | 2017-05-19 | 2020-07-07 | Divergent Technologies, Inc. | Apparatus and methods for joining panels |
US11358337B2 (en) | 2017-05-24 | 2022-06-14 | Divergent Technologies, Inc. | Robotic assembly of transport structures using on-site additive manufacturing |
US11123973B2 (en) | 2017-06-07 | 2021-09-21 | Divergent Technologies, Inc. | Interconnected deflectable panel and node |
US10919230B2 (en) | 2017-06-09 | 2021-02-16 | Divergent Technologies, Inc. | Node with co-printed interconnect and methods for producing same |
US10781846B2 (en) | 2017-06-19 | 2020-09-22 | Divergent Technologies, Inc. | 3-D-printed components including fasteners and methods for producing same |
US10994876B2 (en) | 2017-06-30 | 2021-05-04 | Divergent Technologies, Inc. | Automated wrapping of components in transport structures |
US11022375B2 (en) | 2017-07-06 | 2021-06-01 | Divergent Technologies, Inc. | Apparatus and methods for additively manufacturing microtube heat exchangers |
US10895315B2 (en) | 2017-07-07 | 2021-01-19 | Divergent Technologies, Inc. | Systems and methods for implementing node to node connections in mechanized assemblies |
US10940609B2 (en) | 2017-07-25 | 2021-03-09 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured endoskeleton-based transport structures |
US10751800B2 (en) | 2017-07-25 | 2020-08-25 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured exoskeleton-based transport structures |
US10605285B2 (en) | 2017-08-08 | 2020-03-31 | Divergent Technologies, Inc. | Systems and methods for joining node and tube structures |
US10357959B2 (en) | 2017-08-15 | 2019-07-23 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured identification features |
US11306751B2 (en) | 2017-08-31 | 2022-04-19 | Divergent Technologies, Inc. | Apparatus and methods for connecting tubes in transport structures |
US10960611B2 (en) | 2017-09-06 | 2021-03-30 | Divergent Technologies, Inc. | Methods and apparatuses for universal interface between parts in transport structures |
US11292058B2 (en) | 2017-09-12 | 2022-04-05 | Divergent Technologies, Inc. | Apparatus and methods for optimization of powder removal features in additively manufactured components |
US10814564B2 (en) | 2017-10-11 | 2020-10-27 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
US10668816B2 (en) | 2017-10-11 | 2020-06-02 | Divergent Technologies, Inc. | Solar extended range electric vehicle with panel deployment and emitter tracking |
US11786971B2 (en) | 2017-11-10 | 2023-10-17 | Divergent Technologies, Inc. | Structures and methods for high volume production of complex structures using interface nodes |
US10926599B2 (en) | 2017-12-01 | 2021-02-23 | Divergent Technologies, Inc. | Suspension systems using hydraulic dampers |
US11110514B2 (en) | 2017-12-14 | 2021-09-07 | Divergent Technologies, Inc. | Apparatus and methods for connecting nodes to tubes in transport structures |
US11085473B2 (en) | 2017-12-22 | 2021-08-10 | Divergent Technologies, Inc. | Methods and apparatus for forming node to panel joints |
US11534828B2 (en) | 2017-12-27 | 2022-12-27 | Divergent Technologies, Inc. | Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits |
US11420262B2 (en) | 2018-01-31 | 2022-08-23 | Divergent Technologies, Inc. | Systems and methods for co-casting of additively manufactured interface nodes |
US10751934B2 (en) | 2018-02-01 | 2020-08-25 | Divergent Technologies, Inc. | Apparatus and methods for additive manufacturing with variable extruder profiles |
US11224943B2 (en) | 2018-03-07 | 2022-01-18 | Divergent Technologies, Inc. | Variable beam geometry laser-based powder bed fusion |
US11267236B2 (en) | 2018-03-16 | 2022-03-08 | Divergent Technologies, Inc. | Single shear joint for node-to-node connections |
US11872689B2 (en) | 2018-03-19 | 2024-01-16 | Divergent Technologies, Inc. | End effector features for additively manufactured components |
US11254381B2 (en) | 2018-03-19 | 2022-02-22 | Divergent Technologies, Inc. | Manufacturing cell based vehicle manufacturing system and method |
US11408216B2 (en) | 2018-03-20 | 2022-08-09 | Divergent Technologies, Inc. | Systems and methods for co-printed or concurrently assembled hinge structures |
US11613078B2 (en) | 2018-04-20 | 2023-03-28 | Divergent Technologies, Inc. | Apparatus and methods for additively manufacturing adhesive inlet and outlet ports |
US11214317B2 (en) | 2018-04-24 | 2022-01-04 | Divergent Technologies, Inc. | Systems and methods for joining nodes and other structures |
US11020800B2 (en) | 2018-05-01 | 2021-06-01 | Divergent Technologies, Inc. | Apparatus and methods for sealing powder holes in additively manufactured parts |
US10682821B2 (en) | 2018-05-01 | 2020-06-16 | Divergent Technologies, Inc. | Flexible tooling system and method for manufacturing of composite structures |
US11389816B2 (en) | 2018-05-09 | 2022-07-19 | Divergent Technologies, Inc. | Multi-circuit single port design in additively manufactured node |
US10691104B2 (en) | 2018-05-16 | 2020-06-23 | Divergent Technologies, Inc. | Additively manufacturing structures for increased spray forming resolution or increased fatigue life |
US11590727B2 (en) | 2018-05-21 | 2023-02-28 | Divergent Technologies, Inc. | Custom additively manufactured core structures |
US11441586B2 (en) | 2018-05-25 | 2022-09-13 | Divergent Technologies, Inc. | Apparatus for injecting fluids in node based connections |
US11035511B2 (en) | 2018-06-05 | 2021-06-15 | Divergent Technologies, Inc. | Quick-change end effector |
US11292056B2 (en) | 2018-07-06 | 2022-04-05 | Divergent Technologies, Inc. | Cold-spray nozzle |
US11269311B2 (en) | 2018-07-26 | 2022-03-08 | Divergent Technologies, Inc. | Spray forming structural joints |
US10836120B2 (en) | 2018-08-27 | 2020-11-17 | Divergent Technologies, Inc . | Hybrid composite structures with integrated 3-D printed elements |
US11433557B2 (en) | 2018-08-28 | 2022-09-06 | Divergent Technologies, Inc. | Buffer block apparatuses and supporting apparatuses |
US11826953B2 (en) | 2018-09-12 | 2023-11-28 | Divergent Technologies, Inc. | Surrogate supports in additive manufacturing |
US11072371B2 (en) | 2018-10-05 | 2021-07-27 | Divergent Technologies, Inc. | Apparatus and methods for additively manufactured structures with augmented energy absorption properties |
US11260582B2 (en) | 2018-10-16 | 2022-03-01 | Divergent Technologies, Inc. | Methods and apparatus for manufacturing optimized panels and other composite structures |
US12115583B2 (en) | 2018-11-08 | 2024-10-15 | Divergent Technologies, Inc. | Systems and methods for adhesive-based part retention features in additively manufactured structures |
US11504912B2 (en) | 2018-11-20 | 2022-11-22 | Divergent Technologies, Inc. | Selective end effector modular attachment device |
USD911222S1 (en) | 2018-11-21 | 2021-02-23 | Divergent Technologies, Inc. | Vehicle and/or replica |
US11449021B2 (en) | 2018-12-17 | 2022-09-20 | Divergent Technologies, Inc. | Systems and methods for high accuracy fixtureless assembly |
US11529741B2 (en) | 2018-12-17 | 2022-12-20 | Divergent Technologies, Inc. | System and method for positioning one or more robotic apparatuses |
US10663110B1 (en) | 2018-12-17 | 2020-05-26 | Divergent Technologies, Inc. | Metrology apparatus to facilitate capture of metrology data |
US11885000B2 (en) | 2018-12-21 | 2024-01-30 | Divergent Technologies, Inc. | In situ thermal treatment for PBF systems |
US11203240B2 (en) | 2019-04-19 | 2021-12-21 | Divergent Technologies, Inc. | Wishbone style control arm assemblies and methods for producing same |
US11912339B2 (en) | 2020-01-10 | 2024-02-27 | Divergent Technologies, Inc. | 3-D printed chassis structure with self-supporting ribs |
US11590703B2 (en) | 2020-01-24 | 2023-02-28 | Divergent Technologies, Inc. | Infrared radiation sensing and beam control in electron beam additive manufacturing |
US11479015B2 (en) | 2020-02-14 | 2022-10-25 | Divergent Technologies, Inc. | Custom formed panels for transport structures and methods for assembling same |
US11884025B2 (en) | 2020-02-14 | 2024-01-30 | Divergent Technologies, Inc. | Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations |
US11535322B2 (en) | 2020-02-25 | 2022-12-27 | Divergent Technologies, Inc. | Omni-positional adhesion device |
US11421577B2 (en) | 2020-02-25 | 2022-08-23 | Divergent Technologies, Inc. | Exhaust headers with integrated heat shielding and thermal syphoning |
US11413686B2 (en) | 2020-03-06 | 2022-08-16 | Divergent Technologies, Inc. | Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components |
KR20230035571A (ko) | 2020-06-10 | 2023-03-14 | 디버전트 테크놀로지스, 인크. | 적응형 생산 시스템 |
US11850804B2 (en) | 2020-07-28 | 2023-12-26 | Divergent Technologies, Inc. | Radiation-enabled retention features for fixtureless assembly of node-based structures |
US11806941B2 (en) | 2020-08-21 | 2023-11-07 | Divergent Technologies, Inc. | Mechanical part retention features for additively manufactured structures |
WO2022066671A1 (en) | 2020-09-22 | 2022-03-31 | Divergent Technologies, Inc. | Methods and apparatuses for ball milling to produce powder for additive manufacturing |
US12083596B2 (en) | 2020-12-21 | 2024-09-10 | Divergent Technologies, Inc. | Thermal elements for disassembly of node-based adhesively bonded structures |
US11872626B2 (en) | 2020-12-24 | 2024-01-16 | Divergent Technologies, Inc. | Systems and methods for floating pin joint design |
US11947335B2 (en) | 2020-12-30 | 2024-04-02 | Divergent Technologies, Inc. | Multi-component structure optimization for combining 3-D printed and commercially available parts |
US11928966B2 (en) | 2021-01-13 | 2024-03-12 | Divergent Technologies, Inc. | Virtual railroad |
US20220288850A1 (en) | 2021-03-09 | 2022-09-15 | Divergent Technologies, Inc. | Rotational additive manufacturing systems and methods |
WO2022226411A1 (en) | 2021-04-23 | 2022-10-27 | Divergent Technologies, Inc. | Removal of supports, and other materials from surface, and within hollow 3d printed parts |
US11865617B2 (en) | 2021-08-25 | 2024-01-09 | Divergent Technologies, Inc. | Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110734A (ja) * | 1984-11-02 | 1986-05-29 | Shinroku Saito | チタン系複合材料の製造方法 |
JPH04218634A (ja) * | 1990-05-18 | 1992-08-10 | Toyota Motor Corp | Ti−Al系合金およびその製造方法 |
CN1214086A (zh) * | 1996-03-26 | 1999-04-14 | 西铁城时计株式会社 | 钛或钛合金部件及其表面处理方法 |
JP2009280842A (ja) * | 2008-05-20 | 2009-12-03 | Mitsubishi Electric Corp | 放電表面処理用電極の製造方法および放電表面処理用電極 |
CN101602108A (zh) * | 2009-07-10 | 2009-12-16 | 西北工业大学 | 一种制备钛基硬质材料粉末的方法 |
JP4408184B2 (ja) * | 2001-03-26 | 2010-02-03 | 株式会社豊田中央研究所 | チタン合金およびその製造方法 |
WO2012169305A1 (ja) * | 2011-06-07 | 2012-12-13 | 日本発條株式会社 | チタン合金部材およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6360296A (ja) * | 1986-08-30 | 1988-03-16 | Nippon Steel Corp | 耐錆性に優れた表面処理鋼板の製造方法 |
JPS6360269A (ja) * | 1986-09-01 | 1988-03-16 | Nippon Steel Corp | 金属チタンの熱処理方法 |
US8158964B2 (en) * | 2009-07-13 | 2012-04-17 | Seagate Technology Llc | Schottky diode switch and memory units containing the same |
JP5808894B2 (ja) | 2010-08-20 | 2015-11-10 | 日本発條株式会社 | 高強度チタン合金部材およびその製造方法 |
JP5871490B2 (ja) * | 2011-06-09 | 2016-03-01 | 日本発條株式会社 | チタン合金部材およびその製造方法 |
-
2014
- 2014-12-26 CN CN201480073907.9A patent/CN106413944B/zh active Active
- 2014-12-26 EP EP14879502.4A patent/EP3097998B1/en active Active
- 2014-12-26 JP JP2015558769A patent/JP6261618B2/ja active Active
- 2014-12-26 MX MX2016009440A patent/MX2016009440A/es unknown
- 2014-12-26 WO PCT/JP2014/084530 patent/WO2015111361A1/ja active Application Filing
- 2014-12-26 BR BR112016016577-2A patent/BR112016016577B1/pt active IP Right Grant
- 2014-12-26 US US15/113,637 patent/US10213837B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110734A (ja) * | 1984-11-02 | 1986-05-29 | Shinroku Saito | チタン系複合材料の製造方法 |
JPH04218634A (ja) * | 1990-05-18 | 1992-08-10 | Toyota Motor Corp | Ti−Al系合金およびその製造方法 |
CN1214086A (zh) * | 1996-03-26 | 1999-04-14 | 西铁城时计株式会社 | 钛或钛合金部件及其表面处理方法 |
JP4408184B2 (ja) * | 2001-03-26 | 2010-02-03 | 株式会社豊田中央研究所 | チタン合金およびその製造方法 |
JP2009280842A (ja) * | 2008-05-20 | 2009-12-03 | Mitsubishi Electric Corp | 放電表面処理用電極の製造方法および放電表面処理用電極 |
CN101602108A (zh) * | 2009-07-10 | 2009-12-16 | 西北工业大学 | 一种制备钛基硬质材料粉末的方法 |
WO2012169305A1 (ja) * | 2011-06-07 | 2012-12-13 | 日本発條株式会社 | チタン合金部材およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
L.LIU等: "Surface Hardening of Ti Alloys by Gas-Phase Nitridation", 《METALLURGICAL AND MATERIALS TRANSACTIONS A》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765962B (zh) * | 2017-02-22 | 2022-06-01 | 學校法人豐田學園 | 金屬製品的製造方法 |
CN112048638A (zh) * | 2020-07-29 | 2020-12-08 | 北京科技大学 | 钛基合金粉末及制备方法、钛基合金制件的制备方法 |
CN112048638B (zh) * | 2020-07-29 | 2022-04-22 | 北京科技大学 | 钛基合金粉末及制备方法、钛基合金制件的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3097998A4 (en) | 2017-09-20 |
CN106413944B (zh) | 2019-06-14 |
BR112016016577B1 (pt) | 2021-05-04 |
JP6261618B2 (ja) | 2018-01-17 |
WO2015111361A1 (ja) | 2015-07-30 |
EP3097998B1 (en) | 2024-02-07 |
BR112016016577A2 (pt) | 2017-09-26 |
JPWO2015111361A1 (ja) | 2017-03-23 |
MX2016009440A (es) | 2016-10-28 |
EP3097998A1 (en) | 2016-11-30 |
US10213837B2 (en) | 2019-02-26 |
US20170008087A1 (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106413944A (zh) | 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法 | |
EP2527478B1 (en) | Secondary titanium alloy and method for manufacturing same | |
Kafkas et al. | Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding | |
Bolzoni et al. | Study of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel addition | |
WO2010122960A1 (ja) | 高強度銅合金 | |
TW201833346A (zh) | 用於製造雙相經燒結不銹鋼之不銹鋼粉末 | |
CN102549181A (zh) | 用于高强度应用的近β钛合金及其制备方法 | |
WO2016149533A1 (en) | Metal matrix composite | |
JP2013019054A (ja) | 高強度−高剛性ベータチタニウム合金を製造する方法 | |
CN108179317A (zh) | 一种700℃用高性能易加工钛材的制备方法 | |
JP5759426B2 (ja) | チタン合金及びその製造方法 | |
JP5855435B2 (ja) | α+β型またはβ型チタン合金およびその製造方法 | |
CN105506379A (zh) | 一种损伤容限中强钛合金 | |
WO2017045146A1 (en) | Powder metallurgy titanium alloys | |
Raynova et al. | The effect of thermomechanical treatments on the properties of powder metallurgy Ti–5Fe alloy | |
CN105400993B (zh) | 一种耐高速冲击低成本钛合金 | |
CN109732084B (zh) | 一种铁钛钼合金及其制备方法 | |
CN109794606B (zh) | 一种钛合金及其制备方法 | |
CN106756377A (zh) | 一种W/TiNi记忆合金复合材料及其制备方法 | |
JP2019116688A (ja) | 粉末高速度工具鋼 | |
Abakumov et al. | High performance titanium powder metallurgy components produced from hydrogenated titanium powder by low cost blended elemental approach | |
CN101886190B (zh) | 一种强韧性钛合金及其制备方法 | |
US20200308686A1 (en) | Ternary Ti-Zr-O Alloys, Methods for Producing Same and Associated Utilizations Thereof | |
JP6669471B2 (ja) | 窒素固溶チタン焼結体の製造方法 | |
US20120118433A1 (en) | Method of modifying thermal and electrical properties of multi-component titanium alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |