CN108526751B - 一种可用于无压烧结的微纳米混合焊膏及其制备方法 - Google Patents

一种可用于无压烧结的微纳米混合焊膏及其制备方法 Download PDF

Info

Publication number
CN108526751B
CN108526751B CN201810383172.XA CN201810383172A CN108526751B CN 108526751 B CN108526751 B CN 108526751B CN 201810383172 A CN201810383172 A CN 201810383172A CN 108526751 B CN108526751 B CN 108526751B
Authority
CN
China
Prior art keywords
nano
micro
soldering paste
sintering
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810383172.XA
Other languages
English (en)
Other versions
CN108526751A (zh
Inventor
杨帆
李明雨
胡博
赵新亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Advanced Connection Technology Co Ltd
Original Assignee
Shenzhen Advanced Connection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Advanced Connection Technology Co Ltd filed Critical Shenzhen Advanced Connection Technology Co Ltd
Priority to CN201810383172.XA priority Critical patent/CN108526751B/zh
Publication of CN108526751A publication Critical patent/CN108526751A/zh
Application granted granted Critical
Publication of CN108526751B publication Critical patent/CN108526751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent

Abstract

本发明提供了一种可用于无压烧结的微纳米混合焊膏制备及封装方法,该材料内部以微米的球形颗粒为基体,纳米颗粒均匀地填充其中,提供烧结驱动力使得材料整体在低温下无压烧结成型。其制备方法包括:S1制备特定尺寸的微米颗粒并进行酸洗、烘干;S2将微米颗粒粉末与表面活性剂、有机载体和有机溶剂机械搅拌,获得混合物A;S3将金属纳米颗粒与分散剂、有机载体和有机溶剂充分混合得到混合物B;S4将混合物A和混合物B混合得到微纳米混合焊膏。该焊膏解决了纳米焊膏在烧结时体积收缩、产生裂纹的问题,提高了焊点可靠性,可用于功率器件的封装制造。该方案简化了焊膏的生产工艺,制备过程绿色环保,提出的封装方法简单实用,利于市场推广。

Description

一种可用于无压烧结的微纳米混合焊膏及其制备方法
技术领域
本发明涉及电子封装技术领域,更具体涉及一种可用于无压烧结的微纳米混合焊膏及其制备方法。
背景技术
随着微电子产业技术的更新,电子产品中的功能器件不断向小型化、高集成度的方向发展。由此带来了更高的封装密度与能量密度,对软钎焊互连材料提出了更高的力学性能与散热要求。尤其在深井探测、新能源汽车、军事雷达等领域,器件面临着高温、高频振动等复杂的服役环境,传统的锡基互连钎料已经无法满足该使用要求。因此急需开发新的耐高温互连材料与相应的互连工艺。
以SiC、GaN为代表的新一代功率半导体,具有高击穿电压、宽禁带宽度、优异的热稳定与稳定的开关特性等优点,在600℃时依然可以持续工作。为了匹配该服役温度,瞬时液相焊接与低温烧结互连技术分别被用于全金属间化合物焊点与纳米烧结焊点的成型。其中,全金属间化合物脆性大、热导率较低、可靠性差的缺点,限制了其在高温互连中的应用。
以烧结纳米银膏为代表的低温烧结互连材料,具有着高热导率、低温连接、高温服役、高可靠性等优势。
例如,CN104741821A公开了一种用于电子模块高温封装微纳米铜颗粒填充Sn基焊膏及其制备方法,所述微纳米铜颗粒填充Sn基焊膏按质量比由铜锡微纳米颗粒80~90、分散剂2~8、助焊剂2~8、触变剂2~8制成,采用直接液相多元顺序可控还原方法顺序还原出微纳米铜、微纳米锡,同时实现微纳米铜锡颗粒的高度均匀化混合,将制备得到的混装铜锡微纳米颗粒与分散剂、助焊剂、触变剂等混合,通过混装分散工艺制成焊膏。该方案的封装材料存在抗氧化性能较差的问题,而助焊剂的添加会带来后期焊点清洗等复杂工艺并引发一定的环境污染。此外,使用该材料制备的焊点组织为全IMC(金属间化合物)结构,IMC具有脆性大,导热导电性能较烧结银组织有较大的差距。
CN104759725A公开了一种使用微纳米级金属颗粒填充Sn基焊料实现电子组件高温封装的方法,步骤如下:步骤一:制备微纳米金属颗粒,将其与分散剂、粘结剂、稀释剂以及助焊剂混合;步骤二:将微纳米金属颗粒混合物与纯Sn或Sn基焊膏均匀混合;步骤三:将微纳米级金属颗粒填充Sn基焊膏放置于基板上,完成待焊部件对准过程,并施加压力;步骤四:将以上体系放入回流炉中,经历预热阶段、保温阶段、再流阶段、冷却阶段。该专利采取了热压工艺实现焊点成型,而加压会增加工艺的复杂度并且可能会对芯片造成机械损伤。此外,该焊点存在脆性大、易产生孔洞等问题,在后期高温服役时容易因为热机械应力的聚集而产生裂纹,降低焊点的可靠性。
然而,纳米银焊膏原始堆垛密度较低,烧结时会产生大量的体积收缩,在无压焊接时易出现裂纹,导致焊合率下降、机械强度低的问题。现有的纳米银膏烧结多使用压力辅助,使用无压工艺时往往存在接头力学性能较差、界面焊合率低等问题。而目前的芯片焊接与器件封装多数要求使用无压工艺,防止压力对焊接器件的损伤并降低工艺复杂度,因此急需开发拥有良好烧结性能的无压银焊膏。此外,基于液相还原法所制得的纳米银存在产量低、工艺复杂等问题,不利于银膏的大规模制备。
发明内容
鉴于现有技术存在的问题,本发明的目的是提供一种可用于无压烧结的微纳米混合焊膏及其制备方法,旨在解决现有纳米银膏在无压烧结时堆垛密度低、体积收缩明显、表面裂纹、制备成本高、产量低等问题。
本发明通过以下技术方案实现:一种微纳米混合焊膏的制备方法,包括以下步骤:
S1:使用物理法进行微米颗粒的制备;所得微米颗粒进行酸洗、离心、烘干;
S2:将步骤S1所得微米颗粒与表面活性剂、有机载体一同加入到有机溶剂当中,通过机械搅拌得到混合物A,其中微米颗粒的质量百分数为70-85%;
S3:将纳米银颗粒与分散剂、有机载体加入至有机溶剂当中,进行机械搅拌,获得混合物B,其中纳米银颗粒中的质量百分数为70-80%;
S4:将混合物A和B按照质量比1:9-3:1进行机械搅拌,得到微纳米混合焊膏;其中S2和S3中所述有机溶剂为乙醇,丁醇,乙二醇和丙二醇中的一种或多种的混合体。
进一步的优选方案为,所述的一种微纳米混合焊膏的制备方法中,所述步骤S1中微米颗粒粉末为喷雾热分解或气相沉积法制得,尺寸分布在0.3μm-5μm,尺寸太小无法则会带来较大的体积收缩不利于作为基体材料,尺寸偏大则会带来烧结驱动力太低,表面原子无法快速互扩散。
该方法制备的微米颗粒成球性好,颗粒表面圆滑且分散性良好,室温下储存不会发生烧结。在本发明中的烧结工艺下(150-300℃),具有良好的烧结性能。且相比于传统的纳米焊膏,具有更大的堆垛密度,
所述步骤S2中获得的混合物A中,微米颗粒的固含量为70-85%,该条件下可获得适宜的粘度以分别满足印刷和点胶的需求。
进一步的优选方案为,步骤S3中纳米银颗粒的尺寸平均为10-80nm,优选纳米银颗粒表面包覆有有机包覆层,有机包覆层为聚乙烯吡咯烷酮、柠檬酸钠或柠檬酸,有机包覆层厚度为0.3-2nm。该尺寸的球形纳米颗粒有着很强的烧结驱动力,且包覆层厚度适中,在不降低烧结性能的同时又可以有效避免颗粒团聚,在本发明中的烧结工艺下(150-300℃),可以形成连续的三维网络烧结结构,机械性能优异。
进一步的优选方案为,步骤S4中混合物A和混合物B在质量比为1:9-3:1的范围内进行机械混合,合理地控制混合物A的添加量,可以有效地抑制烧结时产生的裂纹,同时不会明显降低焊点的力学性能。
进一步的优选方案为,所述步骤S1中的酸洗是微米颗粒在混合稀酸溶液中的质量百分数为25%;所述稀酸为体积百分数为5%的甲酸,盐酸,或硝酸的酒精溶液。该比例下的稀酸溶液可以有效除去微米颗粒表面的氧化膜且不会对其产生过度腐蚀。
进一步的优选方案为,步骤S3和S4中所述有机溶剂为乙醇与丁醇、乙二醇、丙二醇中的一种或多种的混合体,其中乙醇的体积百分数小于20%。乙醇的加入可以调节焊膏的粘度,使其易于印刷和点胶,加速溶剂在烧结时的挥发;然而过多加入将导致挥发过快,焊膏的储存性能下降。
进一步的优选方案为,所述的一种微纳米混合焊膏的制备方法,所述步骤S2和S3中活性剂为丁二酸、戊二酸或松香酸,有机载体为松油醇、乙基纤维素、丁基卡必醇醋酸酯等,分散剂为明胶、鱼油或十二烷基磺酸钠,所得混合银膏中表面活性剂的质量百分数为0.1-1%,该浓度下,可以有效去除铜、镍表面的氧化膜,同时几乎不会引入缺陷。有机载体质量百分数为3-10%,可以调节焊膏的粘度与挥发速率,使焊膏具有在匀速升温时均匀挥发的特点。分散剂质量百分数为0.1-2%,该含量的分散剂可以有效分散焊膏中的纳米银颗粒,防止其提前团聚与预烧结。有机溶剂的质量分数为10-30%,余下为微米银/铜和纳米银颗粒。
本发明的另一目的在于提供一种微纳米混合焊膏的封装方法,包括以下步骤:
其中,所述微纳米混合焊膏通过前述制备方法制备得到;
S1:通过点胶或者丝网印刷的方法将混合微纳米银膏涂覆于金属化层或纯金属基板的表面;
S2:将上层待焊芯片放置于覆有银焊膏的基板上方,形成典型的互连焊点结构;
S3:使用整体加热、超声波辅助加热或激光加热等方式对互连区域进行加热,使混合微纳米焊膏烧结完成互连。
进一步的优选方案为,所述的一种微纳米混合焊膏的封装方法,其特征在于:所述金属化层或金属基板可为Au,Ag,Cu或Ni,被连接器件可为SiC芯片,Si基芯片,AlN基板,Al2O3基板等。
目前电子制造业中焊盘的表面金属化处理多以Au,Ag,Cu为主,如镀银处理、化学镀镍金(ENIG)、化学镀镍钯浸金(ENEPIG),而焊接的基板材料多见陶瓷基板上覆铜(DBC)、镀银处理,因此基于本发明的无压微纳米混合银膏的封装方法具有普适性。
进一步的优选方案为,所述的整体加热可使用干燥箱,热板或快速退火炉进行,超声波辅助加热可采用下方增设加热台的超声波钎焊设备,超声波作用时;激光加热可采用配套红外热成像仪的激光点焊机。
本发明相对于现有技术的有益效果
(1)本发明基于微米颗粒与纳米银颗粒制备的焊膏,解决了传统银膏在无压烧结时烧结驱动力不足、焊合率差的缺点;提高了原始的堆垛密度,抑制了烧结时银膏体积的剧烈收缩,解决了烧结裂纹,提升了互连接头的力学性能与结构稳定性。
(2)同时提出可用于无压烧结的封装方法及工艺,设备简单,且可在短时间内实现焊点成型。能够良好的匹配现有的产线设备及工艺,推广阻力小,能有效提高烧结的速度与生产效率,生产过程绿色环保,适用于新一代功率器件高可靠性的互连需求。
附图说明
附图为扫描电子显微镜下的微纳米混合银膏无压烧结后的组织形貌,其中,
图1为实例6的烧结组织SEM图像;
图2为实例7的烧结组织的SEM图像。
具体实施方式
下面通过实施例和附图解释本发明,但本发明不局限于此。
实施例1一种可用于无压烧结的微纳米混合焊膏的制备方法,包括:
(S1)使用体积分数为5%的甲酸酒精溶液对平均粒径为500nm的微米铜颗粒进行清洗,之后进行离心与烘干处理,得到表面洁净的微米铜颗粒;
(S2)将微米银颗粒与丁二酸,松油醇,乙醇和乙二醇机械混合,得到混合物A,其中微米铜质量百分数为80%,丁二酸的质量百分数为0.5%,松油醇的质量百分数为4.5%,乙醇的质量百分数为5%,其余为乙二醇;
(S3)将平均粒径为70nm且包覆有柠檬酸钠的纳米银颗粒与明胶,松油醇,乙醇和乙二醇机械混合,得到混合物B,其中纳米银质量百分数为80%,明胶质量百分数为0.3%,松油醇质量百分数为4.7%,乙醇的质量分数为5%,其余为乙二醇;
(S4)将混合物A和B按照质量比1:3进行充分的机械搅拌。
实施例2一种可用于无压烧结的微纳米混合焊膏的制备方法,包括:
(S1)使用体积分数为5%的稀硝酸酒精溶液对平均粒径为1μm的微米银颗粒进行清洗,之后进行离心与烘干处理,得到表面洁净的微米银颗粒;
(S2)将微米银颗粒与戊二酸,乙基纤维素,丁醇和乙二醇机械混合,得到混合物A,其中微米银质量百分数为84%,戊二酸的质量百分数为0.5%,松油醇的质量百分数为3.5%,丁醇的质量百分数为7%,其余为乙二醇;
(S3)将平均粒径为50nm且包覆有柠檬酸钠的纳米银颗粒与鱼油,乙基纤维素,丁醇和乙二醇机械混合,得到混合物B,其中纳米银质量百分数为78%,鱼油质量百分数为0.4%,乙基纤维素质量百分数为3.6%,丁醇的质量分数为8%,其余为乙二醇;
(S4)将混合物A和B按照质量比1:1进行充分的机械搅拌。
实施例3一种可用于无压烧结的微纳米混合焊膏的制备方法,包括:
(S1)将使用体积分数为5%的稀盐酸酒精溶液对平均粒径为3μm的微米银颗粒进行清洗,之后进行离心与烘干处理,得到表面洁净的微米银颗粒;
(S2)将微米银颗粒与松香酸,丁基卡必醇醋酸酯,丁醇和丙二醇机械混合,得到混合物A,其中微米银质量百分数为70%,松香酸的质量百分数为0.2%,丁基卡必醇醋酸酯的质量百分数为3.4%,丁醇的质量百分数为9%,其余为乙二醇;
(S3)将平均粒径为20nm且包覆有柠檬酸钠的纳米银颗粒与十二烷基磺酸钠,丁基卡必醇醋酸酯,丁醇和乙二醇机械混合,得到混合物B,其中纳米银质量百分数为74%,十二烷基磺酸钠质量百分数为0.3%,丁基卡必醇醋酸酯质量百分数为3.2%,丁醇的质量分数为9%,其余为乙二醇;
(S4)将混合物A和B按照质量比2:1进行充分的机械搅拌。
实施例4一种可用于无压烧结的微纳米混合焊膏的制备方法,包括:
(S1)将使用体积分数为5%的甲酸酒精溶液对平均粒径为1μm的微米铜颗粒进行清洗,之后进行离心与烘干处理,得到表面洁净的微米铜颗粒;
(S2)将微米银颗粒与松香酸,乙基纤维素,丁醇和丙二醇机械混合,得到混合物A,其中微米银质量百分数为70%,松香酸的质量百分数为0.3%,乙基纤维素的质量百分数为5.2%,丁醇的质量百分数为7%,其余为丙二醇;
(S3)将平均粒径为20nm且包覆有柠檬酸钠的纳米银颗粒与十二烷基磺酸钠,乙基纤维素,丁醇和丙二醇机械混合,得到混合物B,其中纳米银质量百分数为74%,十二烷基磺酸钠质量百分数为0.3%,乙基纤维素质量百分数为3.2%,丁醇的质量分数为9%,其余为丙二醇;
(S4)将混合物A和B按照质量比2:1进行充分的机械搅拌。
实施例5一种可用于无压烧结的微纳米混合焊膏的快速烧结封装方法,包括:
(S1)通过丝网印刷的方法将将实施例1制备方法获得混合纳米焊膏混合银焊膏涂覆于铜基板表面;
(S2)将上层待焊镀银芯片与其对准形成互连焊点结构;
(S3)使用干燥箱对互连焊点进行加热,升温速率为10℃/min,烧结温度为180℃,保温时间30min,即可获得可靠的烧结银接头。
测试结果表明,相较于传统无压烧结工艺,本示例具有较低的烧结温度与烧结时间,焊料中的铜无明显氧化现象,且接头的平均剪切强度达到了22MPa,烧结银层的热导率为126W/m·K,能够满足功率器件的散热要求与机械性能的要求。
实施例6一种可用于无压烧结的微纳米混合焊膏的快速烧结封装方法,包括:
(S1)通过丝网印刷的方法将实施例2制备方法获得混合纳米焊膏涂覆于铜基板表面;
(S2)将上层待焊化学镀镍金芯片与其对准形成互连焊点结构;
(S3)使用快速退火炉对互连焊点进行加热,升温速率为20℃/s,烧结温度为240℃,保温时间5min,即可获得可靠的烧结银接头。
测试结果表明,同实施例5相比,区别在于本案例的微米银比重上升,升温速率快,整体焊接时间短,然而并没有影响焊膏的烧结性能,接头的平均剪切强度达到了34MPa,烧结银层的热导率为214W/m·K,随着烧结温度增加,力学性能与导热性能均有很大提高。
其中,图1为本实施例的烧结组织的SEM图像。
实施例7一种可用于无压烧结的微纳米混合焊膏的快速烧结封装方法,包括:
(S1)通过点胶的方法将实施例3制备方法获得混合纳米焊膏涂覆于银基板表面;
(S2)将上层待焊的镀镍芯片与其对准形成互连焊点结构;
(S3)使用超声辅助加热的方式对互连焊点进行焊接,预热温度为100℃,焊接温度为280℃,超声作用时间为5s。
测试结果表明,同实例6相比,该方案的焊接时间大幅度缩短,焊接过程在5s内完成。接头的平均剪切强度达到了64MPa,烧结银层的热导率为256W/m·K,相比于传统锡基钎料,存在可高温服役、焊点成型快的优势。
其中,图2为本实施例的烧结组织的SEM图像。
实施例8一种可用于无压烧结的微纳米混合焊膏的快速烧结封装方法,包括:
(S1)通过点胶的方法将实施例4制备方法获得混合纳米焊膏涂覆于银基板表面;
(S2)将上层待焊的镀镍芯片与其对准形成互连焊点结构;
(S3)使用激光加热的方式对互连焊点进行焊接,焊接温度为300℃,工作时间为3s。
测试结果表明,同实例7相比,该方案可实现非接触式的加热烧结,焊接过程在3s内完成。接头的平均剪切强度达到了47MPa,烧结银层的热导率为232W/m·K,此种方式为局部加热,热影响区小,可实现PCB基板上的快速封装。
对比实施例1
(S1)使用体积分数为5%的甲酸酒精溶液对平均粒径为10μm的微米铜颗粒进行清洗,之后进行离心与烘干处理,得到表面洁净的微米铜颗粒;
(S2)将微米银颗粒与丁二酸,松油醇,乙醇和乙二醇机械混合,得到混合物A,其中微米铜质量百分数为85%,丁二酸的质量百分数为0.5%,松油醇的质量百分数为4.5%,乙醇的质量百分数为5%,其余为乙二醇;
(S3)将平均粒径为100nm且包覆有柠檬酸钠的纳米银颗粒与明胶,松油醇,乙醇和乙二醇机械混合,得到混合物B,其中纳米银质量百分数为82%,明胶质量百分数为0.3%,松油醇质量百分数为4.7%,乙醇的质量分数为5%,其余为乙二醇;
(S4)将混合物A和B按照质量比1:3进行充分的机械搅拌。
使用该实施例中的材料获得的微纳米混合焊膏,在使用实例5的烧结方法后,获得焊点剪切强度仅为10MPa,热导率为46W/m·K。无法获得网络状的烧结结构,组织烧结不充分。这是由于选取微纳米尺寸较大,烧结驱动力小,在该工艺下无法获得性能良好的焊点。
对比实施例2
(S1)将使用体积分数为5%的稀盐酸酒精溶液对平均粒径为3μm的微米银颗粒进行清洗,之后进行离心与烘干处理,得到表面洁净的微米银颗粒;
(S2)将微米银颗粒与松香酸,丁基卡必醇醋酸酯,丁醇和丙二醇机械混合,得到混合物A,其中微米银质量百分数为70%,松香酸的质量百分数为0.2%,丁基卡必醇醋酸酯的质量百分数为3.4%,丁醇的质量百分数为9%,其余为乙二醇;
(S3)将平均粒径为20nm且包覆有柠檬酸钠的纳米银颗粒与十二烷基磺酸钠,丁基卡必醇醋酸酯,丁醇和乙二醇机械混合,得到混合物B,其中纳米银质量百分数为74%,十二烷基磺酸钠质量百分数为0.3%,丁基卡必醇醋酸酯质量百分数为3.2%,丁醇的质量分数为9%,其余为乙二醇;
(S4)将混合物A和B按照质量比5:1进行充分的机械搅拌。
使用该实施例中的材料获得的微纳米混合焊膏,在使用实例8的烧结方法后,获得焊点剪切强度仅为18MPa,热导率为70W/m·K。这是由于该种微纳米配比的焊膏,纳米颗粒含量较低,在现有的工艺下微米颗粒表面原子扩散速率较慢,烧结不充分。因此应选择合理的纳米颗粒含量以获得足够的烧结驱动力。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种无压烧结微纳米混合焊膏的制备方法,其特征在于,包括以下步骤:
S1:使用物理法进行微米颗粒的制备;所得微米颗粒进行酸洗、离心、烘干;
S2:将步骤S1所得微米颗粒与表面活性剂、有机载体一同加入到有机溶剂当中,通过机械搅拌得到混合物A,其中微米颗粒的质量百分数为70-85%;
S3:将纳米银颗粒与分散剂、有机载体加入至有机溶剂当中,进行机械搅拌,获得混合物B,其中纳米银颗粒中的质量百分数为70-80%;
S4:将混合物A和B按照质量比1:9-3:1进行机械搅拌,得到微纳米混合焊膏;其中S2和S3中所述有机溶剂为乙醇,丁醇,乙二醇和丙二醇中的一种或多种的混合体;
所述步骤S1中微米颗粒的制备是采用喷雾热分解法或气相沉积法制备微米银、铜颗粒;
所述步骤S1制备得到的银颗粒或铜颗粒尺寸分布在0.3μm-5μm;
步骤S3中纳米银颗粒的尺寸平均为10-80nm;所述步骤S1中的酸洗是微米颗粒在混合稀酸溶液中的质量百分数为25%;所述稀酸为体积百分数为5%的甲酸,盐酸,或硝酸的酒精溶液;所述步骤S2和S3中活性剂为丁二酸、戊二酸或松香酸,在焊膏中的质量百分数为0.1-1%;有机载体为松油醇、乙基纤维素、丁基卡必醇醋酸酯,质量百分数为3-10%;分散剂为明胶、鱼油或十二烷基磺酸钠,质量百分数为0.1-2%,余下为微米银/铜颗粒和纳米银颗粒;
S2和S3中所述有机溶剂为乙醇与丁醇、乙二醇、丙二醇中的一种或多种的混合体,其中乙醇的体积百分数小于20%;
纳米银颗粒的表面包覆有有机包覆层,有机包覆层为聚乙烯吡咯烷酮、柠檬酸钠或聚丙烯酸钠,包覆层的厚度为0.3-2nm。
2.一种微纳米混合焊膏的封装方法,其特征在于,包括以下步骤:
其中,所述微纳米混合焊膏是通过权利要求1中所述的微纳米混合焊膏的制备方法制得;
S1:通过点胶或者丝网印刷的方法将微纳米混合焊膏涂覆于金属化层或纯金属基板的表面;
S2:将上层待焊芯片放置于覆有混合焊膏的基板上方,形成典型的互连焊点结构;
S3:使用整体加热、超声波辅助加热或激光加热方式对互连区域进行加热,使混合微纳米焊膏烧结完成互连。
3.根据权利要求2所述的一种微纳米混合焊膏的封装方法,其特征在于:所述金属化层或纯金属基板为Au,Ag,Cu或Ni,被连接器件为SiC芯片,Si基芯片,AlN基板,Al2O3基板。
CN201810383172.XA 2018-04-26 2018-04-26 一种可用于无压烧结的微纳米混合焊膏及其制备方法 Active CN108526751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810383172.XA CN108526751B (zh) 2018-04-26 2018-04-26 一种可用于无压烧结的微纳米混合焊膏及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810383172.XA CN108526751B (zh) 2018-04-26 2018-04-26 一种可用于无压烧结的微纳米混合焊膏及其制备方法

Publications (2)

Publication Number Publication Date
CN108526751A CN108526751A (zh) 2018-09-14
CN108526751B true CN108526751B (zh) 2019-06-18

Family

ID=63479200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810383172.XA Active CN108526751B (zh) 2018-04-26 2018-04-26 一种可用于无压烧结的微纳米混合焊膏及其制备方法

Country Status (1)

Country Link
CN (1) CN108526751B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240009731A1 (en) * 2021-04-25 2024-01-11 Solderwell Microelectronic Packaging Materials Co., Ltd Nano silver paste and preparation method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109277722B (zh) * 2018-10-06 2021-04-30 天津大学 一种改善银电化学迁移的Ag-Si纳米焊膏的制备方法
CN111276410B (zh) * 2018-12-04 2022-05-24 陈引干 高功率模块的制备方法
CN109623068B (zh) * 2019-01-10 2021-02-19 哈尔滨工业大学(深圳) 一种基于多点超声振动的纳米银连接方法
CN109967747B (zh) * 2019-04-03 2021-02-19 深圳第三代半导体研究院 一种多层金属膜及其制备方法
CN110238562A (zh) * 2019-06-28 2019-09-17 华中科技大学 一种微纳米复合金属焊膏制备方法、产品及应用
CN110508970A (zh) * 2019-07-15 2019-11-29 天津大学 一种三峰体系混合银焊膏及其应用
CN110380078A (zh) * 2019-07-19 2019-10-25 哈尔滨工业大学 用于金属支撑型固体氧化物燃料电池的低温封接结构及封接方法
WO2021120154A1 (en) * 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Silver sintering composition containing copper alloy for metal bonding
CN111408869B (zh) * 2020-04-10 2021-05-18 华中科技大学 用于低温键合的微纳米铜颗粒焊膏及其制备方法和应用
CN111975011B (zh) * 2020-07-20 2022-01-18 华南理工大学 一种芯片无压烧结互连用纳米铜浆及其制备方法与应用
CN112207481A (zh) * 2020-09-09 2021-01-12 中山大学 一种低温无压烧结微米银焊膏及其制备方法和应用
CN112157371B (zh) * 2020-09-23 2022-05-10 哈尔滨工业大学(深圳) 一种亚微米Cu@Ag焊膏及其制备方法
CN112238310A (zh) * 2020-10-30 2021-01-19 重庆平创半导体研究院有限责任公司 铜焊膏、铜焊膏制备方法和芯片
CN112756841B (zh) * 2020-12-25 2022-06-03 哈尔滨工业大学(深圳) 一种用于低温烧结互连的微纳复合银铜合金焊膏及制备方法
CN112846563B (zh) * 2020-12-31 2022-08-16 松山湖材料实验室 焊膏及其制备方法,器件及焊接方法
CN112846570B (zh) * 2020-12-31 2022-08-16 松山湖材料实验室 纳米焊剂及其制备方法,器件及焊接方法
CN112935240A (zh) * 2021-01-20 2021-06-11 深圳市先进连接科技有限公司 微纳米复合银膏及其制备方法和气密性器件的封装方法
CN113070605B (zh) * 2021-04-09 2023-03-14 宁波施捷电子有限公司 一种焊接材料及其制备方法和用途
CN113492281A (zh) * 2021-05-27 2021-10-12 中山大学 一种在裸铜上低温无压直接烧结的微米银焊膏及其制备方法和应用
CN115401196B (zh) * 2021-05-28 2023-11-07 季华实验室 一种双金属材料及其制备方法和双金属膏体和互连方法
CN113953612B (zh) * 2021-12-22 2022-03-22 广州先艺电子科技有限公司 一种活性金属钎焊覆铜陶瓷基板的制备方法
CN114473110B (zh) * 2022-02-28 2024-01-26 深圳先进电子材料国际创新研究院 一种抗电迁移抗氧化的焊膏及其应用
CN114473103A (zh) * 2022-04-19 2022-05-13 合肥阿基米德电子科技有限公司 一种液态金属锡辅助纳米银烧结工艺
CN116072558B (zh) * 2023-02-20 2023-09-29 纳宇半导体材料(宁波)有限责任公司 一种新型嵌入式封装结构及其制备方法
CN116275058A (zh) * 2023-03-28 2023-06-23 哈尔滨工业大学 一种微纳米合金接头的多场耦合快速制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156570A1 (de) * 2012-04-20 2013-10-24 Technische Universität Berlin Lotmaterial, verfahren zu dessen herstellung und seine verwendung zum drucklosen fügen metallischer substrate
CN103639614A (zh) * 2013-12-04 2014-03-19 马鑫 一种具备尺寸效应的纳米级/微米级颗粒混合型无铅焊料膏及其制备方法
TW201503983A (zh) * 2013-05-16 2015-02-01 Bando Chemical Ind 金屬接合用組成物
CN104625466A (zh) * 2015-01-21 2015-05-20 哈尔滨工业大学深圳研究生院 一种可以在低温下快速形成高温焊点的锡基焊料/铜颗粒复合焊料
CN104759725A (zh) * 2015-04-17 2015-07-08 哈尔滨工业大学 一种使用微纳米级金属颗粒填充Sn基焊料实现电子组件高温封装的方法
CN107175433A (zh) * 2017-04-19 2017-09-19 天津大学 一种低温烧结的锡掺杂纳米银焊膏的制备方法
CN107877030A (zh) * 2017-11-07 2018-04-06 深圳市汉尔信电子科技有限公司 一种纳米锡铋复合焊膏及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156570A1 (de) * 2012-04-20 2013-10-24 Technische Universität Berlin Lotmaterial, verfahren zu dessen herstellung und seine verwendung zum drucklosen fügen metallischer substrate
TW201503983A (zh) * 2013-05-16 2015-02-01 Bando Chemical Ind 金屬接合用組成物
CN103639614A (zh) * 2013-12-04 2014-03-19 马鑫 一种具备尺寸效应的纳米级/微米级颗粒混合型无铅焊料膏及其制备方法
CN104625466A (zh) * 2015-01-21 2015-05-20 哈尔滨工业大学深圳研究生院 一种可以在低温下快速形成高温焊点的锡基焊料/铜颗粒复合焊料
CN104759725A (zh) * 2015-04-17 2015-07-08 哈尔滨工业大学 一种使用微纳米级金属颗粒填充Sn基焊料实现电子组件高温封装的方法
CN107175433A (zh) * 2017-04-19 2017-09-19 天津大学 一种低温烧结的锡掺杂纳米银焊膏的制备方法
CN107877030A (zh) * 2017-11-07 2018-04-06 深圳市汉尔信电子科技有限公司 一种纳米锡铋复合焊膏及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240009731A1 (en) * 2021-04-25 2024-01-11 Solderwell Microelectronic Packaging Materials Co., Ltd Nano silver paste and preparation method thereof

Also Published As

Publication number Publication date
CN108526751A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108526751B (zh) 一种可用于无压烧结的微纳米混合焊膏及其制备方法
CN104759725B (zh) 一种使用微纳米级金属颗粒填充Sn基焊料实现电子组件高温封装的方法
CN107877030B (zh) 一种纳米锡铋复合焊膏及制备方法
CN109664049B (zh) 一种用于电子封装领域的多尺度微纳米颗粒复合焊膏及其制备方法
CN105127609B (zh) 铜/银核壳纳米颗粒低温烧结复合焊膏及其制备方法
CN108847395B (zh) 一种用于低温快速连接的预烧结纳米网络银膜制备及封装方法
CN107530836B (zh) 用于半导体管芯附接应用的具有高金属加载量的烧结膏剂
CN101803016A (zh) 附着方法和使用该方法生产的器件
CN106271177B (zh) 一种互连钎料及其互连成形方法
CN1961381A (zh) 用于连接的纳米级金属糊及其使用方法
TW200408489A (en) Bonding material and bonding method
CN104117782B (zh) 一种新型预制片高温钎料及其制备方法
CN109332939B (zh) 一种单相纳米银铜合金固溶体焊膏及其制备方法
CN101480763A (zh) 复合材料焊料及其制备方法
CN106457404A (zh) 用于制造金属粉末的方法
CN105336627A (zh) 一种脉冲电流低温快速烧结制备高温服役纳米晶接头的方法
TW201931544A (zh) 用於電子封裝總成之具有熱安定性微結構之冶金組合物
CN109979639A (zh) 一种纳米芯片封装用混合型导电银浆
CN104588905A (zh) Ag-Cu-Ti/Sn纳米颗粒焊膏及其制备方法
CN109545696A (zh) 一种采用单相纳米银铜合金焊膏制备低温连接高温服役接头的方法
CN113798730A (zh) 一种微纳米银铜合金焊料及其制备方法
CN108588456B (zh) 一种Cu-Sn金属间化合物骨架相变材料及其制备方法
KR102486410B1 (ko) 소결된 다이 부착 및 유사한 응용을 위한 나노구리 페이스트 및 필름
CN105609426B (zh) 一种用于低温焊接的免清洗纳米浆料制备方法
CN111415903B (zh) 一种基于反应性膏体的互连方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant