CN112909077B - 一种双异质结极化增强的准纵向GaN HEMT器件 - Google Patents

一种双异质结极化增强的准纵向GaN HEMT器件 Download PDF

Info

Publication number
CN112909077B
CN112909077B CN202110169319.7A CN202110169319A CN112909077B CN 112909077 B CN112909077 B CN 112909077B CN 202110169319 A CN202110169319 A CN 202110169319A CN 112909077 B CN112909077 B CN 112909077B
Authority
CN
China
Prior art keywords
layer
gan
conductive material
type gan
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110169319.7A
Other languages
English (en)
Other versions
CN112909077A (zh
Inventor
罗小蓉
郗路凡
魏杰
孙涛
邓思雨
贾艳江
廖德尊
张�成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110169319.7A priority Critical patent/CN112909077B/zh
Publication of CN112909077A publication Critical patent/CN112909077A/zh
Application granted granted Critical
Publication of CN112909077B publication Critical patent/CN112909077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于功率半导体技术领域,具体涉及一种双异质结极化增强的准纵向GaN HEMT器件。本发明相对于传统的GaN HEMT,采用P型GaN层提高二维空穴气浓度,耐压时双异质结界面处的二维电子气和空穴气分别耗尽,留下极性相反的固定极化电荷,电场线由正电荷指向负电荷,得到准矩形分布的横向电场;零偏时P型GaN层与二维空穴气共同阻断器件的纵向沟道,当P型GaN层被耗尽产生反型层且二维空穴气被耗尽时器件正常导通。本发明的有益效果为,相比于传统HEMT器件,本发明具有高阈值电压及高击穿电压的优势。

Description

一种双异质结极化增强的准纵向GaN HEMT器件
技术领域
本发明属于功率半导体技术领域,涉及一种双异质结极化增强的准纵向GaN HEMT(High Electron Mobility Transistor,高电子迁移率晶体管)。
背景技术
GaN相比于Si,具有更宽的禁带宽度、更高的电子饱和速度等优势,是目前半导体产业界研究的热点。Si衬底上外延AlGaN/GaN异质结材料用以制作HEMT器件可在性能、成本和可靠性方面取得良好的平衡,广泛应用于射频/微波和电力电子领域。GaN的材料特性使得GaN基得器件拥有较Si基器件更小得尺度和寄生效应,显著提高器件的工作频率,对于电子电子电路,可以实现新的拓扑或显著减小无源器件的尺寸,实现系统的小型化轻量化。
常规的GaN HEMT栅下存在高浓度2DEG,难以实现增强型,为了解决该问题,文献“Y.Uemoto et al.Gate Injection Transistor(GIT)—A Normally-Off AlGaN/GaNPower Transistor Using Conductivity Modulation[J].IEEE Transactions onElectron Devices”采用P-GaN栅极,在零栅压条件下耗尽栅极下方的二维电子气,实现增强型器件,但是P-GaN栅器件仍然存在阈值电压低和栅漏电流大的问题;除此以外,靠近漏极一侧的栅边缘电场分布不均会使GaN器件提前击穿,耐压远低于理论值。为了解决常规GaN HEMT的提前击穿的问题,文献“J.Li,et.al.”High breakdown voltage GaN HFETwith field plate IEEE Electron Lett.”引入短接栅电位的场板,降低栅边缘的曲率效应和电场集中,从而提高耐压。但是场板会引入额外的的寄生电容,削弱GaN器件高频工作的优势;文献A.Nakajima et al.GaN-Based Super Heterojunction Field EffectTransistors Using the Polarization Junction Concept中采用双异质结极化诱导二维电子气与二维空穴气,在耐压状态下电子气与空穴气被耗尽,位于双异质结界面的电性相反的固定极化电荷,相互补偿,调制漂移区内的电场分布,实现器件耐压的优化。但是该结构仍然无法满足器件增强型操作的要求。
发明内容
本发明的目的,就是针对上述问题,提出一种高阈值电压和高击穿电压的GaNHEMT器件及其所涉及的一种栅槽刻蚀方法。
本发明的技术方案是:一种双异质结极化增强的准纵向GaN HEMT器件,从下到上包括:衬底1、缓冲层2、势垒层3和帽层4;其特征在于:所述缓冲层2由GaN缓冲层21和位于GaN缓冲层21上表面的GaN沟道22堆叠而成,GaN缓冲层21的底部与衬底1接触,GaN沟道22的顶部与势垒层3接触;所述帽层4包括UID-GaN层41和位于UID-GaN层41上表面的P型GaN层42,UID-GaN层41的底部与势垒层3接触;所述帽层4的一端具有第一沟槽,第一沟槽沿器件垂直方向依次贯穿帽层4、势垒层3和GaN沟道22并延伸入GaN缓冲层21中,第一沟槽的底部和侧面具有绝缘材料层6,第一沟槽中填充有栅极金属5,栅极金属5通过绝缘材料层6与帽层4、势垒层3和缓冲层2隔开,栅极金属5的引出端为栅极;所述帽层4与沟槽相邻的上表面设置有N型GaN层7和第一导电材料8,N型GaN层7上表面覆盖有第二导电材料9,第二导电材料9与N型GaN层7形成电子气欧姆接触,第一导电材料8与P型GaN层42形成空穴气欧姆接触;第一导电材料8与第二导电材料9的共同引出端为源极;所述帽层4的另一端具有第二沟槽,第二沟槽沿器件垂直方向贯穿帽层4并延伸入势垒层3中,第二沟槽的底部具有第三导电材料10,且第三导电材料10与帽层4和势垒层3具有间距,该间距形成空穴阻断区11,所述第三导电材料10的引出端为漏极;。
进一步的,所述N型GaN层7和第一导电材料8沿器件横向方向并列设置在帽层4上表面,且N型GaN层7与第一沟槽相邻。
进一步的,所述N型GaN层7和第一导电材料8沿器件纵向方向交替设置,每个N型GaN层7上表面均具有第二导电材料9;所述器件纵向方向是指同时垂直于器件垂直方向和器件横向方向的第三维度方向。
进一步的,所述衬底1采用的材料为Si、蓝宝石、SiC和GaN自支撑衬底中的一种。
进一步的,所述第一导电材料8为金属,或者多层金属堆栈结构,或者合金。
本技术方案的器件,其版图采用条形元胞,或者多边形元胞,或者圆形元胞。
本发明还提出一种用于实现双异质结极化增强的准纵向GaN HEMT器件的自对准刻蚀栅槽方法包括如下步骤:
(1)采用外延工艺,在衬底1上自下而上依次生长缓冲层2、势垒层3、帽层4和N型GaN层7;
(2)采用剥离工艺,在所述的N型GaN层7上表面形成第二导电材料9;
(3)采用刻蚀工艺,在所属的N型GaN层7的一端沿着第二导电材料9的边缘自对准刻蚀出第一沟槽,第一沟槽沿器件垂直方向依次贯穿帽层4、势垒层3并延伸入缓冲层2中。
本发明的有益效果为,帽层、势垒层和缓冲层形成双异质结,结面分别极化诱导出二维空穴气和二维电子气。对于一定厚度的势垒层,二维空穴气的浓度随着P型GaN层厚度和掺杂浓度的增加而增加。高浓度的二维空穴气与P型GaN层可以共同阻断器件的纵向导通路径,实现更高的阈值电压;耐压状态下二维电子气与二维空穴气被耗尽,双异质结结面分别留下极型相反的固定极化电荷,通过调整P型GaN层的掺杂浓度与厚度,使两种极性的固定极化电荷浓度相当时,带正电的固定极化电荷发射出的电场线沿纵向指向带负电的固定极化电荷,从而在漂移区内实现近似矩形分布的横向电场强度,有效提升器件的耐压。自对准刻蚀栅槽的方法,相比于采用光刻实现栅槽侧壁与第二导电材料对齐,可以避免套刻误差的影响,确保器件正常实现功能,以及纵向沟道与第二导电材料间电子通路的低阻。
附图说明
图1为实施例1的结构示意图
图2为实施例2的结构示意图
图3-5为实施例3的步骤示意图
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案。实施例只作为参考,本发明保护范围以权利要求书界定的范围为准。
实施例1
如图1所示,本例从下到上包括:衬底1、缓冲层2、势垒层3和帽层4。其特征在于:所述的缓冲层2由GaN缓冲层21和GaN沟道22自下向上堆叠而成,所述的帽层4包括自下而上的UID-GaN层41和P型GaN层42;所述的帽层4的左端设置有金属栅极5,所述的金属栅5从所述的帽层4的上表面向下穿过所述的帽层4、势垒层3和GaN沟道22,并通过绝缘材料层6与所述的帽层4、势垒层3和缓冲层2隔开,所述的金属栅5的引出端为栅极;所述的帽层4上表面自左向右设置有N型GaN层7和第一导电材料8,所述的N型GaN层7的左侧与所述的绝缘材料层6和帽层4的交界面对齐。所述的N型GaN层7上表面覆盖有第二导电材料9,所述的第二导电材料9与N型GaN层7形成欧姆接触。所述的第一导电材料8与所述的第二导电材料9的共同引出端为源极;所述势垒层3上表面设置有用于形成欧姆接触的第三导电材料10,所述的第三导电材料10的引出端为漏极;所述势垒层3、帽层4与第三导电材料10之间具有空穴阻断区11。
本例的工作原理为:
UID-GaN层5帽层4、势垒层3和缓冲层2形成双异质结,在P型GaN层42的影响下,在异质结结面分别极化诱导出高浓度二维空穴气和二维电子气,由于UID-GaN层41未掺杂,故二维空穴气的迁移率会更高。P型GaN层42与绝缘材料层6界面为纵向反型沟道,与势垒层3和UID-GaN层41内的纵向积累型沟道共同实现器件导通路径的折叠。器件在开启时,栅极接正电位,位于GaN沟道22和势垒层3界面的二维电子气通过纵向积累型沟道和纵向反型沟道与N型GaN层7连接,器件从漏极到源极导通,实现准纵向器件。位于帽层4和势垒层3界面的二维空穴气与P型GaN层42共同阻断器件的导通路径,实现更高的阈值电压。N型GaN层7的掺杂浓度较高,可以与第二导电材料9形成低阻欧姆接触,提供电子流通路径。第一导电材料8提供空穴抽取路径,在器件关断时,抽取二维空穴气内的空穴。第三导电材料10通过空穴阻断区11与二维空穴气隔开,避免器件直接导通。耐压状态下二维电子气与二维空穴气被耗尽,双异质结结面分别留下极性相反的固定极化电荷,当两种极型的固定极化电荷浓度相当时,带正电的固定极化电荷发射出的电场线沿纵向指向带负电的固定极化电荷,从而在漂移区内实现近似矩形的横向电场强度分布,器件的耐压有效提升。
实施例2
如图2所示,本例与实施例1的结构相比,区别在于本例中所述的N型GaN导电区域7和第二导电材料9的堆叠结构与所述的第一导电材料8沿垂直于器件结构剖面的方向交替排列。
本例的工作原理为:
采用电极沿垂直于器件结构剖面的方向交替排列的方式,在节省一定的版图面积的同时,可以通过调整两种电极沿垂直于器件结构剖面的方向上长度的占比来调整空穴电流与电子电流的大小。
实施例3
本例包括一种用于实现双异质结极化增强的准纵向GaN HEMT器件的自对准刻蚀栅槽方法:
如图3所示,采用外延工艺,在(111)晶面的Si衬底1上自下而上依次生长缓冲层2、势垒层3、帽层4和N型GaN层7;
如图4所示,采用剥离工艺,在所述的N型GaN层7上表面形成第二导电材料9;
如图5所示,采用刻蚀工艺,在所属的N型GaN层7的一端沿着第二导电材料9的边缘自对准刻蚀出第一沟槽,第一沟槽沿器件垂直方向依次贯穿帽层4、势垒层3并延伸入缓冲层2中。

Claims (5)

1.一种双异质结极化增强的准纵向GaN HEMT器件,从下到上包括:衬底(1)、缓冲层(2)、势垒层(3)和帽层(4);其特征在于:所述缓冲层(2)由GaN缓冲层(21)和位于GaN缓冲层(21)上表面的GaN沟道(22)堆叠而成,GaN缓冲层(21)的底部与衬底(1)接触,GaN沟道(22)的顶部与势垒层(3)接触;所述帽层(4)包括UID-GaN层(41)和位于UID-GaN层(41)上表面的P型GaN层(42),UID-GaN层(41)的底部与势垒层(3)接触;所述帽层(4)的一端具有第一沟槽,第一沟槽沿器件垂直方向依次贯穿帽层(4)、势垒层(3)和GaN沟道(22)并延伸入GaN缓冲层(21)中,第一沟槽的底部和侧面具有绝缘材料层(6),第一沟槽中填充有栅极金属(5),栅极金属(5)通过绝缘材料层(6)与帽层(4)、势垒层(3)和缓冲层(2)隔开,栅极金属(5)的引出端为栅极;所述帽层(4)与沟槽相邻的上表面设置有N型GaN层(7)和第一导电材料(8),N型GaN层(7)上表面覆盖有第二导电材料(9),第二导电材料(9)与N型GaN层(7)形成电子气欧姆接触,第一导电材料(8)与P型GaN层(42)形成空穴气欧姆接触;第一导电材料(8)与第二导电材料(9)的共同引出端为源极;所述帽层(4)的另一端具有第二沟槽,第二沟槽沿器件垂直方向贯穿帽层(4)并延伸入势垒层(3)中,第二沟槽的底部具有第三导电材料(10),且第三导电材料(10)与帽层(4)和势垒层(3)具有间距,该间距形成空穴阻断区(11),所述第三导电材料(10)的引出端为漏极。
2.根据权利要求1所述的一种双异质结极化增强的准纵向GaN HEMT器件,其特征在于,所述N型GaN层(7)和第一导电材料(8)沿器件横向方向并列设置在帽层(4)上表面,且N型GaN层(7)与第一沟槽相邻。
3.根据权利要求1所述的一种双异质结极化增强的准纵向GaN HEMT器件,其特征在于,所述N型GaN层(7)和第一导电材料(8)沿器件纵向方向交替设置,每个N型GaN层(7)上表面均具有第二导电材料(9);所述器件纵向方向是指同时垂直于器件垂直方向和器件横向方向的第三维度方向。
4.根据权利要求1所述的一种双异质结极化增强的准纵向GaN HEMT器件,其特征在于,所述衬底(1)采用的材料为Si、蓝宝石、SiC和GaN自支撑衬底中的一种。
5.根据权利要求1所述的一种双异质结极化增强的准纵向GaN HEMT器件,其特征在于,所述第一导电材料(8)为金属,或者多层金属堆栈结构,或者合金。
CN202110169319.7A 2021-02-07 2021-02-07 一种双异质结极化增强的准纵向GaN HEMT器件 Active CN112909077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110169319.7A CN112909077B (zh) 2021-02-07 2021-02-07 一种双异质结极化增强的准纵向GaN HEMT器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110169319.7A CN112909077B (zh) 2021-02-07 2021-02-07 一种双异质结极化增强的准纵向GaN HEMT器件

Publications (2)

Publication Number Publication Date
CN112909077A CN112909077A (zh) 2021-06-04
CN112909077B true CN112909077B (zh) 2022-03-29

Family

ID=76123792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110169319.7A Active CN112909077B (zh) 2021-02-07 2021-02-07 一种双异质结极化增强的准纵向GaN HEMT器件

Country Status (1)

Country Link
CN (1) CN112909077B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771076A (zh) * 2010-01-04 2010-07-07 西安电子科技大学 全透明AlGaN/GaN高电子迁移率晶体管及其制作方法
CN103026491A (zh) * 2010-07-06 2013-04-03 香港科技大学 常关断型三族氮化物金属-二维电子气隧穿结场效应晶体管
CN104201201A (zh) * 2014-09-16 2014-12-10 电子科技大学 一种用于GaN基HEMT器件的自适应偏置场板
CN105118859A (zh) * 2015-07-29 2015-12-02 电子科技大学 一种隧穿增强型hemt器件
CN105140270A (zh) * 2015-07-29 2015-12-09 电子科技大学 一种增强型hemt器件
CN106981513A (zh) * 2017-04-24 2017-07-25 苏州能屋电子科技有限公司 基于高阻盖帽层的ⅲ族氮化物极化超结hemt器件及其制法
CN107093628A (zh) * 2017-04-07 2017-08-25 电子科技大学 一种极化掺杂增强型hemt器件
CN112133749A (zh) * 2020-09-15 2020-12-25 西安电子科技大学芜湖研究院 一种p型帽层增强型hemt器件及其制备方法
CN113169228A (zh) * 2018-10-12 2021-07-23 创世舫科技有限公司 包括垂直栅极模块的横向iii族氮化物器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018056B2 (en) * 2013-03-15 2015-04-28 The United States Of America, As Represented By The Secretary Of The Navy Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material
US9184243B2 (en) * 2013-07-12 2015-11-10 Infineon Technologies Americas Corp. Monolithic composite III-nitride transistor with high voltage group IV enable switch
CN105895526B (zh) * 2016-04-26 2019-02-01 中国科学院微电子研究所 一种GaN基功率电子器件及其制备方法
US11101379B2 (en) * 2016-11-16 2021-08-24 Theregenis Of The University Of California Structure for increasing mobility in a high electron mobility transistor
CN110034186B (zh) * 2018-01-12 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 基于复合势垒层结构的iii族氮化物增强型hemt及其制作方法
CN108695385B (zh) * 2018-07-17 2024-04-05 中山市华南理工大学现代产业技术研究院 一种基于Si衬底的GaN基射频器件外延结构及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771076A (zh) * 2010-01-04 2010-07-07 西安电子科技大学 全透明AlGaN/GaN高电子迁移率晶体管及其制作方法
CN103026491A (zh) * 2010-07-06 2013-04-03 香港科技大学 常关断型三族氮化物金属-二维电子气隧穿结场效应晶体管
CN104201201A (zh) * 2014-09-16 2014-12-10 电子科技大学 一种用于GaN基HEMT器件的自适应偏置场板
CN105118859A (zh) * 2015-07-29 2015-12-02 电子科技大学 一种隧穿增强型hemt器件
CN105140270A (zh) * 2015-07-29 2015-12-09 电子科技大学 一种增强型hemt器件
CN107093628A (zh) * 2017-04-07 2017-08-25 电子科技大学 一种极化掺杂增强型hemt器件
CN106981513A (zh) * 2017-04-24 2017-07-25 苏州能屋电子科技有限公司 基于高阻盖帽层的ⅲ族氮化物极化超结hemt器件及其制法
CN113169228A (zh) * 2018-10-12 2021-07-23 创世舫科技有限公司 包括垂直栅极模块的横向iii族氮化物器件
CN112133749A (zh) * 2020-09-15 2020-12-25 西安电子科技大学芜湖研究院 一种p型帽层增强型hemt器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种对称极化掺杂增强型高压GaN HFET;彭富,欧阳东法,杨超,魏杰,邓思雨,张波,罗小蓉;《微电子学》;20181231;正文第815-819页 *
氮化镓异质结增强型功率器件机理与新结构研究;杨超;《中国优秀博士学位论文全文数据库》;20200415;正文第71-97页 *

Also Published As

Publication number Publication date
CN112909077A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN110047910B (zh) 一种高耐压能力的异质结半导体器件
CN105845724B (zh) 一种积累型垂直hemt器件
EP2955757B1 (en) Nitride power component and manufacturing method therefor
US20210104601A1 (en) High-voltage n-channel hemt device
CN103972284A (zh) 半导体器件
JP2010045364A (ja) トランジスタ
CN110660851A (zh) 一种高压n沟道HEMT器件
US20230036698A1 (en) Reverse blocking gallium nitride high electron mobility transistor
WO2023273900A1 (zh) 一种低动态电阻增强型GaN器件
CN110649097B (zh) 一种高压p沟道HFET器件
CN109560120A (zh) 一种选择区域生长凹槽垂直的GaN常关型MISFET器件及其制作方法
CN110660843A (zh) 一种高压p沟道HEMT器件
CN117174756B (zh) 具有双重多层屏蔽结构的SiC MOSFET元胞结构、器件及制备方法
CN113675270A (zh) 一种具有逆向导通能力的GaN RC-HEMT
CN116913951A (zh) 一种具有P型埋层的双沟道增强型GaN HEMT器件
CN112909077B (zh) 一种双异质结极化增强的准纵向GaN HEMT器件
CN113611742B (zh) 一种集成肖特基管的GaN功率器件
CN114628525B (zh) 一种沟槽型SiC MOSFET器件及其制造方法
CN115602711A (zh) 一种应用于hemt的二极管器件、制备方法及hemt
CN113410299B (zh) 一种高耐压的n沟道LDMOS器件及其制备方法
CN109659353B (zh) 低寄生电阻的肖特基二极管
CN113394284A (zh) 具有复合层结构的高压mis-hemt器件
CN113594243A (zh) 一种渐变极化掺杂的增强型GaN纵向场效应晶体管
CN113611741B (zh) 一种具有鳍状结构的GaN HMET器件
US20240154030A1 (en) Semiconductor structures and manufacturing methods therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant