CN108499561B - 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用 - Google Patents

一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用 Download PDF

Info

Publication number
CN108499561B
CN108499561B CN201810463272.3A CN201810463272A CN108499561B CN 108499561 B CN108499561 B CN 108499561B CN 201810463272 A CN201810463272 A CN 201810463272A CN 108499561 B CN108499561 B CN 108499561B
Authority
CN
China
Prior art keywords
titanium dioxide
composite material
silver
hours
nanoflower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810463272.3A
Other languages
English (en)
Other versions
CN108499561A (zh
Inventor
胡海华
曹小华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CN201810463272.3A priority Critical patent/CN108499561B/zh
Publication of CN108499561A publication Critical patent/CN108499561A/zh
Application granted granted Critical
Publication of CN108499561B publication Critical patent/CN108499561B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种在二氧化钛纳米花表面沉积银的制备方法,本发明制备的银纳米颗粒/二氧化钛纳米花复合材料由二氧化钛纳米花和银纳米颗粒复合而成,其中二氧化钛纳米花提供大比表面积且富含大量氧空位。银纳米颗粒均匀还原沉积在二氧化钛表面,两者之间具有紧密的界面接触。本发明的银纳米颗粒/二氧化钛纳米花复合材料是一种高效,稳定的光电转化材料,采用一步简单还原法,制备过程简单,反应条件容易控制,适用于大规模制备和工业化生产。

Description

一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及 应用
技术领域
本发明涉及一种在二氧化钛纳米花表面沉积银纳米颗粒复合材料及其制备方法与应用,属于纳米材料和光催化技术领域。
背景技术
随着当今社会经济的发展,地花现存的化石能源已经远远不能满足人类日益增长的能源需求,能源短缺和环境污染的问题日渐突出。光催化分解水产氢是解决这一问题的有效途径。太阳能资源取之不尽用之不竭,如果将太阳能有效地利用将会大大的缓解化石能源危机。利用太阳能将水分解为氢气,氢气燃烧的产物为水,环保无污染且可以循环利用。自从20世纪70年代初日本科学家Fujishima和Honda发现光照n-型半导体(二氧化钛)电极导致水的分解从而产生氢气的现象(参见Nature 1972,238,37),揭示了利用太阳能分解水制氢将太阳能直接转化为化学能的可能性。随着由电解水演变为光催化分解水,以及许多新型光催化剂的相继发现和光催化效率的提高,光催化制氢近年来受到了科学家们的广泛关注。
当前,利用银属纳米粒子的光催化剂现象作为通常借助光能量引起强力的氧化还原反应,是指具有载流子产生的半导体性质的物质。若半导体在施加规定区域的能量,则电子从相应物质的价带向导带激发。此时,在导带形成多个电子,在价带留下空穴。以这种方式形成的电子和空穴具有强的氧化性或还原性,可分解有机物。利用这种性质,可作为对材料表面的附着物质、空气及溶液中的污染物质进行杀菌、抗菌、分解除臭及捕集的用途使用。具有这种性能的光催化剂不仅可应用于冷却器填充剂、玻璃、瓷砖、外墙、食品、工厂内壁、银属制品、水槽、海洋污染净化、防霉菌、阻隔紫外线、水质净化、空气净化、防止医院内感染等多种用途,还可应用于废水处理,分解水生产氢等领域。
在二氧化钛表面负载少量小尺寸银纳米粒子作为共催化剂可以提高载流子分离效率,来获得高活性光催化性能,并且沉积的银纳米颗粒与载体二氧化钛纳米花形成紧密界面,提高光生载流子的分离,促进光催化产氢的效率。实验表明制备的二氧化钛纳米花产生的氧空位具备还原性,并且与银离子反应时,两者之间发生电荷转移,所以利用二氧化钛氧空位还原性一步沉积银纳米颗粒制备新型复合材料的方法,可以获得紧密的银纳米颗粒与二氧化钛相界面,并且用这种方法还可以控制负载的量以及银属粒子的尺寸,以提高光催化产氢效率。与传统的方法相比,该法操作简单、无毒、高效以及可大面积生产等优势。
发明内容
本发明目的是针对上述问题,提供一种利用二氧化钛氧空位具备还原性一步沉积银纳米颗粒制备新型复合材料的制备方法,解决了现有技术中二氧化钛光生载流子内部复合严重限制其光催化产氢效率低下的问题。
本发明采用如下技术方案:一种银纳米颗粒/二氧化钛纳米花复合材料的制备方法,包括以下步骤:
步骤1:先将异丙醇加入到二乙烯三胺中,搅拌均匀,再加入二(乙酰丙酮基)钛酸二异丙酯,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260~2520:1~10:45~360,搅拌均匀,倒入反应釜中,200~220℃条件下,溶剂热处理24~36小时,洗涤,干燥,将得到纳米材料以1~10℃/min升温到退火温度,退火温度为425℃,退火时间为2小时,得到前驱体富氧空位二氧化钛纳米花材料。
步骤2:利用步骤1所制备二氧化钛纳米花的氧空位缺陷的还原性来实现银纳米颗粒的负载,具体为:将100mg二氧化钛纳米花均匀分散在50mL去离子水中,再加入硝酸银1.57~3mg,水浴温度为60~100℃,反应时间为1~5小时,洗涤,干燥,得到银纳米颗粒/二氧化钛纳米花复合材料。
进一步地,步骤1中反应温度为200℃,反应时间为24小时,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260:1:45。
进一步地,步骤2中水浴温度为80℃,反应时间为2小时,硝酸银1.57mg。
一种银纳米颗粒/二氧化钛纳米花复合材料,所述二氧化钛纳米花由锐钛矿相的二氧化钛纳米片组成,二氧化钛纳米片厚度2~9nm。粒径2~5nm的银纳米颗粒负载于二氧化钛纳米片表面,形成异质结结构。
所述银纳米颗粒/二氧化钛纳米花复合材料作为光催化剂的应用:分解水制氢,分解水制氧,降解污染物,生物抗菌,光电分解水,有机物合成等其它有关领域。
本发明产生的有益效果是:本发明提供利用二氧化钛氧空位还原性一步沉积银纳米颗粒制备新型复合材料的制备方法,二氧化钛纳米花由超薄纳米片自组装形成、具备大比表面积以及三维分级结构。导致可以快速转移光电子的同时增加光的多次散射性能,进而提高了光催化产氢效率。与此同时氧空位具备还原性,并且与银离子发生氧化还原反应时,两者之间发生电荷转移,所以利用二氧化钛氧空位还原性一步沉积银纳米颗粒制备新型复合材料的方法,可以获得紧密的贵金属银与二氧化钛纳米花相界面,并且用这种方法还可以控制负载的量以及银纳米粒子的尺寸,以提高光催化产氢性能,本材料生产成本低,制备工艺简单,利于工业化生产;本发明大大降低了光催化剂的生产成本的同时显著提高了光催化产氢效率,具备极大的应用前景。
附图说明
图1是实施例1所制备银纳米颗粒/二氧化钛纳米花复合材料的扫描电子显微镜图谱(SEM)。
图2是实施例1所制备银纳米颗粒/二氧化钛纳米花复合材料的透射电子显微镜图谱(TEM)。
图3是实施例1所制备银纳米颗粒/二氧化钛纳米花复合材料的X射线衍射图(XRD)。
图4是实例5中所制备银纳米颗粒/二氧化钛纳米花复合材料作为光催化剂时光解水产氢曲线图。
具体实施方式
下面结合实施例对本发明作进一步说明。以下实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
实施例1:
步骤1:在31.5ml异丙醇中加入二乙烯三胺(EDTA)0.025ml,搅拌10min。再往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯1.125ml。继续搅拌10min。将所得混合溶液倒入反应釜中,在200℃条件下溶剂热处理24小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,最后将反应物置于马弗炉内,升温速度1℃/min,温度425℃,高温退火2小时,得到前驱体二氧化钛纳米花材料。
步骤2:取前驱体二氧化钛纳米花100mg加入在50ml去离子水中,加入硝酸银1.57mg。保持溶液水浴温度80℃,反应时间为2小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,60℃干燥24小时后,得到银纳米颗粒/二氧化钛纳米花复合材料。
图1是实施例1所制备复合材料的扫描电子显微镜图谱(SEM),从图中可以看出,从图中可以清楚的看出银纳米颗粒/二氧化钛纳米花的尺寸为500~1000nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm。
图2、3是实施例1所制备复合材料的透射电子显微镜图谱(TEM),从图中可以看出银纳米颗粒均匀分散在二氧化钛纳米花片上,形成异质结,银纳米颗粒粒径为2~6nm。
图4是实施例1所制备复合材料的X射线衍射图(XRD),由图可以看出该材料XRD衍射图和标准TiO2的特征峰相符。
在全光谱下,取本实施例所制备银纳米颗粒/二氧化钛纳米花复合材料50mg超声分散在30%(v/v)甲醇溶液100ml,将反应装置抽真空,并置于模拟光源下,每隔半小时取样一次,用气相色谱检测气体。从而绘制出银纳米颗粒/二氧化钛纳米花复合材料在模拟光源下光催化分解水产氢曲线图,本实施例所制备样品在模拟光源下光催化分解水,并且表现出较好的产氢效果。光照2.5小时,产氢量为8.56mmol/g。
实施例2:
步骤1:在31.5ml异丙醇中加入二乙烯三胺(EDTA)0.025ml,搅拌10min。再往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯1.125ml。继续搅拌10min。将所得混合溶液倒入反应釜中,在200℃条件下溶剂热处理24小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,最后将反应物置于马弗炉内,升温速度1℃/min,温度425℃,高温退火2小时,得到前驱体二氧化钛纳米花材料。
步骤2:取前驱体二氧化钛纳米花100mg加入在50ml去离子水中,加入硝酸银3mg。保持溶液水浴温度100℃,反应时间为5小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,60℃干燥24小时后,得到银纳米颗粒/二氧化钛纳米花复合材料。
经表征,该产物为纳米花结构,尺寸为500~1000nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm。银纳米颗粒均匀分散在二氧化钛纳米花片上,形成异质结结构,银纳米颗粒粒径为2~6nm。该材料XRD衍射图和标准锐钛矿相TiO2的特征峰相符。
在全光谱下,取本实施例所制备银纳米颗粒/二氧化钛纳米花复合材料50mg超声分散在30%(v/v)甲醇溶液100ml,将反应装置抽真空,并置于模拟光源下,每隔半小时取样一次,用气相色谱检测气体。从而绘制出银纳米颗粒/二氧化钛纳米花复合材料在模拟光源下光催化分解水产氢曲线图,本实施例所制备样品在模拟光源下光催化分解水,并且表现出较好的产氢效果。光照2.5小时,产氢量为8.44mmol/g。
实施例3:
步骤1:在31.5ml异丙醇中加入二乙烯三胺(EDTA)0.125ml,搅拌10min。再往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯4.5ml。继续搅拌10min。将所得混合溶液倒入反应釜中,在220℃条件下溶剂热处理36小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,最后将反应物置于马弗炉内,升温速度10℃/min,温度425℃,高温退火5小时,得到前驱体二氧化钛纳米花材料。
步骤2:取前驱体二氧化钛纳米花100mg加入在50ml去离子水中,加入硝酸银1.57mg。保持溶液水浴温度80℃,反应时间为2小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,60℃干燥24小时后,得到银纳米颗粒/二氧化钛纳米花复合材料。
经表征,该产物为纳米花结构,尺寸为200~500nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm。银纳米颗粒均匀分散在二氧化钛纳米花片上,形成异质结结构,银纳米颗粒粒径为2~6nm。该材料XRD衍射图和标准锐钛矿相TiO2的特征峰相符。
在全光谱下,取本实施例所制备银纳米颗粒/二氧化钛纳米花复合材料50mg超声分散在30%(v/v)甲醇溶液100ml,将反应装置抽真空,并置于模拟光源下,每隔半小时取样一次,用气相色谱检测气体。从而绘制出银纳米颗粒/二氧化钛纳米花复合材料在模拟光源下光催化分解水产氢曲线图,本实施例所制备样品在模拟光源下光催化分解水,并且表现出较好的产氢效果。光照2.5小时,产氢量为8.37mmol/g。
实施例4:
步骤1:在31.5ml异丙醇中加入二乙烯三胺(EDTA)0.125ml,搅拌10min。再往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯4.5ml。继续搅拌10min。将所得混合溶液倒入反应釜中,在220℃条件下溶剂热处理36小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,最后将反应物置于马弗炉内,升温速度10℃/min,温度425℃,高温退火5小时,得到前驱体二氧化钛纳米花材料。
步骤2:取前驱体二氧化钛纳米花100mg加入在50ml去离子水中,加入硝酸银3mg。保持溶液水浴温度100℃,反应时间为5小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,60℃干燥24小时后,得到银纳米颗粒/二氧化钛纳米花复合材料。
经表征,该产物为纳米花结构,尺寸为200~500nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm。银纳米颗粒均匀分散在二氧化钛纳米花片上,形成异质结结构,银纳米颗粒粒径为2~6nm。该材料XRD衍射图和标准锐钛矿相TiO2的特征峰相符。
在全光谱下,取本实施例所制备银纳米颗粒/二氧化钛纳米花复合材料50mg超声分散在30%(v/v)甲醇溶液100ml,将反应装置抽真空,并置于模拟光源下,每隔半小时取样一次,用气相色谱检测气体。从而绘制出银纳米颗粒/二氧化钛纳米花复合材料在模拟光源下光催化分解水产氢曲线图,如图4所示,本实施例所制备样品在模拟光源下光催化分解水,并且表现出较好的产氢效果。光照2.5小时,产氢量为8.29mmol/g。

Claims (4)

1.一种银纳米颗粒/二氧化钛纳米花复合材料的制备方法,其特征在于,包括以下步骤:
步骤1:先将异丙醇加入到二乙烯三胺中,搅拌均匀,再加入二(乙酰丙酮基)钛酸二异丙酯,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260~2520:1~10:45~360,搅拌均匀,倒入反应釜中,200~220 oC条件下,溶剂热处理24~36小时,洗涤,干燥,将得到纳米材料以1~10 oC/min升温到退火温度,退火温度为425oC,退火时间为2小时,得到前驱体富氧空位二氧化钛纳米花材料;
步骤2:利用步骤1所制备二氧化钛纳米花的氧空位缺陷的还原性来实现银纳米颗粒的负载,具体为:将100mg二氧化钛纳米花均匀分散在50 mL去离子水中,再加入硝酸银1.57~3mg,水浴温度为60~100 oC,反应时间为1~5小时,洗涤,干燥,得到银纳米颗粒/二氧化钛纳米花复合材料;所述制备得到的银纳米颗粒/二氧化钛纳米花复合材料中,二氧化钛纳米花由锐钛矿相的二氧化钛纳米片组成,二氧化钛纳米片厚度2~9 nm;粒径2~5 nm的银纳米颗粒负载于二氧化钛纳米片表面,形成异质结结构。
2.根据权利要求1所述的方法,其特征在于,步骤1中反应温度为200 oC,反应时间为24小时,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260:1:45。
3.根据权利要求1所述的方法,其特征在于,步骤2中水浴温度为80 oC,反应时间为2小时,硝酸银1.57mg。
4.根据权利要求1所述的方法,其特征在于,制备得到的银纳米颗粒/二氧化钛纳米花复合材料的应用,包括分解水制氢,分解水制氧,降解污染物,生物抗菌,光电分解水,有机物合成。
CN201810463272.3A 2018-05-15 2018-05-15 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用 Expired - Fee Related CN108499561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810463272.3A CN108499561B (zh) 2018-05-15 2018-05-15 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810463272.3A CN108499561B (zh) 2018-05-15 2018-05-15 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN108499561A CN108499561A (zh) 2018-09-07
CN108499561B true CN108499561B (zh) 2020-04-24

Family

ID=63400858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810463272.3A Expired - Fee Related CN108499561B (zh) 2018-05-15 2018-05-15 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN108499561B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014664A (zh) * 2019-11-19 2020-04-17 昆明理工大学 一种抗菌多孔钛合金的制备方法
CN113976110B (zh) * 2021-11-25 2023-01-03 浙江理工大学 一种用于光催化醇水体系产氢的催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741137A (zh) * 2013-12-31 2015-07-01 西北大学 一种二氧化钛及其掺杂体的制备方法
CN105251483B (zh) * 2015-10-19 2017-07-07 安徽理工大学 一种可控制备Ag修饰TiO2纳米花光催化剂的方法
CN105772039B (zh) * 2016-05-10 2018-08-21 宿州学院 一种具有氧空位的(001)晶面氟硼共掺杂TiO2纳米片的制备方法及用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hierarchical spheres assembled from large ultrathin anatase TiO2 nanosheets for photocatalytic hydrogen evolution from water splitting";Zixuan Ding et al.;《International Journal of Hydrogen Energy》;20180614;第43卷;第13190-13199页 *
"Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting";Haihua Hu et al.;《International Journal of Hydrogen Energy》;20191126;第45卷;第629-639页 *
"TiO2分级纳米球的制备、异质结设计及其光催化性能的研究";丁子轩;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190115;B014-627 *

Also Published As

Publication number Publication date
CN108499561A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
Yu et al. Facile synthesis of AgNPs modified TiO2@ g-C3N4 heterojunction composites with enhanced photocatalytic activity under simulated sunlight
Diao et al. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation
Mahmoud et al. Influence of Mn, Cu, and Cd–doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation
Li et al. Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light
CN108479752B (zh) 一种二维碳层负载的BiVO4/TiO2异质可见光催化剂的制备方法
CN113649075B (zh) 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法
Zhou et al. Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination
CN111056567A (zh) 一种黑色金红石相二氧化钛的制备方法
Xie et al. Functions of boric acid in fabricating TiO2 for photocatalytic degradation of organic contaminants and hydrogen evolution
CN108499561B (zh) 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用
Dou et al. Ag nanoparticle-decorated 2D/2D S-scheme gC 3 N 4/Bi 2 WO 6 heterostructures for an efficient photocatalytic degradation of tetracycline
CN108579738B (zh) 一种金纳米颗粒/二氧化钛纳米花复合材料及其制备方法与应用
CN111686770B (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
CN113351210A (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
Huang et al. Molecule assembly of heterostructured TiO2@ BiOCl via fenton-like reaction for enhanced solar energy conversion
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
CN108525651B (zh) 一种具有高光催化活性的还原二氧化钛制备方法
KR102562529B1 (ko) 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법
CN111905770B (zh) 一种SrTiO3/SrSO4/Pt双异质结纳米材料的制备方法
CN108128803A (zh) 一种以钛粉为前驱体制备水溶性二氧化钛纳米粒子的方法
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN109833893B (zh) 一种碳化钛复合磷掺杂氧化钨光电催化剂及其制备方法
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN107857333B (zh) 光催化降解污染物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200424