CN105047695B - 用于高电子迁移率晶体管的高阻衬底以及生长方法 - Google Patents

用于高电子迁移率晶体管的高阻衬底以及生长方法 Download PDF

Info

Publication number
CN105047695B
CN105047695B CN201510315457.6A CN201510315457A CN105047695B CN 105047695 B CN105047695 B CN 105047695B CN 201510315457 A CN201510315457 A CN 201510315457A CN 105047695 B CN105047695 B CN 105047695B
Authority
CN
China
Prior art keywords
doped
electron mobility
layer
mobility transistor
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510315457.6A
Other languages
English (en)
Other versions
CN105047695A (zh
Inventor
闫发旺
张峰
王文宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Simgui Technology Co Ltd
Original Assignee
Shanghai Simgui Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Simgui Technology Co Ltd filed Critical Shanghai Simgui Technology Co Ltd
Priority to CN201510315457.6A priority Critical patent/CN105047695B/zh
Publication of CN105047695A publication Critical patent/CN105047695A/zh
Application granted granted Critical
Publication of CN105047695B publication Critical patent/CN105047695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

本发明提供了一种用于高电子迁移率晶体管的高阻衬底及其生长方法。所述衬底包括支撑衬底和支撑衬底表面的高阻层,所述高阻层材料为氮化物,其特征在于,所述高阻层中包含由多个掺杂层和多个非掺杂层交替设置的周期性结构,所述掺杂层的材料为含有深能级掺杂元素的氮化物。本发明的优点在于在保证深能级掺杂浓度导致高阻特性同时,也能很好地保证外延层优良的晶体质量。

Description

用于高电子迁移率晶体管的高阻衬底以及生长方法
技术领域
本发明涉及半导体材料领域,尤其涉及一种用于高电子迁移率晶体管的高阻衬底以及生长方法。
背景技术
氮化物半导体如氮化镓(GaN)及其合金氮化铝镓(AlGaN)等是重要的宽禁带化合物半导体。由于具有大的禁带宽度、高的击穿电场,高的电子饱和漂移速度和峰值漂移速度,更重要的是AlGaN/GaN异质结界面形成有高电子浓度和高电子迁移率的二维电子气(2DEG),因此氮化物半导体在高温、高频、大功率、抗辐射微波器件或高功率电子器件及其电路中有非常重要的应用前景。
为了实现氮化镓基高电子迁移率晶体管(HEMT)的夹断等性能,在氮化镓基HEMT器件材料结构中其导电沟道必须生长在半绝缘的氮化物(氮化镓和低铝组分的氮化铝镓)基板上,该氮化物基板的晶体质量和高阻特性直接影响器件的夹断特性、击穿电压、漏电流大小、寿命及可靠性等性能,因此应用于氮化镓基电子器件的半绝缘氮化物在金属有机物化学沉积(MOCVD)外延生长技术中至关重要。
为了实现氮化物的高阻半绝缘化,需在氮化物中引入深能级杂质来陷住导电载流子。在MOCVD生长技术中,通常有两种方法来实现:一种是通过调节生长条件,利用金属有机源(MO),调节生长气氛中的C杂质,进行生长过程中非有意地掺杂,使C杂质在氮化镓材料中形成深能级,从而实现高阻特性。但这种方法对外延生长条件要求较苛刻,生长窗口较窄,且不是氮化物的最佳晶体质量生长条件。第二种方法是通过在MOCVD外延生长过程中有意地掺入一定浓度的深能级杂质,如Fe、Mn、Cu、Co等。这种方法由于其在氮化物中固溶度的限制,不能随意掺杂很高的浓度,否则会引起其上生长的其他外延层的晶体质量的下降,反而恶化器件电性能如漏电流增大、不耐压、频率降低。因此,为了提高氮化镓基高电子迁移率晶体管器件的夹断开关特性、减小电流泄露,提高工作电压,增强其稳定性及可靠性,发展一种高晶体质量、高电阻率半绝缘的氮化物外延生长技术是必要的。
发明内容
本发明所要解决的技术问题是,提供一种用于高电子迁移率晶体管的高阻衬底以及生长方法,能够同时满足高阻和晶体质量的要求。
为了解决上述问题,本发明提供了一种用于高电子迁移率晶体管的高阻衬底,包括支撑衬底和支撑衬底表面的高阻层,所述高阻层材料为氮化物,其特征在于,所述高阻层中包含由多个掺杂层和多个非掺杂层交替设置的周期性结构,所述掺杂层的材料为含有深能级掺杂元素的氮化物。
可选的,所述高阻层中的掺杂层和非掺杂层的材料各自独立地选自于GaN、Al组分小于15%的AlGaN、以及AlGaInN中的任意一种。
可选的,所述深能级掺杂元素选自于Fe、Mn、Co、Ni、Cu、以及C中的一种或其组合。
可选的,所述深能级掺杂元素的掺杂浓度为1×1019cm-3~7×1019cm-3
可选的,所述多个掺杂层和多个非掺杂层交替设置的周期为3~1000周期。
可选的,所述支撑衬底和高阻层之间进一步包括缓冲层。
本发明进一步提供了一种用于高电子迁移率晶体管的高阻衬底的生长方法,所述衬底包括支撑衬底和支撑衬底表面的高阻层,所述高阻层材料为氮化物,其特征在于,所述高阻层的生长工艺包括如下步骤的交替实施;
采用金属氧化物化学气相沉积的方法生长氮化物材料作为非掺杂层;
采用与上一步骤相同的工艺参数,并通入含有深能级掺杂元素的物质,生长掺杂层。
可选的,所述深能级掺杂元素选自于Fe、Mn、Co、Ni、Cu、以及C中的一种或其组合,对应的含有深能级掺杂元素的物质分别是二茂铁、二茂锰、二茂钴、二茂镍、二茂铜和甲烷。
可选的,所述含有深能级掺杂元素的物质的通入时间为2秒至200秒。。
本发明的优点在于,采用周期性掺杂的方法,降低单一的掺杂层的厚度,降低晶格畸变的程度。虽然每一个掺杂层的厚度降低了,但高阻层的电阻是由多个掺杂层的总厚度决定的,只要累计足够多的周期仍然可以满足高阻的要求。因此本发明在保证深能级掺杂浓度导致高阻特性同时,也能很好地保证外延层优良的晶体质量。
附图说明
附图1所示是本具体实施方式所述用于高电子迁移率晶体管高阻衬底的结构示意图。
附图2是本具体实施方式所述生长方法的步骤示意图。
附图3是附图2所述工艺的流量时序图。
具体实施方式
下面结合附图对本发明提供的用于高电子迁移率晶体管的高阻衬底以及生长方法的具体实施方式做详细说明。
参考附图1所示是本具体实施方式所述用于高电子迁移率晶体管高阻衬底的结构示意图,包括支撑衬底10、支撑衬底10表面的高阻层20。所述高阻层20材料为氮化物。所述高阻层20中包含由多个掺杂层21和多个非掺杂层22交替设置的周期性结构。所述高阻层20所包含的多个掺杂层21和多个非掺杂层22均为氮化物材料,且所述掺杂层21的材料为含有深能级掺杂元素的氮化物。深能级掺杂元素能够提高氮化物的电阻值,但却会引起晶格变形,导致继续生长沟道层(未图示)等材料的缺陷增加。因此本具体实施方式采用周期性掺杂的方法,降低单一的掺杂层21的厚度,降低晶格畸变的程度。虽然每一个掺杂层21的厚度降低了,但高阻层20的电阻是由多个掺杂层21的总厚度决定的,只要累计足够多的周期仍然可以满足高阻的要求。因此本具体实施方式的方案在提高深能级掺杂浓度导致高阻特性同时,也能很好地保证外延层优良的晶体质量。
其中所述的支撑衬底10为蓝宝石或碳化硅或硅或氧化锌或铝酸锂或氮化铝或氮化镓。本具体实施方式中的支撑衬底10采用8英寸硅(111)衬底。
在本具体实施方式中,所述高阻层20中的掺杂层21和非掺杂层22的材料各自独立地选自于GaN、Al组分小于15%的AlGaN、以及AlGaInN中的任意一种。而所述掺杂层21中深能级掺杂元素选自于Fe、Mn、Co、Ni、Cu、以及C中的一种或其组合。
本具体实施方式中,所述深能级掺杂元素的掺杂浓度为1×1019cm-3~7×1019cm-3,所述多个掺杂层21和多个非掺杂层22交替设置的周期为3~1000周期。每一层掺杂层21的厚度范围是10纳米-5微米,总厚度范围是50纳米-15微米。
本具体实施方式中,为了进一步提高晶体质量,所述支撑衬底10和高阻层20之间进一步包括缓冲层30。
参考附图2是本具体实施方式所述生长方法的步骤示意图。对于上述高阻层20的生长工艺,应当包括如下步骤的交替实施;步骤S1,采用金属氧化物化学气相沉积的方法生长氮化物材料作为非掺杂层;步骤S2,采用与上一步骤相同的工艺参数,并通入含有深能级掺杂元素的物质,生长掺杂层。
步骤S1中所述的金属氧化物化学气相沉积的方法,在具体实施中例如可以采用德国爱思强(Aixtron)公司的行星式反应腔G5-plus MOCVD生长设备。氮气和氢气作为载气,三族元素为MO源为三甲基镓(TMGa)和三甲基铝(TMAl)。外延片的生长温度为1030-1150℃,生长压力为60-200mbar,氨气的流量为8-60L/min,TMGa的流量为250μmol/min,TMGa为50μmol/min。
步骤S2中的掺杂元素可以是选自于Fe、Mn、Co、Ni、Cu、以及C中的一种或其组合。对于不同的元素可以设置不同的工艺参数和通入时间,通入时间例如可以是2秒至200秒。例如对于Fe深能级杂质可以采用的工艺是采用Cp2Fe作为原物质,通入时间为30s,通入周期为100,Fe的流量为200sccm(浓度为3x1019cm-3)。生长压力为200mar,生长温度为1030℃。附图3是上述工艺的流量时序图。这样制作出来的高阻层室温电阻率大于107Ω.cm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种用于高电子迁移率晶体管的高阻衬底,包括支撑衬底和支撑衬底表面的高阻层,所述高阻层材料为氮化物,其特征在于,所述高阻层中包含由多个掺杂层和多个非掺杂层交替设置的周期性结构,所述掺杂层的材料为含有深能级掺杂元素的氮化物;所述高阻层中的掺杂层和非掺杂层的材料各自独立地选自于GaN、Al组分小于15%的AlGaN、以及AlGaInN中的任意一种。
2.根据权利要求1所述的用于高电子迁移率晶体管的高阻衬底,其特征在于,所述深能级掺杂元素选自于Fe、Mn、Co、Ni、Cu、以及C中的一种或其组合。
3.根据权利要求1所述的用于高电子迁移率晶体管的高阻衬底,其特征在于,所述深能级掺杂元素的掺杂浓度为1×1019cm-3~7×1019cm-3
4.根据权利要求1所述的用于高电子迁移率晶体管的高阻衬底,其特征在于,所述多个掺杂层和多个非掺杂层交替设置的周期为3~1000周期。
5.根据权利要求1所述的用于高电子迁移率晶体管的高阻衬底,其特征在于,所述支撑衬底和高阻层之间进一步包括缓冲层。
6.一种用于高电子迁移率晶体管的高阻衬底的生长方法,所述衬底包括支撑衬底和支撑衬底表面的高阻层,所述高阻层材料为氮化物,其特征在于,所述高阻层的生长工艺包括如下步骤的交替实施;
采用金属氧化物化学气相沉积的方法生长氮化物材料作为非掺杂层;采用与上一步骤相同的工艺参数,并通入含有深能级掺杂元素的物质,生长掺杂层;所述高阻层中的掺杂层和非掺杂层的材料各自独立地选自于GaN、Al组分小于15%的AlGaN、以及AlGaInN中的任意一种。
7.根据权利要求6所述的方法,其特征在于,所述深能级掺杂元素选自于Fe、Mn、Co、Ni、Cu以及C中的一种或其组合,对应的含有深能级掺杂元素的物质分别是二茂铁、二茂锰、二茂钴、二茂镍、二茂铜和甲烷。
8.根据权利要求6所述的方法,其特征在于,所述含有深能级掺杂元素的物质的通入时间为2秒至200秒。
CN201510315457.6A 2015-06-10 2015-06-10 用于高电子迁移率晶体管的高阻衬底以及生长方法 Active CN105047695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510315457.6A CN105047695B (zh) 2015-06-10 2015-06-10 用于高电子迁移率晶体管的高阻衬底以及生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510315457.6A CN105047695B (zh) 2015-06-10 2015-06-10 用于高电子迁移率晶体管的高阻衬底以及生长方法

Publications (2)

Publication Number Publication Date
CN105047695A CN105047695A (zh) 2015-11-11
CN105047695B true CN105047695B (zh) 2018-09-25

Family

ID=54454093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510315457.6A Active CN105047695B (zh) 2015-06-10 2015-06-10 用于高电子迁移率晶体管的高阻衬底以及生长方法

Country Status (1)

Country Link
CN (1) CN105047695B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024881A (zh) * 2016-07-26 2016-10-12 中国科学院半导体研究所 双异质氮化镓基场效应晶体管结构及制作方法
US9917156B1 (en) * 2016-09-02 2018-03-13 IQE, plc Nucleation layer for growth of III-nitride structures
CN106601790A (zh) * 2016-12-29 2017-04-26 中国科学院半导体研究所 纵向调制掺杂氮化镓基场效应晶体管结构及其制作方法
US10355120B2 (en) * 2017-01-18 2019-07-16 QROMIS, Inc. Gallium nitride epitaxial structures for power devices
CN108110048A (zh) * 2017-12-18 2018-06-01 中国科学院半导体研究所 高阻iii族氮化物半导体外延结构及其制备方法
CN110611003B (zh) * 2019-08-16 2022-04-08 中山大学 一种n型AlGaN半导体材料及其外延制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748290A (zh) * 2002-12-27 2006-03-15 通用电气公司 氮化镓晶体、同质外延氮化镓基器件及其制造方法
CN101136432A (zh) * 2006-09-01 2008-03-05 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
CN102560671A (zh) * 2010-12-31 2012-07-11 中国科学院物理研究所 半绝缘碳化硅单晶
CN103715246A (zh) * 2012-09-28 2014-04-09 富士通株式会社 半导体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748290A (zh) * 2002-12-27 2006-03-15 通用电气公司 氮化镓晶体、同质外延氮化镓基器件及其制造方法
CN101136432A (zh) * 2006-09-01 2008-03-05 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
CN102560671A (zh) * 2010-12-31 2012-07-11 中国科学院物理研究所 半绝缘碳化硅单晶
CN103715246A (zh) * 2012-09-28 2014-04-09 富士通株式会社 半导体装置

Also Published As

Publication number Publication date
CN105047695A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
CN105047695B (zh) 用于高电子迁移率晶体管的高阻衬底以及生长方法
US8742426B2 (en) Semiconductor device
JP4531071B2 (ja) 化合物半導体装置
US7456443B2 (en) Transistors having buried n-type and p-type regions beneath the source region
KR101553721B1 (ko) 전계 효과 트랜지스터용 에피택셜 기판 및 전계 효과 트랜지스터
US8426893B2 (en) Epitaxial substrate for electronic device and method of producing the same
JP5064824B2 (ja) 半導体素子
US8541816B2 (en) III nitride electronic device and III nitride semiconductor epitaxial substrate
EP2290675B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
EP2290696B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
JP5343910B2 (ja) 化合物半導体装置の製造方法
WO2013155396A1 (en) Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors
EP3311414A1 (en) Doped barrier layers in epitaxial group iii nitrides
JP2003151996A (ja) 2次元電子ガスを用いた電子デバイス
CN108807499A (zh) 半导体异质结构及其形成方法
WO2013019521A1 (en) Method and system for doping control in gallium nitride based devices
US11545566B2 (en) Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement
US8148751B2 (en) Group III nitride semiconductor wafer and group III nitride semiconductor device
JP2009021279A (ja) 半導体エピタキシャルウエハ
CN109964306B (zh) 化合物半导体基板的制造方法以及化合物半导体基板
JP2007123824A (ja) Iii族窒化物系化合物半導体を用いた電子装置
CN110838514B (zh) 一种半导体器件的外延结构及其制备方法、半导体器件
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
US20150021665A1 (en) Transistor having back-barrier layer and method of making the same
CN208368514U (zh) 基于Si衬底的GaN基射频器件外延结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant