CN108695385A - 一种基于Si衬底的GaN基射频器件外延结构及其制造方法 - Google Patents

一种基于Si衬底的GaN基射频器件外延结构及其制造方法 Download PDF

Info

Publication number
CN108695385A
CN108695385A CN201810784434.3A CN201810784434A CN108695385A CN 108695385 A CN108695385 A CN 108695385A CN 201810784434 A CN201810784434 A CN 201810784434A CN 108695385 A CN108695385 A CN 108695385A
Authority
CN
China
Prior art keywords
gan
layer
layers
substrates
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810784434.3A
Other languages
English (en)
Other versions
CN108695385B (zh
Inventor
王洪
周泉斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Original Assignee
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Zhongshan Institute of Modern Industrial Technology of South China University of Technology filed Critical South China University of Technology SCUT
Priority to CN201810784434.3A priority Critical patent/CN108695385B/zh
Publication of CN108695385A publication Critical patent/CN108695385A/zh
Priority to US17/253,626 priority patent/US11637197B2/en
Priority to PCT/CN2019/106032 priority patent/WO2020015764A1/zh
Application granted granted Critical
Publication of CN108695385B publication Critical patent/CN108695385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种基于Si衬底的GaN基射频器件外延结构及其制造方法。该外延结构从下至上由依次层叠的Si衬底、AlN成核层、AlGaN缓冲层、GaN:Fe/GaN高阻层、GaN超晶格层、GaN沟道层、AlGaN势垒层和GaN帽层组成;GaN:Fe/GaN高阻层由故意铁掺杂GaN层和非故意掺杂GaN层交替连接组成;GaN超晶格层由低压/低V/III比GaN层和高压/高V/III比GaN层周期性交替连接组成。本发明外延结构晶体质量高、缓冲层背景载流子浓度低、沟道载流子限域性好、泄漏电流小,制备的器件具有高击穿电压、高电流密度、低关态漏电、以及优良的夹断特性,且高温、高频下性能退化小,制造成本低。

Description

一种基于Si衬底的GaN基射频器件外延结构及其制造方法
技术领域
本发明涉及半导体器件,特别是涉及一种基于Si衬底的GaN基射频器件外延结构及其制造 方法,该GaN基射频器件外延结构可用于适用于高频率、高功率的无线通信、雷达等领域;属 于微电子技术领域。
背景技术
随着现代武器装备和航空航天、核能、通信技术、汽车电子、开关电源的发展,对半导体器 件的性能提出了更高的要求。作为宽禁带半导体材料的典型代表,GaN基材料具有禁带宽度大、 电子饱和漂移速度高、临界击穿场强高、热导率高、稳定性好、耐腐蚀、抗辐射等特点,可用于 制作高温、高频及大功率电子器件。另外,GaN还具有优良的电子特性,可以和AlGaN形成调制 掺杂的AlGaN/GaN异质结构,该结构在室温下可以获得高于1500cm2/Vs的电子迁移率,以及高 达3×107cm/s的峰值电子速度和2×107cm/s的饱和电子速度,并获得比第二代化合物半导体异 质结构更高的二维电子气密度,被誉为是研制微波功率器件的理想材料。因此,基于AlGaN/GaN 异质结的高电子迁移率晶体管HEMT在微波大功率器件方面具有非常好的应用前景。
SiC和Si是GaN基微波功率器件的主要衬底材料。其中,SiC衬底材料具有晶格失配小、位 错密度低、导热性能好等特点,在SiC衬底上生长的GaN材料晶体质量高、漏电低,同时,由于 SiC衬底导热性能好,能有效降低高功率密度的GaN基微波功率器件的自热效应。因此,SiC是 制作高频、大功率GaN基微波功率器件的主要衬底材料。SiC衬底材料的主要制约因素是成本较 高,导致基于SiC衬底的GaN基微波功率目前只能应用在有源相控阵雷达、卫星等军用领域。
相较于SiC衬底,Si衬底在低成本和大晶圆制备方面颇具优势,大尺寸(>12寸的Si衬底制 备技术已十分成熟,同时,基于Si衬底的GaN材料可与Si工艺兼容从而实现大规模量产。因此, 在低成本、高产能需求的通信卫星、低功率器件、有线电视等商业领域,基于Si衬底的GaN材 料具更高竞争力。目前,在大尺寸Si衬底上生长平整的GaN基外延材料的主要困难是,由于GaN 和Si衬底之间存在巨大的晶格失配(‐17%和热失配(116%,导致晶圆翘曲度高、材料均匀性差、 GaN晶体质量差,所以缺陷密度高(包括位错和背景杂质、进而材料的漏电高,造成器件的可靠 性问题。
发明内容
本发明的目的在于克服上述已有技术的缺陷,从器件纵向结构的优化角度提出一种基于Si 衬底的GaN基射频器件外延结构及其制造方法,提高外延材料晶体质量和性能,减小材料漏电, 降低工艺难度,提高器件的可靠性。
本发明的目的至少通过如下技术方案实现。
一种基于Si衬底的GaN基射频器件外延结构,从下至上由依次层叠的Si衬底、AlN成核层、 AlGaN缓冲层、GaN:Fe/GaN高阻层、GaN超晶格层、GaN沟道层、AlGaN势垒层和GaN帽层 组成;其中,GaN:Fe/GaN高阻层由故意铁掺杂GaN层和非故意掺杂GaN层交替连接组成;所 述的故意铁掺杂GaN层和非故意掺杂GaN层每层的厚度都为100nm~200nm;GaN超晶格层由 低压/低V/III比GaN层和高压/高V/III比GaN层周期性交替连接组成;所述的低压/低V/III比GaN 层和高压/高V/III比GaN层每层的厚度都为20~50nm。
为进一步实现本发明目的,优选地,所述的低压/低V/III比GaN层和高压/高V/III比GaN层 的重复周期为3~5个周期。
优选地,所述的故意铁掺杂GaN层和非故意掺杂GaN层的重复周期为3~5个周期,故意铁 掺杂GaN层的Fe杂质的掺杂浓度为1E19cm‐3~1E20cm‐3
优选地,所述的AlGaN缓冲层总共三层,其中从下至上每层的Al元素摩尔含量百分比依次 减小,且都在20~70%的范围内,厚度依次增加,且都在200nm~800nm的范围内。
优选地,所述的Si衬底为圆形,直径为6inch‐10inch。
优选地,所述的Si衬底、AlN成核层、AlGaN缓冲层、GaN沟道层、AlGaN势垒层和GaN帽 层的厚度分别为0.5‐2mm、0.2‐1μm、600‐2400nm、100‐500nm、10‐30nm和2‐5nm。
所述的基于Si衬底的GaN基射频器件外延结构的制造方法,包括如下步骤:
1)将Si衬底放入金属有机化学气相沉积设备中,在反应室中对Si衬底表面进行退火处理;
2)在衬底上外延生长AlN成核层;
3)在AlN成核层的基础上外延生长AlGaN缓冲层,共三层,其Al元素的摩尔含量百分依次 下降,且都在20%~70%的范围内,厚度依次增加,且都在200nm~800nm的范围内;
4)循环重复以下步骤4a)和4b)多次,在AlGaN缓冲层基础上外延GaN:Fe/GaN高阻层;
4a)以Cp2Fe作为Fe掺杂源,生长故意铁掺杂GaN层,Fe杂质的掺杂浓度为1E19cm‐3~ 1E20cm‐3,厚度为100nm~200nm;
4b)在故意铁掺杂GaN层上,不通入Cp2Fe,生长非故意掺杂GaN层,厚度为100nm~200nm;
5)循环重复以下步骤5a)和5b)多次,在GaN:Fe/GaN高阻层外延生长上GaN超晶格层;
5a)以低压和低V/III比的生长条件,生长低压/低V/III比GaN层,生长压力为50Torr~100Torr, V/III比小于50,厚度为20~50nm;
5b)以高压和高V/III比的生长条件,生长高压/高V/III比GaN层,生长压力为300Torr~400 Torr,V/III比大于110,厚度为20~50nm:
6)外延生长GaN沟道层;
7)外延生长AlGaN势垒层;
8)外延生长GaN帽层。
优选地,步骤1)所述的退火处理的温度高于1100摄氏度,时间大于10分钟。
优选地,步骤2)所述的AlN成核层为后续生长提供成核节点,温度高于1200摄氏度。
优选地,步骤7)所述的AlGaN势垒层中Al元素的摩尔含量百分比为20~30%。
与现有技术相比,本发明具有如下优点和技术效果:
该外延是基于Si衬底上的GaN基射频器件外延结构,通过优化工艺条件,一方面抑制材料 失效,另一方面提高薄膜质量,在大尺寸的Si衬底上制备的外延具有晶体质量高、沟道载流子 限域性好、漏电流小的特点。采用发明的外延结构制备的器件高击穿电压、高电流密度、低关态 漏电、优良的夹断特性,且高温下性能退化小。本发明的基于Si衬底的GaN基射频器件外延结 构制造工艺简单,重复性好,适用于高频率、高功率的无线通信、雷达等应用。
附图说明
图1~图8是本发明实例中基于Si衬底的GaN基射频器件外延结构的制备过程示意图。
图9是本发明实施例1中GaN:Fe/GaN高阻层的Cp2Fe的流量变化曲线。
图10本发明实施例1中GaN超晶格层压力变化曲线图。
图11是本发明实施例1中GaN超晶格层的V/III比的变化曲线图。
图12是本发明的外延结构和现有技术外延结构的源漏电极的漏电曲线;
图中示出:Si衬底1、AlN成核层2、第一AlGaN缓冲层3、第二AlGaN缓冲层4、第三AlGaN 缓冲层5、GaN:Fe/GaN高阻层6、GaN超晶格层7、GaN沟道层8、AlGaN势垒层9、GaN帽层10。
具体实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此, 需指出的是,以下若有未特别详细说明之过程或工艺参数,均是本领域技术人员可参照现有技术 实现的。
参照图8,一种基于Si衬底的GaN基高压HEMT器件外延结构,下至上包括Si衬底1、AlN 成核层2、第一AlGaN缓冲层3、第二AlGaN缓冲层4、第三AlGaN缓冲层5、GaN:Fe/GaN高阻层6、GaN超晶格层7、GaN沟道层8、AlGaN势垒层9、GaN帽层10。其中,GaN:Fe/GaN 高阻层6由故意铁掺杂GaN层和非故意掺杂GaN层交替连接组成,GaN超晶格层7由低压/低 V/III比GaN层和高压/高V/III比GaN层周期性交替连接组成。低V/III比即低NH3流量、高TMGa 流量,反之,高V/III比即高NH3流量、低TMGa流量。
实施例1
Si衬底1为圆形,直径为8inch。Si衬底、AlN成核层、GaN沟道层、AlGaN势垒层和GaN帽层的厚度分别为1mm、0.5μm、300nm、20nm和3nm。
第一AlGaN缓冲层3、第二AlGaN缓冲层4和第三AlGaN缓冲层5总共三层,其中从下至上 每层的Al元素摩尔含量依次减小,分别为0.7、0.5和0.3,厚度依次增加,分别为300nm、500nm 和700nm。
GaN:Fe/GaN高阻层6由故意铁掺杂GaN层和非故意掺杂GaN层交替连接组成,故意铁掺 杂GaN层和非故意掺杂GaN层每层的厚度分别为100nm,周期为3个周期,故意铁掺杂GaN层 的Fe杂质的掺杂浓度为1E19cm‐3
GaN超晶格层7由低压和低V/III比条件下生长的低压/低V/III比GaN层和高压和高V/III比 条件下生长的高压/高V/III比GaN层周期性交替连接组成,低压/低V/III比GaN层和高压/高V/III 比GaN层每层的厚度分别为25nm,周期为5个周期。
如图1~图8,一种基于Si衬底的GaN基射频器件外延结构的制造方法,包括如下步骤:
步骤一,将Si衬底1放入金属有机化学气相沉积(MOCVD设备中,在反应室中对Si衬底1 表面进行退火处理,温度1200摄氏度,时间15分钟;所得结构如图1。
步骤二,AlN成核层2外延在Si衬底1上面;所得结构如图2。
步骤三,第一AlGaN缓冲层3、第二AlGaN缓冲层4、第三AlGaN缓冲层5依次外延在AlN 成核层2上面,一共三层,其Al元素摩尔含量依次下降,分别取值0.7、0.5和0.3,单层厚度依 次增加,分别取值为300nm、500nm和700nm;所得结构如图3。
步骤四,循环重复以下步骤4a)和4b)共3次,在第三AlGaN缓冲层5基础上外延GaN:Fe/GaN高阻层6,所得结构如图4。图9是本发明实施例1中GaN:Fe/GaN高阻层的Cp2Fe的 流量变化曲线。Cp2Fe的流量呈周期性变化,Fe杂质的掺杂浓度也呈周期性变化。生长故意铁掺 杂GaN层时,通入Cp2Fe,故意铁掺杂GaN层的电阻高,生长非故意掺杂GaN层时,不通入Cp2Fe, Cp2Fe的流量为零,Fe杂质的掺杂浓度为零,非故意掺杂GaN层的晶体质量高。二者交替生长, 得到较高电阻和晶体质量的GaN:Fe/GaN高阻层6。本实施例的Cp2Fe的流量变化曲线图9,可 以由设备上Cp2Fe的质量流量计监控数据得到。
4a)以二茂铁(Cp2Fe)作为Fe掺杂源,生长故意铁掺杂GaN层,Fe杂质的掺杂浓度为1E19cm‐3, 厚度为100nm;
4b)在故意铁掺杂GaN层上,不通入Cp2Fe,生长非故意掺杂GaN层,厚度为100nm。
步骤五,循环重复以下步骤5a)和5b)5次,在GaN:Fe/GaN高阻层6外延生长上GaN超晶格层7,所得结构如图5。图10和图11是本实施例1中GaN超晶格层的压力和V/III比的变化曲线。压力和V/III比呈周期性变化,生长低压/低V/III比GaN层时,生长压力低、V/III比低, 生长高压/高V/III比GaN层时,生长压力高、V/III比高。二者交替生长,得到GaN超晶格层7。 本实施例的压力变化曲线图10可以由设备上压力控制器监控数据得到。本实施例的V/III变化曲 线图11可以由设备上氨气的质量流量计监控数据得到。
5a)以低压和低V/III比的生长条件,生长低压/低V/III比GaN层,生长压力为50Torr,V/III 比为50,厚度为25nm;
5b)以高压和高V/III比的生长条件,生长高压/高V/III比GaN层,生长压力为300Torr,V/III 为110,厚度为25nm。
步骤六,GaN沟道层8外延在GaN超晶格层7上面,厚度为300nm;所得结构如图6。
步骤七,AlGaN势垒层9外延在GaN沟道层8上面,其Al元素摩尔含量为25%,厚度为25nm; 所得结构如图7。
步骤八,GaN帽层10外延在AlGaN势垒层9上,厚度为3nm,所得结构如图8,为一种基于Si衬底的GaN基高压HEMT器件外延结构。
在实施例1所述的样品上制备电极后,采用安捷伦B1505A源表测试射频器件的关态I‐V曲 线,得到图12的结果。图12中横坐标为电压,单位为V,纵坐标为漏电流,单位为A。实线为 现有外延结构的漏电流曲线,虚线为本发明外延结构的漏电流曲线;从图中可见,相对于现有外 延结构,本实施例的样品击穿电压更高,大于510V,比现有外延结构高一个50V,同时,关态 漏电较小,低于10‐6A/mm,比现有外延结构低一个数量级,夹断特性更好。
实施例2
Si衬底1为圆形,直径为8inch。Si衬底、AlN成核层、GaN沟道层、AlGaN势垒层和GaN帽层的厚度分别为1mm、0.5μm、300nm、30nm和5nm。
第一AlGaN缓冲层3、第二AlGaN缓冲层4、第三AlGaN缓冲层5总共三层,其中从下至上 每层的Al元素摩尔含量依次减小,分别为0.7、0.5和0.3,厚度依次增加,分别为300nm、500nm 和700nm。
GaN:Fe/GaN高阻层6由故意铁掺杂GaN层和非故意掺杂GaN层交替连接组成,每层的厚 度为150nm,周期为5个周期,故意铁掺杂GaN层的Fe杂质的掺杂浓度为5E19cm‐3
GaN超晶格层7由低压和低V/III比条件下生长的低压/低V/III比GaN层和高压和高V/III比 条件下生长的高压/高V/III比GaN层周期性交替连接组成,每层的厚度为25nm,周期为5个周 期。
如图1~图8,一种基于Si衬底的GaN基射频器件外延结构的制造方法,包括如下步骤:
步骤一,将Si衬底放入金属有机化学气相沉积(MOCVD)设备中,在反应室中对Si衬底表 面进行退火处理,温度1200摄氏度,时间15分钟;
步骤二,AlN成核层2外延在Si衬底1上面;
步骤三,AlGaN缓冲层3‐5外延在AlN成核层2上面,一共三层,其Al元素摩尔含量依次下 降,分别取值0.7、0.5和0.3,单层厚度依次增加,分别取值为300nm、500nm和700nm;
步骤四,循环重复以下步骤4a)和4b)5次,在AlGaN缓冲层3‐5基础上外延GaN:Fe/GaN 高阻层6。
4a)以二茂铁Cp2Fe作为Fe掺杂源,生长故意铁Fe掺杂GaN层,Fe杂质的掺杂浓度为5E19cm‐3, 厚度为150nm;
4b)在故意铁Fe掺杂GaN层上,不通入Cp2Fe,生长非故意掺杂GaN层,厚度为150nm。
步骤五,循环重复以下步骤5a)和5b)5次,在GaN:Fe/GaN高阻层6外延生长上GaN超晶格层7。
5a)以低压和低V/III比的生长条件,生长低压/低V/III比GaN层,生长压力为50Torr,V/III
比为50,厚度为25nm;
5b)以高压和高V/III比的生长条件,生长高压/高V/III比GaN层,生长压力为300Torr,V/III 为110,厚度为25nm。
步骤六,GaN沟道层8外延在GaN超晶格层7上面,厚度为300nm;
步骤七,AlGaN势垒层9外延在GaN沟道层8上面,其Al元素摩尔含量为25%,厚度为25nm;
步骤八,GaN帽层10外延在AlGaN势垒层9上,厚度为3nm。
本实施例2与实施例1相比,GaN:Fe/GaN高阻层6的周期数更多、厚度更大、Fe杂质的 掺杂浓度更大,因此关态漏电比实施例1略低,击穿电压略高,击穿电压为600V,关态漏电较 为8x 10‐7A/mm。
实施例3
Si衬底1为圆形,直径为8inch。Si衬底、AlN成核层、GaN沟道层、AlGaN势垒层和GaN帽层的厚度分别为1mm、0.5μm、300nm、15nm和2nm。
AlGaN缓冲层3‐5总共三层,其中从下至上每层的Al元素摩尔含量依次减小,分别为0.7、 0.5和0.3,厚度依次增加,分别为300nm、500nm和700nm。
GaN:Fe/GaN高阻层6由故意铁Fe掺杂GaN层和非故意掺杂GaN层交替连接组成,每层 的厚度为100nm,周期为3个周期,故意铁Fe掺杂GaN层的Fe杂质的掺杂浓度为1E19cm‐3
GaN超晶格层7由低压和低V/III比条件下生长的低压/低V/III比GaN层和高压和高V/III比 条件下生长的高压/高V/III比GaN层周期性交替连接组成,每层的厚度为50nm,周期为5个周 期。
如图1~图8,一种基于Si衬底的GaN基射频器件外延结构的制造方法,包括如下步骤:
步骤一,将Si衬底放入金属有机化学气相沉积(MOCVD)设备中,在反应室中对Si衬底表 面进行退火处理,温度1200摄氏度,时间15分钟;
步骤二,AlN成核层2外延在Si衬底1上面;
步骤三,第一AlGaN缓冲层3、第二AlGaN缓冲层4和第三AlGaN缓冲层5依次外延在AlN 成核层2上面,一共三层,其Al元素摩尔含量依次下降,分别取值0.7、0.5和0.3,单层厚度依 次增加,分别取值为300nm、500nm和700nm;
步骤四,循环重复以下步骤4a)和4b)共3次,在第三AlGaN缓冲层5基础上外延GaN:Fe/GaN高阻层6。
4a)以二茂铁Cp2Fe作为Fe掺杂源,生长故意铁掺杂GaN层,Fe杂质的掺杂浓度为1E19cm‐3, 厚度为150nm;
4b)在故意铁掺杂GaN层上,不通入Cp2Fe,生长非故意掺杂GaN层,厚度为150nm。
步骤五,循环重复以下步骤5a)和5b)5次,在GaN:Fe/GaN高阻层6外延生长上GaN超晶格层7。
5a)以低压和低V/III比的生长条件,生长低压/低V/III比GaN层,生长压力为50Torr,V/III 比为50,厚度为50nm;
5b)以高压和高V/III比的生长条件,生长高压/高V/III比GaN层,生长压力为300Torr,V/III 为110,厚度为25nm。
步骤六,GaN沟道层8外延在GaN超晶格层7上面,厚度为300nm;
步骤七,AlGaN势垒层9外延在GaN沟道层8上面,其Al元素摩尔含量为25%,厚度为25nm;
步骤八,GaN帽层10外延在AlGaN势垒层9上,厚度为3nm。
本实施例3与实施例1相比,GaN超晶格层的厚度更大,晶体质量较实施例1的晶体质量更 好,XRD的002面摇摆曲线半峰宽为418arcsec,102面摇摆曲线半峰宽为464arcsec。
该外延是基于Si衬底上的GaN基射频器件外延结构,通过优化工艺条件,一方面抑制材料 失效,另一方面提高薄膜质量,在大尺寸的Si衬底上制备的外延具有晶体质量高、沟道载流子 限域性好、漏电流小的特点。采用发明的外延结构制备的器件高击穿电压、高电流密度、低关态 漏电、优良的夹断特性,且高温下性能退化小。本发明的基于Si衬底的GaN基射频器件外延结 构制造工艺简单,重复性好,适用于高频率、高功率的无线通信、雷达等应用。
本发明的外延结构,通过GaN:Fe/GaN高阻层和GaN超晶格层的结构,具有晶体质量高的 优点,沟道载流子限域性好、漏电流小的特点。采用发明的外延结构制备的器件,与现有的外延 结构相比,击穿电压高、电流密度高、关态漏电低、夹断特性优良,且高温下性能退化小。
需要说明的是,实施例不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了 解本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,对本发明进行形式和细节 上的各种修正和改变,这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。

Claims (10)

1.一种基于Si衬底的GaN基射频器件外延结构,其特征在于,所述的GaN基射频器件外延结构从下至上由依次层叠的Si衬底、AlN成核层、AlGaN缓冲层、GaN:Fe/GaN高阻层、GaN超晶格层、GaN沟道层、AlGaN势垒层和GaN帽层组成;其中,GaN:Fe/GaN高阻层由故意铁掺杂GaN层和非故意掺杂GaN层交替连接组成;所述的故意铁掺杂GaN层和非故意掺杂GaN层每层的厚度都为100nm~200nm;GaN超晶格层由低压/低V/III比GaN层和高压/高V/III比GaN层周期性交替连接组成;所述的低压/低V/III比GaN层和高压/高V/III比GaN层每层的厚度都为20~50nm。
2.根据权利要求1所述的基于Si衬底的GaN基射频器件外延结构,其特征在于,所述的低压/低V/III比GaN层和高压/高V/III比GaN层的重复周期为3~5个周期。
3.根据权利要求1所述的基于Si衬底的GaN基射频器件外延结构,其特征在于,所述的故意铁掺杂GaN层和非故意掺杂GaN层的重复周期为3~5个周期,故意铁掺杂GaN层的Fe杂质的掺杂浓度为1E19cm‐3~1E20cm‐3
4.根据权利要求1所述的基于Si衬底的GaN基射频器件外延结构,其特征在于,所述的AlGaN缓冲层总共三层,其中从下至上每层的Al元素摩尔含量百分比依次减小,且都在20~70%的范围内,厚度依次增加,且都在200nm~800nm的范围内。
5.根据权利要求1所述的基于Si衬底的GaN基射频器件外延结构,其特征在于,所述的Si衬底为圆形,直径为6inch‐10inch。
6.根据权利要求1所述的基于Si衬底的GaN基射频器件外延结构,其特征在于,所述的Si衬底、AlN成核层、AlGaN缓冲层、GaN沟道层、AlGaN势垒层和GaN帽层的厚度分别为0.5‐2mm、0.2‐1μm、600‐2400nm、100‐500nm、10‐30nm和2‐5nm。
7.根据权利要求1~6任一项所述的基于Si衬底的GaN基射频器件外延结构的制造方法,其特征在于包括如下步骤:
1)将Si衬底放入金属有机化学气相沉积设备中,在反应室中对Si衬底表面进行退火处理;
2)在衬底上外延生长AlN成核层;
3)在AlN成核层的基础上外延生长AlGaN缓冲层,共三层,其Al元素的摩尔含量百分依次下降,且都在20~70%的范围内,厚度依次增加,且都在200nm~800nm的范围内;
4)循环重复以下步骤4a)和4b)多次,在AlGaN缓冲层基础上外延GaN:Fe/GaN高阻层;
4a)以Cp2Fe作为Fe掺杂源,生长故意铁掺杂GaN层,Fe杂质的掺杂浓度为1E19cm‐3~1E20cm‐3,厚度为100nm~200nm;
4b)在故意铁掺杂GaN层上,不通入Cp2Fe,生长非故意掺杂GaN层,厚度为100nm~200nm;
5)循环重复以下步骤5a)和5b)多次,在GaN:Fe/GaN高阻层外延生长上GaN超晶格层;
5a)以低压和低V/III比的生长条件,生长低压/低V/III比GaN层,生长压力为50Torr~100Torr,V/III比小于50,厚度为20~50nm;
5b)以高压和高V/III比的生长条件,生长高压/高V/III比GaN层,生长压力为300Torr~400Torr,V/III比大于110,厚度为20~50nm:
6)外延生长GaN沟道层;
7)外延生长AlGaN势垒层;
8)外延生长GaN帽层。
8.根据权利要求7所述的基于Si衬底的GaN基射频器件外延结构的制造方法,其特征在于,步骤1)所述的退火处理的温度高于1100摄氏度,时间大于10分钟。
9.根据权利要求7所述的基于Si衬底的GaN基射频器件外延结构的制造方法,其特征在于,步骤2)所述的AlN成核层为后续生长提供成核节点,温度高于1200摄氏度。
10.根据权利要求7所述的基于Si衬底的GaN基射频器件外延结构的制造方法,其特征在于,步骤7)所述的AlGaN势垒层中Al元素的摩尔含量百分比为20~30%。
CN201810784434.3A 2018-07-17 2018-07-17 一种基于Si衬底的GaN基射频器件外延结构及其制造方法 Active CN108695385B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810784434.3A CN108695385B (zh) 2018-07-17 2018-07-17 一种基于Si衬底的GaN基射频器件外延结构及其制造方法
US17/253,626 US11637197B2 (en) 2018-07-17 2019-09-16 Epitaxial structure of GaN-based radio frequency device based on Si substrate and its manufacturing method
PCT/CN2019/106032 WO2020015764A1 (zh) 2018-07-17 2019-09-16 一种基于Si衬底的GaN基射频器件外延结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810784434.3A CN108695385B (zh) 2018-07-17 2018-07-17 一种基于Si衬底的GaN基射频器件外延结构及其制造方法

Publications (2)

Publication Number Publication Date
CN108695385A true CN108695385A (zh) 2018-10-23
CN108695385B CN108695385B (zh) 2024-04-05

Family

ID=63850721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810784434.3A Active CN108695385B (zh) 2018-07-17 2018-07-17 一种基于Si衬底的GaN基射频器件外延结构及其制造方法

Country Status (3)

Country Link
US (1) US11637197B2 (zh)
CN (1) CN108695385B (zh)
WO (1) WO2020015764A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600547A (zh) * 2019-09-19 2019-12-20 厦门市三安集成电路有限公司 氮化镓基半导体器件及其制作方法
WO2020015764A1 (zh) * 2018-07-17 2020-01-23 中山市华南理工大学现代产业技术研究院 一种基于Si衬底的GaN基射频器件外延结构及其制造方法
CN112736128A (zh) * 2020-12-31 2021-04-30 晶能光电(江西)有限公司 GaN基HEMT外延结构及其制备方法
TWI767425B (zh) * 2020-11-27 2022-06-11 合晶科技股份有限公司 氮化物磊晶片及其製造方法
CN115954378A (zh) * 2023-03-15 2023-04-11 江西兆驰半导体有限公司 氮化镓功率器件及其制备方法
CN116565003A (zh) * 2023-07-04 2023-08-08 江西兆驰半导体有限公司 一种外延片及其制备方法、高电子迁移率晶体管
CN116705947A (zh) * 2023-07-27 2023-09-05 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909077B (zh) * 2021-02-07 2022-03-29 电子科技大学 一种双异质结极化增强的准纵向GaN HEMT器件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136432A (zh) * 2006-09-01 2008-03-05 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
JP2011040766A (ja) * 2008-12-15 2011-02-24 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法
US20110062493A1 (en) * 2009-09-15 2011-03-17 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor device, schottky junction structure, and leakage current suppression method for schottky junction structure
KR20140139890A (ko) * 2013-05-28 2014-12-08 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
KR20150091706A (ko) * 2014-02-03 2015-08-12 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
CN105336769A (zh) * 2015-10-30 2016-02-17 江苏能华微电子科技发展有限公司 三级管用外延片及其制备方法
US20160211330A1 (en) * 2015-01-21 2016-07-21 National Chiao Tung University High electron mobility transistor
CN206210804U (zh) * 2016-09-27 2017-05-31 华南理工大学 一种具有GaN:C/GaN超晶格高阻层的HEMT结构
CN107068750A (zh) * 2016-12-31 2017-08-18 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
CN206697485U (zh) * 2016-12-31 2017-12-01 华南理工大学 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件
CN206834183U (zh) * 2016-12-31 2018-01-02 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构
CN208368514U (zh) * 2018-07-17 2019-01-11 中山市华南理工大学现代产业技术研究院 基于Si衬底的GaN基射频器件外延结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024075B2 (ja) 2010-07-30 2016-11-09 住友電気工業株式会社 半導体装置およびその製造方法
KR102111458B1 (ko) * 2013-06-25 2020-05-15 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
CN105390541A (zh) 2015-10-30 2016-03-09 江苏能华微电子科技发展有限公司 Hemt外延结构及其制备方法
CN106711212B (zh) 2016-12-31 2018-12-11 华南理工大学 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件及其制造方法
CN108695385B (zh) 2018-07-17 2024-04-05 中山市华南理工大学现代产业技术研究院 一种基于Si衬底的GaN基射频器件外延结构及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136432A (zh) * 2006-09-01 2008-03-05 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
JP2011040766A (ja) * 2008-12-15 2011-02-24 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法
US20110062493A1 (en) * 2009-09-15 2011-03-17 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor device, schottky junction structure, and leakage current suppression method for schottky junction structure
KR20140139890A (ko) * 2013-05-28 2014-12-08 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
KR20150091706A (ko) * 2014-02-03 2015-08-12 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
US20160211330A1 (en) * 2015-01-21 2016-07-21 National Chiao Tung University High electron mobility transistor
CN105336769A (zh) * 2015-10-30 2016-02-17 江苏能华微电子科技发展有限公司 三级管用外延片及其制备方法
CN206210804U (zh) * 2016-09-27 2017-05-31 华南理工大学 一种具有GaN:C/GaN超晶格高阻层的HEMT结构
CN107068750A (zh) * 2016-12-31 2017-08-18 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
CN206697485U (zh) * 2016-12-31 2017-12-01 华南理工大学 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件
CN206834183U (zh) * 2016-12-31 2018-01-02 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构
CN208368514U (zh) * 2018-07-17 2019-01-11 中山市华南理工大学现代产业技术研究院 基于Si衬底的GaN基射频器件外延结构

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015764A1 (zh) * 2018-07-17 2020-01-23 中山市华南理工大学现代产业技术研究院 一种基于Si衬底的GaN基射频器件外延结构及其制造方法
US11637197B2 (en) 2018-07-17 2023-04-25 Zhongshan Institute Of Modern Industrial Technology, South China University Of Technology Epitaxial structure of GaN-based radio frequency device based on Si substrate and its manufacturing method
CN110600547A (zh) * 2019-09-19 2019-12-20 厦门市三安集成电路有限公司 氮化镓基半导体器件及其制作方法
TWI767425B (zh) * 2020-11-27 2022-06-11 合晶科技股份有限公司 氮化物磊晶片及其製造方法
CN112736128A (zh) * 2020-12-31 2021-04-30 晶能光电(江西)有限公司 GaN基HEMT外延结构及其制备方法
CN115954378A (zh) * 2023-03-15 2023-04-11 江西兆驰半导体有限公司 氮化镓功率器件及其制备方法
CN116565003A (zh) * 2023-07-04 2023-08-08 江西兆驰半导体有限公司 一种外延片及其制备方法、高电子迁移率晶体管
CN116705947A (zh) * 2023-07-27 2023-09-05 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led
CN116705947B (zh) * 2023-07-27 2023-10-17 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led

Also Published As

Publication number Publication date
US11637197B2 (en) 2023-04-25
WO2020015764A1 (zh) 2020-01-23
US20210265493A1 (en) 2021-08-26
CN108695385B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN108695385A (zh) 一种基于Si衬底的GaN基射频器件外延结构及其制造方法
TWI606587B (zh) 碳摻雜半導體元件
CN100495724C (zh) 氮化镓基异质结场效应晶体管结构及制作方法
CN103066103B (zh) 硅衬底上的iii族氮化物的衬底击穿电压改进方法
CN101266999B (zh) 氮化镓基双异质结场效应晶体管结构及制作方法
JP2012142629A (ja) 炭化シリコン基板上のiii族窒化物エピタキシャル層
CN104600109A (zh) 一种高耐压氮化物半导体外延结构及其生长方法
KR20030023742A (ko) 질화 인듐 갈륨 채널의 고전자 이동도 트랜지스터 및 그제조 방법
CN102427084B (zh) 氮化镓基高电子迁移率晶体管及制作方法
CN105304783A (zh) 半导体装置
CN108400159A (zh) 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
KR102232558B1 (ko) 13족 질화물 복합 기판, 반도체 소자, 및 13족 질화물 복합 기판의 제조 방법
CN105047695B (zh) 用于高电子迁移率晶体管的高阻衬底以及生长方法
JP2003151996A (ja) 2次元電子ガスを用いた電子デバイス
CN208368514U (zh) 基于Si衬底的GaN基射频器件外延结构
WO2023024549A1 (zh) GaN基HEMT器件、器件外延结构及其制备方法
CN102222690B (zh) 氮化物系半导体晶片以及氮化物系半导体装置
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
CN100501951C (zh) 场效应晶体管、半导体器件、其制造方法和半导体晶体生长方法
CN106601790A (zh) 纵向调制掺杂氮化镓基场效应晶体管结构及其制作方法
CN108962981B (zh) 一种降低氮化镓基外延层中漏电的结构及其制备方法
CN114823303A (zh) 半导体器件及其制备方法
CN100470835C (zh) 含有ⅲ族元素基氮化物半导体的电子器件
CN112342524B (zh) 一种氮化镓高铝组分的外延生长方法
CN215377414U (zh) 氮化镓半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant