KR102562529B1 - 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법 - Google Patents

전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법 Download PDF

Info

Publication number
KR102562529B1
KR102562529B1 KR1020200174858A KR20200174858A KR102562529B1 KR 102562529 B1 KR102562529 B1 KR 102562529B1 KR 1020200174858 A KR1020200174858 A KR 1020200174858A KR 20200174858 A KR20200174858 A KR 20200174858A KR 102562529 B1 KR102562529 B1 KR 102562529B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
transition metal
doped
reactant
adsorbent particles
Prior art date
Application number
KR1020200174858A
Other languages
English (en)
Other versions
KR20220085122A (ko
Inventor
공경배
Original Assignee
공경배
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공경배 filed Critical 공경배
Priority to KR1020200174858A priority Critical patent/KR102562529B1/ko
Publication of KR20220085122A publication Critical patent/KR20220085122A/ko
Application granted granted Critical
Publication of KR102562529B1 publication Critical patent/KR102562529B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Plasma & Fusion (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 전이금속이 도핑된 이산화티탄 광촉매를 제조함에 있어 대기압 플라즈마를 이용하여 결정구조의 변형을 방지하고, 전이금속이 도핑된 이산화티탄 광촉매를 흡착성 입자에 담지함으로써 밴드갭을 낮춰 가시광 응답성이 우수하며, 오염물질 분해능 및 탈취능을 향상시키고, 사용 후 분리가 용이한 광촉매 복합체 및 이의 제조방법에 관한 것이다.
본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체의 제조방법은 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하는 반응물 형성단계;와 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 복합체 조성물을 형성하는 담지단계;와 상기 복합체 조성물을 건조처리하는 건조단계;를 포함한다.

Description

전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법{Transition Metal Doped Complex Photocatalyst and Manufacturing Method thereof}
본 발명은 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 전이금속이 도핑된 이산화티탄 광촉매를 제조함에 있어 대기압 플라즈마를 이용하여 결정구조의 변형을 방지하고, 전이금속이 도핑된 이산화티탄 광촉매를 흡착성 입자에 담지함으로써 밴드갭을 낮춰 가시광 응답성이 우수하며, 오염물질 분해능 및 탈취능을 향상시키고, 사용 후 분리가 용이한 광촉매 복합체 및 이의 제조방법에 관한 것이다.
광촉매란 촉매의 한 종류로서 촉매작용이 빛에너지를 받아 일어나는 물질, 즉, 빛을 에너지원으로 촉매반응(산화ㆍ환원반응)을 촉진시켜 각종 세균 및 오염물질을 분해 시켜주는 반도체 물질을 의미한다.
즉, 반도체 등의 분말을 용액에 넣어, 그 밴드갭 이상의 에너지 광을 조사하면, 마이너스 전하를 갖는 전자(e-)와 플러스 전하를 갖는 정공(h+)이 생성되고 이것의 강한 환원 또는 산화작용에 의해 용액중의 이온종이나 분자종을 분해 시키는 등 다양한 반응을 일으키게 된다.
광촉매에 사용할 수 있는 물질로는 TiO2(anatase), TiO2(rutile), ZnO, CdS, ZrO2, SnO2, V2O3, WO3 등과 페로브스카이트형 복합금속산화물(SrTiO3) 등이 있다. 이중 TiO2는 자체가 빛을 받아도 변하지 않아 반영구적으로 사용이 가능한데 반해, ZnO와 CdS는 빛을 흡수함으로써 촉매 자체가 빛에 의해 분해되어 유해한 Zn, Cd 이온을 발생하는 단점을 갖고 있다.
또한, TiO2는 모든 유기물을 산화시켜 이산화탄소와 물로 분해하지만, WO3는 특정 물질에 대해서만 광촉매로서 효율이 좋고, 그 외에는 효율이 TiO2 만큼 좋지 않아 사용할 수 있는 영역이 매우 제한되고 있다.
이산화티탄(TiO2)은 이러한 광촉매 중에서 가장 널리 쓰이는 물질로 이산화티탄을 공기중에 노출시키면 쉽게 산소와 반응하여 산화되어, 피막형태의 이산화티탄이 형성되게 된다. 이러한 이산화티탄의 성질은 광촉매로 쓰이기에는 더없이 좋은 조건을 보유하고 있다.
즉 빛을 흡수하여 다른 물질들은 산화시키는 산화력이 매우 크며, 음폐력이 커서 산이나 염기 혹은 수용액 등 거의 모든 용매에 녹지 않는다. 또한 생물학적인 반응을 하지 않아 환경 및 인체에 무해하다. 특히 매우 안정한 물질이다.
다만, 이러한 광촉매로 널리 쓰이는 이산화티탄의 띠간격은 3.0~3.2 eV이므로 이 띠간격을 극복하기 위해서는 388nm보다 짧은 자외선(u.v: ultraviolet wave)영역의 빛이 필요하다.
그러나 태양광선은 대부분 가시광선(visible light) 영역이며 자외선 영역은 5%미만에 불과하다. 따라서 태양에너지를 효과적으로 이용하기 위해서는 태양광선의 대부분을 차지하는 가시광선 영역의 빛을 흡수할 수 있어야 하는데, 이산화티탄은 이러한 가시광선 영역의 빛에 대하여는 반응하지 않는 단점을 가지고 있다.
따라서, 이산화티탄 광촉매가 가시광선 영역의 빛에서 반응하게 할 수 있게 하려는 시도가 이루어지고 있다. 그러한 시도 중 하나가 전이금속, 양이온 및 음이온의 불순물을 이산화티탄에 도핑시켜서 띠간격 사이에 새로운 트랩 사이트(trap site)를 만들거나 밴드갭 에너지를 감소시켜 가시광선 영역의 빛을 흡수할 수 있도록 하는 것이다.
이와 관련하여, 국내등록특허 제10-1789296호에서는 자외선 및 가시광선 영역에서도 광촉매 활성이 높은 은(Ag) 도핑된 이산화티탄의 제조방법을 제시하고 있다.
또한, 국내공개특허 제10-2020-0032537호에서는 티타늄 전구체로부터 구형 이산화 티타늄를 합성하고 멜라민을 열처리하여 카본 나이트라이드를 제조한 후 구형 이산화 티타늄과 카본 나이트라이드의 수열합성을 통해 우수한 광촉매적 효율을 갖는 광촉매용 구형 이산화 티타늄/카본 나이트라이드 복합체의 제조방법을 제시하고 있다.
한편, 전이금속이 도핑된 이산화티탄을 제조하기 위하여 열수(hydrothermal)공정 혹은 졸-젤(sol-gel)공정 등으로 전이금속을 도핑하는 방법이 시도되었다. 하지만 열수공정은 고온의 열처리를 수행하고 있어 결정구조의 변화 등이 일어나서 광촉매의 특성이 감소되며, 최적의 온도를 유지하는 것이 아주 어렵고, 또한 고온에서의 후열처리로 인해 이산화티탄의 크기 증가 및 결정구조의 변화에 따른 이산화티탄 제조의 문제점을 야기하고 있었다.
또한 사용되는 시약이 대부분 고가이고 불순물의 제거 등 추가 공정이 뒤따르는 경제적인 문제점이 있었다. 즉, 상기와 같은 공정상의 문제로 인하여 전이금속이 이산화티탄 격자내에 치환되어 가시광선을 흡수할 수 있다는 사실은 잘 알려져 왔고 그에 대한 많은 연구가 이뤄졌지만, 대부분의 경우 가시광선 조사하에서 광분해 효율이 만족할 만한 수준에 이르지 못했고 특히 약한 가시광선하에서는 광촉매 효율이 낮은 문제점이 있었다.
국내등록특허 제10-1789296호 국내공개특허 제10-2020-0032537호
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 전이금속이 도핑된 이산화티탄 광촉매를 제조함에 있어 대기압 플라즈마를 이용하여 결정구조의 변형을 방지하고, 전이금속이 도핑된 이산화티탄 광촉매를 흡착성 입자에 담지함으로써 밴드갭을 낮춰 가시광 응답성이 우수하며, 오염물질 분해능 및 탈취능을 향상시키고, 사용 후 분리가 용이한 광촉매 복합체 및 이의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 전이금속이 도핑된 이산화티탄 광촉매 복합체의 제조방법은 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하는 반응물 형성단계;와 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 복합체 조성물을 형성하는 담지단계;와 상기 복합체 조성물을 건조처리하는 건조단계; 를 포함한다.
또한, 상기 담지단계의 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나인 것임을 특징으로 한다.
또한, 상기 담지단계의 복합체 조성물은 흡착성 입자 100중량부에 대하여 전이금속이 도핑된 이산화티탄 10 내지 30중량부를 포함하는 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 전이금속이 도핑된 이산화티탄 광촉매 복합체는 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하고, 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 형성된 복합체 조성물을 건조하여 수득되는 것을 특징으로 한다.
또한, 상기 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나인 것을 특징으로 한다.
상기 복합체 조성물은 흡착성 입자 100중량부에 대하여 전이금속이 도핑된 이산화티탄 10 내지 30중량부를 포함하는 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법에 의하면, 전이금속이 도핑된 이산화티탄 광촉매를 제조함에 있어 대기압 플라즈마를 이용하여 결정구조의 변형을 방지하고, 전이금속이 도핑된 이산화티탄 광촉매를 흡착성 입자에 담지함으로써 밴드갭을 낮춰 가시광 응답성이 우수하며, 오염물질 분해능 및 탈취능을 향상시키고, 사용 후 분리가 용이한 효과가 있다.
도 1은 본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체 제조방법의 순서도.
본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.
본 발명은 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 전이금속이 도핑된 이산화티탄 광촉매를 제조함에 있어 대기압 플라즈마를 이용하여 결정구조의 변형을 방지하고, 전이금속이 도핑된 이산화티탄 광촉매를 흡착성 입자에 담지함으로써 밴드갭을 낮춰 가시광 응답성이 우수하며, 오염물질 분해능 및 탈취능을 향상시키고, 사용 후 분리가 용이한 광촉매 복합체 및 이의 제조방법에 관한 것이다.
본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체는 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하고, 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 형성된 복합체 조성물을 건조하여 수득된다.
전이금속은 구리, 철, 팔라듐, 백금, 은, 코발트, 니켈 또는 이들의 조합 중 어느 하나를 사용할 수 있다. 전이금속 분산액은 상기 전이금속과 용매를 혼합한 것으로, 상기 전이금속은 유기용매 100중량부에 대하여 1 내 15중량부 포함될 수 있다.
상기 용매는 증류수, 유기용매, 무기용매 또는 이들의 조합 중 어느 하나를 포함하며, 보다 구체적인 예로는, 증류수, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알코올, 질산수용액, 암모니아수, 암모늄설페이트를 포함할 수 있으며, 이에 한정하는 것은 아니다.
상기 반응물을 제조하기 위하여 이산화티탄은 전이금속 분산액 100중량부에 대하여 5 내지 30중량부 투입될 수 있으며, 대기압 플라즈마 처리는 아르곤 또는 산소 기체를 이용하여 1.5~ 3kW, 인가전압 5 내지 20kV, 출력주파수 20 내지 40 kHz, 100 내지 1000 sccm 하에서 5 내지 30분간 수행될 수 있다.
바람직하게는, 1차로 이산화티탄을 아르곤을 이용하여 대기압 플라즈마 처리하여 이산화티탄의 표면을 스퍼터링하여 표면거칠기를 증가시키고, 2차로 산소를 이용하여 대기압 플라즈마 처리하여 OH기를 도입하여 표면 반응성을 향상시켜 전이금속의 도입을 촉진할 수 있다.
제 1실시예에 따른 반응물은 졸-겔법 또는 염소법으로 제조된 이산화티탄에 전이금속이 도핑된 것으로, 졸-겔법을 이용한 이산화티탄은 이산화티탄 전구체와 용매를 혼합하여 제조되며, 이때, 상기 이산화티탄 전구체는 티타늄 이소프로폭사이드, 티타늄 에톡사이드, 티타늄 프로폭사이드, 티타늄 부톡사이드, 티타늄 테트라에톡사이드, 티타늄 테트라이소프로폭사이드, 티타늄테트라부톡사이드, 티타늄 클로라이드, 티타늄 다이클로라이드, 티타늄 트리클로라이드, 티타늄 테트라클로라이드, 티타늄 브로마이드, 티타늄 설파이드 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는, 티타늄 이소프로폭사이드를 사용할 수 있다.
상기 용매는 증류수, 유기용매, 무기용매 또는 이들의 조합 중 어느 하나를 포함하며, 보다 구체적인 예로는, 증류수, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알코올, 질산수용액, 암모니아수, 암모늄설페이트를 포함할 수 있으며, 이에 한정하는 것은 아니다.
염소법을 이용한 이산화티탄은 이산화티탄 전구체로 티타늄클로라이드와 암모늄설페이트를 반응시켜 제조된다.
바람직하게는, 상기 이산화티탄은 메조기공을 형성하여 비표면적을 높일 수 있는 졸-겔법을 이용하여 제조될 수 있다.
졸-겔법 또는 염소법을 통해 제조된 이산화티탄은 가열 및 건조처리를 통해 분말상으로 형성하여 상기 분말상의 이산화티탄을 전이금속 분산액에 투입하여 전이금속이 도핑된 이산화티탄을 제조하거나, 이산화티탄이 형성된 반응액에 전이금속 분산액을 투입하여 전이금속이 도핑된 이산화티탄을 제조할 수 있다.
건조하여 분말상을 형성할 때는 광촉매활성이 높은 아나타제(anatase)상을 갖도록 가열 및 건조온도를 제어할 수 있으며, 바람직하게는, 400 내지 800 ℃에서 가열하여 루타일(rutile)상으로 변화되는 것을 방지하고, 입자가 커지는 것을 방지할 수 있다.
상기 이산화티탄은 평균입경크기가 1nm 내지 500㎛ 로 형성될 수 있으며, 바람직하게는, 10 내지 100nm 일 수 있다.
제 2실시예에 따른 반응물은 중공형을 갖는 이산화화티탄에 전이금속이 도핑된 것으로, 중공형의 이산화티탄에 전이금속을 도핑함으로써 비중공형 입자와 비교하였을 때 용액상에서 분산성을 향상시킬 수 있어 전이금속 및 후술될 흡착성 입자와의 결합 및 반응성을 더욱 향상시킬 수 있어 높은 오염물질 분해능 및 촉매활성을 가질 수 있게 된다.
제 2실시예에 따른 반응물은 제거가능한 코어에 이산화티탄 전구체를 증착시킨 코어-쉘 중간체에 전이금속을 도핑한 후 코어를 제거함으로써 제조될 수 있다.
상기 코어는 중공형 이산화티탄을 제조하기 위한 주형의 역할을 수행하는 것으로, 중공형 이산화티탄을 형성하고 화학반응 통해 제거가능한 것이라면 한정하지 않으나, 구체적인 예로는 실리카를 사용할 수 있다.
상기 코어의 평균입경을 조절함으로써 전이금속이 도핑된 이산화티탄의 크기를 조절할 수 있다.
상기 이산화티탄은 평균입경크기가 1nm 내지 500㎛ 로 형성될 수 있으며, 바람직하게는, 10 내지 100nm 일 수 있다.
제 2실시예에 따른 반응물은 제거가능한 코어에 이산화티탄 전구체를 증착시킨 코어-쉘 중간체를 제조하고, 상기 코어-쉘 중간체와 전이금속을 반응시켜 전이금속이 도핑된 중공형 이산화타탄을 형성하고, 염기용액을 이용하여 실리카를 에칭하게 되며, 질산을 이용하여 잔여 염기 양이온을 제거함으로써 제조될 수 있다.
상기 이산화티탄 전구체와 상기 전이금속은 제 1실시예에 따른 반응물에서 언급된 것을 사용할 수 있으며, 상기 염기용액은 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화마그네슘, 암모니아수 중 어느 하나로 선택될 수 있다.
염기용액은 실리카를 에칭하여 이산화티탄이 중공형을 가질 수 있도록 하나, 실리카를 에칭하고 남은 나트륨, 칼륨, 마그네슘, 칼슘 등의 잔여 염기 양이온은 이산화티탄의 순도를 저하시켜 광촉매 효율을 저하시키기 때문에 제거 및 치환되어야 한다.
이를 위해 질산을 사용할 경우, 잔여 염기 양이온을 수소이온으로 치환하여 잔여 염기 양이온을 제거함와 동시에 전이금속이 도핑된 중공형 이산화티탄에 질소와 수소가 도입되어 전자-정공을 형성하기 위한 밴드갭 에너지를 낮추어 가시광에서 광응답성을 향상시키고, 이산화티타늄에서 여기된 전자는 도핑된 물질로 전달되어 이산화티타늄 내에서 전자가 정공과 재결합되는 것을 방지하여 광촉매 반응효율을 향상시킬 수 있다.
가시광선에 의해서 여기된 전자가 전이금속을 통해서 외부의 산소로 전달되어 과산소이온 라디칼(·O2-)을 생성하고, 이때 생성된 정공은 수증기 또는 수산화이온으로 제공되어 수산화 라디칼(·OH)을 생성하며, 과산소이온 라디칼과 수산화 라디칼이 공기 또는 수중의 유기오염물질을 분해하게 된다.
상기 흡착성 입자는 전이금속이 도핑된 이산화티탄을 로딩하기 위한 지지체의 역할을 수행함과 동시에 광촉매 효율을 향상시키고, 높은 오염물질 분해능 및 탈취능 갖는다. 또한, 전이금속 도핑된 이산화티탄은 사용 후 분리 및 회수가 어려운데 흡착성 입자에 전이금속 도핑된 이산화티탄 광촉매를 코팅 및 담지시켜 분리 및 회수가 용이한 효과가 있다.
상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 복합체 조성물을 형성하게 되며, 바람직하게는, 상기 복합체 조성물은 흡착성 입자 100중량부에 대하여 전이금속이 도핑된 이산화티탄 10 내지 30중량부를 포함한다.
이때, 전이금속이 도핑된 이산화티탄이 10중량부 미만일 경우 광촉매 효과가 미미하고, 전이금속이 도핑된 이산화티탄이 30중량부를 초과할 경우 응집이 발생되어 히려 광촉매 효율이 저하될 수 있기 때문에 상기 범위를 벗어나지 않는 것이 바람직하다.
제 1실시예에 따른 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나를 포함할 수 있으며, 상기 흡착성 입자는 평균입경 100nm 내지 1000㎛을 가지되, 전이금속 도핑된 이산화티탄으로 흡착성 입자 표면을 코팅하거나 흡착성 입자에 담지되도록 전이금속 도핑된 이산화티탄의 입경보다 크게 형성됨이 바람직하다.
제 2실시예에 따른 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나를 포함하는 흡착 지지체의 표면에 키토산이 코팅된 코어-쉘 구조를 갖는다.
키토산은 금속이온 및 중금속 이온과의 흡착특성이 우수하며, 상기 흡착성 지지체를 키토산으로 코팅함으로써 전이금속 도핑된 이산화티탄이 흡착성 입자에 견고하게 결합되어 광촉매 효율을 더욱 향상시킬 수 있고, 전이금속 도핑된 이산화티탄의 유실을 방지하고 회수가 용이하게 된다.
상기 흡착성 입자는 평균입경 100nm 내지 1000㎛을 가지되, 전이금속 도핑된 이산화티탄으로 흡착성 입자 표면을 코팅하거나 흡착성 입자에 담지되도록 전이금속 도핑된 이산화티탄의 입경보다 크게 형성됨이 바람직하다.
이때, 흡착성 지지체는 카르복실기가 도입된 것을 사용할 수 있으며, 이로써, 키토산의 아미노기와 이온 결합에 의해 안정적인 코어-쉘 구조를 가질 수 있게 된다.
흡착성 지지체에 카르복실기를 도입하기 위한 방법으로는 산소 플라즈마 처리, 산처리 또는 이들의 조합 중 어느 하나의 방법을 이용할 수 있다. 이때, 카르복실기를 도입하기 위한 산처리로는 황산, 질산, 염산, 아세트산 등을 이용할 수 있다.
흡착성 입자에 전이금속 도핑된 이산화티탄을 코팅 및 담지하는 방법은 교반, 초음파 교반, 아르곤을 이용한 대기압 플라즈마법 또는 이들의 조합 중 어느 하나의 방법을 이용할 수 있다.
상기 복합체 조성물은 건조 및 가열되어 분말상으로 형성하게 되며, 상기 복합체 조성물은 300 내지 700 rpm에서 30 내지 60분간 원심분리하여 상등액을 제거하고, 침전물을 1차로 100 내지 150 ℃ 에서 2 내지 5시간 건조하고, 2차로 180 내지 300 ℃ 에서 1 내지 3시간 건조하여 결정성을 향상시킨 광촉매 복합체를 제조할 수 있게 된다.
이하, 본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체의 제조방법을 설명하도록 한다.
도 1은 본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체의 제조방법을 보여주는 순서도이며, 본 발명에 따른 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하는 반응물 형성단계(S100)와 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 복합체 조성물을 형성하는 담지단계(S200)와 상기 복합체 조성물을 건조처리하는 건조단계(S300)를 포함한다.
반응물 형성단계(S100)에서는 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하게 된다.
전이금속은 구리, 철, 팔라듐, 백금, 은, 코발트, 니켈 또는 이들의 조합 중 어느 하나를 사용할 수 있다. 전이금속 분산액은 상기 전이금속과 용매를 혼합한 것으로, 상기 전이금속은 유기용매 100중량부에 대하여 1 내 15중량부 포함될 수 있다.
상기 용매는 증류수, 유기용매, 무기용매 또는 이들의 조합 중 어느 하나를 포함하며, 보다 구체적인 예로는, 증류수, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알코올, 질산수용액, 암모니아수, 암모늄설페이트를 포함할 수 있으며, 이에 한정하는 것은 아니다.
이산화티탄은 전이금속 분산액 100중량부에 대하여 5 내지 30중량부 투입될 수 있으며, 대기압 플라즈마 처리는 아르곤, 산소 기체를 이용하여 1.5~ 3kW, 인가전압 5 내지 20kV, 출력주파수 20 내지 40 kHz, 100 내지 1000 sccm 하에서 5 내지 30분간 수행될 수 있다.
바람직하게는, 1차로 이산화티탄을 아르곤을 이용하여 대기압 플라즈마 처리하여 이산화티탄의 표면을 스퍼터링하여 표면거칠기를 증가시키고, 2차로 산소를 이용하여 대기압 플라즈마 처리하여 OH기를 도입하여 표면 반응성을 향상시켜 전이금속의 도입을 촉진할 수 있다.
제 1실시예에 따른 반응물은 졸-겔법 또는 염소법으로 제조된 이산화티탄에 전이금속이 도핑된 것으로, 졸-겔법을 이용한 이산화티탄은 이산화티탄 전구체와 용매를 혼합하여 제조되며, 이때, 상기 이산화티탄 전구체는 티타늄 이소프로폭사이드, 티타늄 에톡사이드, 티타늄 프로폭사이드, 티타늄 부톡사이드, 티타늄 테트라에톡사이드, 티타늄 테트라이소프로폭사이드, 티타늄테트라부톡사이드, 티타늄 클로라이드, 티타늄 다이클로라이드, 티타늄 트리클로라이드, 티타늄 테트라클로라이드, 티타늄 브로마이드, 티타늄 설파이드 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는, 티타늄 이소프로폭사이드를 사용할 수 있다.
상기 용매는 증류수, 유기용매, 무기용매 또는 이들의 조합 중 어느 하나를 포함하며, 보다 구체적인 예로는, 증류수, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알코올, 질산수용액, 암모니아수, 암모늄설페이트를 포함할 수 있으며, 이에 한정하는 것은 아니다.
염소법을 이용한 이산화티탄은 이산화티탄 전구체로 티타늄클로라이드와 암모늄설페이트를 반응시켜 제조된다.
바람직하게는, 상기 이산화티탄은 메조기공을 형성하여 비표면적을 높일 수 있는 졸-겔법을 이용하여 제조될 수 있다.
졸-겔법 또는 염소법을 통해 제조된 이산화티탄은 가열 및 건조처리를 통해 분말상으로 형성하여 상기 분말상의 이산화티탄을 전이금속 분산액에 투입하여 전이금속이 도핑된 이산화티탄을 제조하거나, 이산화티탄이 형성된 반응액에 전이금속 분산액을 투입하여 전이금속이 도핑된 이산화티탄을 제조할 수 있다.
건조하여 분말상을 형성할 때는 광촉매활성이 높은 아나타제(anatase)상을 갖도록 가열 및 건조온도를 제어할 수 있으며, 바람직하게는, 400 내지 800 ℃에서 가열하여 루타일(rutile)상으로 변화되는 것을 방지하고, 입자가 커지는 것을 방지할 수 있다.
상기 이산화티탄은 평균입경크기가 1nm 내지 500㎛ 로 형성될 수 있으며, 바람직하게는, 10 내지 100nm 일 수 있다.
제 2실시예에 따른 반응물은 중공형을 갖는 이산화화티탄에 전이금속이 도핑된 것으로, 중공형의 이산화티탄에 전이금속을 도핑함으로써 비중공형 입자와 비교하였을 때 용액상에서 분산성을 향상시킬 수 있어 전이금속 및 후술될 흡착성 입자와의 결합 및 반응성을 더욱 향상시킬 수 있어 높은 오염물질 분해능 및 촉매활성을 가질 수 있게 된다.
제 2실시예에 따른 반응물은 제거가능한 코어에 이산화티탄 전구체를 증착시킨 코어-쉘 중간체에 전이금속을 도핑한 후 코어를 제거함으로써 제조될 수 있다.
상기 코어는 중공형 이산화티탄을 제조하기 위한 주형의 역할을 수행하는 것으로, 중공형 이산화티탄을 형성하고 화학반응 통해 제거가능한 것이라면 한정하지 않으나, 구체적인 예로는 실리카를 사용할 수 있다.
상기 코어의 평균입경을 조절함으로써 전이금속이 도핑된 이산화티탄의 크기를 조절할 수 있다.
상기 이산화티탄은 평균입경크기가 1nm 내지 500㎛ 로 형성될 수 있으며, 바람직하게는, 10 내지 100nm 일 수 있다.
제 2실시예에 따른 반응물은 제거가능한 코어에 이산화티탄 전구체를 증착시킨 코어-쉘 중간체를 제조하고, 상기 코어-쉘 중간체와 전이금속을 반응시켜 전이금속이 도핑된 중공형 이산화타탄을 형성하고, 염기용액을 이용하여 실리카를 에칭하게 되며, 질산을 이용하여 잔여 염기 양이온을 제거함으로써 제조될 수 있다.
상기 이산화티탄 전구체와 상기 전이금속은 제 1실시예에 따른 반응물에서 언급된 것을 사용할 수 있으며, 상기 염기용액은 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화마그네슘, 암모니아수 중 어느 하나로 선택될 수 있다.
염기용액은 실리카를 에칭하여 이산화티탄이 중공형을 가질 수 있도록 하나, 실리카를 에칭하고 남은 나트륨, 칼륨, 마그네슘, 칼슘 등의 잔여 염기 양이온은 이산화티탄의 순도를 저하시켜 광촉매 효율을 저하시키기 때문에 제거 및 치환되어야 한다.
이를 위해 질산을 사용할 경우, 잔여 염기 양이온을 수소이온으로 치환하여 잔여 염기 양이온을 제거함와 동시에 전이금속이 도핑된 중공형 이산화티탄에 질소와 수소가 도입되어 전자-정공을 형성하기 위한 밴드갭 에너지를 낮추어 가시광에서 광응답성을 향상시키고, 이산화티타늄에서 여기된 전자는 도핑된 물질로 전달되어 이산화티타늄 내에서 전자가 정공과 재결합되는 것을 방지하여 광촉매 반응효율을 향상시킬 수 있다.
가시광선에 의해서 여기된 전자가 전이금속을 통해서 외부의 산소로 전달되어 과산소이온 라디칼(·O2-)을 생성하고, 이때 생성된 정공은 수증기 또는 수산화이온으로 제공되어 수산화 라디칼(·OH)을 생성하며, 과산소이온 라디칼과 수산화 라디칼이 공기 또는 수중의 유기오염물질을 분해하게 된다.
담지단계(S200)에서는 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 복합체 조성물을 형성하게 된다.
상기 흡착성 입자는 전이금속이 도핑된 이산화티탄을 로딩하기 위한 지지체의 역할을 수행함과 동시에 광촉매 효율을 향상시키고, 높은 오염물질 분해능 및 탈취능 갖는다. 또한, 전이금속 도핑된 이산화티탄은 사용 후 분리 및 회수가 어려운데 흡착성 입자에 전이금속 도핑된 이산화티탄 광촉매를 코팅 및 담지시켜 분리 및 회수가 용이한 효과가 있다.
상기 복합체 조성물은 흡착성 입자 100중량부에 대하여 전이금속이 도핑된 이산화티탄 10 내지 30중량부를 포함한다.
이때, 전이금속이 도핑된 이산화티탄이 10중량부 미만일 경우 광촉매 효과가 미미하고, 전이금속이 도핑된 이산화티탄이 30중량부를 초과할 경우 응집이 발생되어 히려 광촉매 효율이 저하될 수 있기 때문에 상기 범위를 벗어나지 않는 것이 바람직하다.
제 1실시예에 따른 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나를 포함할 수 있으며, 상기 흡착성 입자는 평균입경 100nm 내지 1000㎛을 가지되, 전이금속 도핑된 이산화티탄으로 흡착성 입자 표면을 코팅하거나 흡착성 입자에 담지되도록 전이금속 도핑된 이산화티탄의 입경보다 크게 형성됨이 바람직하다.
제 2실시예에 따른 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나를 포함하는 흡착 지지체의 표면에 키토산이 코팅된 코어-쉘 구조를 갖는다.
키토산은 금속이온 및 중금속 이온과의 흡착특성이 우수하며, 상기 흡착성 지지체를 키토산으로 코팅함으로써 전이금속 도핑된 이산화티탄이 흡착성 입자에 견고하게 결합되어 광촉매 효율을 더욱 향상시킬 수 있고, 전이금속 도핑된 이산화티탄의 유실을 방지하고 회수가 용이하게 된다.
상기 흡착성 입자는 평균입경 100nm 내지 1000㎛을 가지되, 전이금속 도핑된 이산화티탄으로 흡착성 입자 표면을 코팅하거나 흡착성 입자에 담지되도록 전이금속 도핑된 이산화티탄의 입경보다 크게 형성됨이 바람직하다.
이때, 흡착성 지지체는 카르복실기가 도입된 것을 사용할 수 있으며, 이로써, 키토산의 아미노기와 이온 결합에 의해 안정적인 코어-쉘 구조를 가질 수 있게 된다.
흡착성 지지체에 카르복실기를 도입하기 위한 방법으로는 산소 플라즈마 처리, 산처리 또는 이들의 조합 중 어느 하나의 방법을 이용할 수 있다. 이때, 카르복실기를 도입하기 위한 산처리로는 황산, 질산, 염산, 아세트산 등을 이용할 수 있다.
흡착성 입자에 전이금속 도핑된 이산화티탄을 코팅 및 담지하는 방법은 교반, 초음파 교반, 아르곤을 이용한 대기압 플라즈마법 또는 이들의 조합 중 어느 하나의 방법을 이용할 수 있다.
건조단계(S300)에서는 상기 복합체 조성물을 건조 및 가열하는 단계로, 상기 복합체 조성물은 300 내지 700 rpm에서 30 내지 60분간 원심분리하여 상등액을 제거하고, 침전물을 1차로 100 내지 150 ℃ 에서 2 내지 5시간 건조하고, 2차로 180 내지 300 ℃ 에서 1 내지 3시간 건조하여 결정성을 향상시킨 광촉매 복합체를 제조할 수 있게 된다.
이하, 본 발명을 바람직한 일 실시예를 참조하여 다음에서 구체적으로 상세하게 설명한다. 단, 다음의 실시예는 본 발명을 구체적으로 예시하기 위한 것이며, 이것만으로 한정하는 것은 아니다.
A. 전이금속 도핑된 이산화티탄의 제조
A-1. 제 1실시예에 따른 전이금속 도핑된 이산화티탄의 제조
Titanium (IV) isoproxide (TTIP:Ti(OC2H5)4)를 전구체로 사용하여 만든 TiO2 3% 졸을 이용하여 딥코팅(dip coating)법을 통하여 만들었다. 이산화티탄의 입자는 약 50nm로 확인되었다. 전이금속으로 구리를 도핑하였으며, 0.5 M Cu(NO3)2 용액에 이산화티타늄 입자를 구리 전구체 용액 100g 당 15g을 투입하여 대기압 플라즈마 장치(500sccm, 25분간, 아르곤 가스유입)를 이용하여 이산화티타늄 입자에 구리를 도핑하였다.(실시예 1).
A-2. 제 2실시예에 따른 전이금속 도핑된 이산화티탄의 제조
중공형을 갖는 이산화화티탄에 구리를 도핑하기 위하여 코어 물질로 실리카를 준비하였다. 실리카는 평균입경 39nm를 갖는 것을 준비하였으며, Titanium (IV) isoproxide (TTIP:Ti(OC2H5)4) 전구체 용액에 실리카를 투입하여 실리카 표면에 티타늄 전구체를 코팅시킨 후 수산화나트륨 용액으로 실리카를 에칭하였다. 과량의 나트륨 이온을 제거하기 위하여 질산용액을 투입하여 수소이온으로 치환하여 표면에 수소와 질소를 도입하였다. 이후 0.5 M Cu(NO3)2 용액에 이산화티타늄 입자를 구리 전구체 용액 100g 당 15g을 투입하여 대기압 플라즈마 장치(500sccm, 25분간, 아르곤 가스유입)를 이용하여 구리를 도핑하였다. 이때, 중공형의 이산화티탄의 입자는 약 50nm로 확인되었다(실시예 2).
B. 흡착성 입자에 담지처리
B-1. 제 1실시예에 따른 흡착성 입자에 담지처리
평균입경 110㎛의 제올라이트와 증류수, 이소프로필알코올이 혼합된 용액에 제 1실시예의 전이금속 도핑된 이산화티탄과 제 2실시예의 전이금속 도핑된 이산화티탄을 투입 및 교반하여 제올라이트의 내부 및 표면에 전이금속 도핑된 이산화티탄을 담지하였다(실시예 3, 실시예 4). 이때, 전이금속 도핑된 이산화티탄과 흡착성 입자의 중량비가 1: 5가 되도록 혼합하였다.
B-2. 제 2실시예에 따른 흡착성 입자에 담지처리
평균입경 110㎛의 제올라이트에 1차로 HCl용액에 침지하여 카르복실기를 도입한 후 2차로 키토산을 도입하였다. 키토산은 Sigma 에서 제조된 것을 이용하였으며, 플레이크상의 키토산을 jar mill을 이용하여 분쇄한 후 초산수용액 용해시켜 키토산 콜로이드 용액을 제조한 후 카르복실기가 도입된 키토산을 첨가하여 키토산을 도입시켰다.
이후, 제 1실시예의 전이금속 도핑된 이산화티탄과 제 2실시예의 전이금속 도핑된 이산화티탄을 투입 및 교반하여 제올라이트의 내부 및 표면에 전이금속 도핑된 이산화티탄을 담지하였다(실시예 5, 실시예 6). 마찬가지로 전이금속 도핑된 이산화티탄과 흡착성 입자의 중량비가 1: 5가 되도록 혼합하였다.
C. 비교예 1
Titanium (IV) isoproxide (TTIP:Ti(OC2H5)4)를 전구체로 사용하여 만든 TiO2 3% 졸을 이용하여 딥코팅(dip coating)법을 통하여 만들었다. 이산화티탄의 입자는 약 50nm로 확인되었다. 0.5 M Cu(NO3)2 용액에 수득된 이산화티타늄 입자를 투입하여 6시간 동안 400 내지 600℃에서 열처리하여 이산화티타늄 입자표면에 구리를 도핑하였다(비교예 1). 그 결과, 비교예 1에 의한 전이금속도핑된 이산화티타늄은 평균입경 50 내지 80 ㎛ 로 수득되어 입자크기가 증가하였음을 확인할 수 있었고, 불규칙한 입자가 관찰되었다.
UV-VIS absorbance 분석
가시광 영역 400~750 nm 에서 흡수도를 가질 때 광촉매가 가시광 응답성을 가지며, Agilent사 UV-VIS 8453 spectrophotometer를 사용하여 실시예 1 내지 6 및 비교예 1의 가시광 하에서 촉매특성을 확인하였다.
그 결과, 비교예 1은 385nm 이하에 파장에서 흡수도를 나타냈으며, 실시예 1 내지 6 은 순서대로 400~550 nm, 450~610 nm, 480~650 nm, 520~660 nm, 535~690 nm 및 555~720 nm 로 확인되었으며, 실시예 6 > 실시예 5 > 실시예 4 > 실시예 3 > 실시예 2 > 실시예 1 > 비교예 1 순으로 가시광 하에서 응답성이 우수하고 오염물질 분해능이 우수할 것으로 판단하였다.
비교예 1은 가시광 하에서 광촉매 기능이 거의 없는 것으로 확인되었는데, 이는 고온의 도핑공정에서 입자가 조립해지고, 불규칙한 형상으로 변화되면서 반응 표면적과 광촉매 효과가 급격하게 저하된 것에 기인한 것으로 판단하였다.
이는 실시예 1 내지 6은 모두 400~750 nm 파장영역대에서 흡수도를 보여 가시광 하에서 광촉매 기능을 갖는 것으로 확인되었다.
항균성 분석
항균성을 측정하기 위하여 실시예 1 내지 6 및 비교예 1이 혼합된 혼합액 99 mL와 균액 1 mL를 혼합하여 균주 초기농도와 15초간 접촉후 농도를 현미경으로 세균수를 측정하여 세균 감소율을 분석하였다. 사용된 균주는 대장균(Escherichia coli ATOC 25922), 녹농균(Pseudomonas aeruginosa ATCC 15442), 황색포도상구 균(Staphylococcus aureus ATCC 6538), 살모넬라균(Salmonella typhimurium IFO 14193), 폐렴균(Klebsiella pneumoniae ATTC 4352)등 이었다.
균주를 15초간 각 광촉매 혼합액에 접촉시킨후 현미경으로 분석하여 blank와 대비하여 균주의 수를 측정하여 세균 감소율을 측정하였다. 그 결과, 실시예 1 내지 6 및 비교예 1 모두 대장균, 녹농균, 황색포도상구균, 살모넬라균, 폐렴균에 대하여 15초후 99.9%의 세균 감소율을 나타내었다.
VOCs 물질에 따른 분해효율
실내의 일반형광등 하에서 VOCs 물질을 반응물로 하여 실시예 1 내지 6, 비교예 1에 따른 광촉매의 분해효율을 확인하였다.
반응물은 toluene, ammonia, formaldehyde, xylene, MEK를 각각 30 ppm 을 반응기 내부에 분사하고 반응기 내부의 팬을 작동시켜 30분간 균일혼합한 후 형광등을 켜서 2시간 후의 전환율을 측정하였다.
그 결과, 전체 반응물질에 대해서 비교예 1은 실내 형광등 하에서 전혀 분해능을 나타내지 못하였으며, 실시예 1 내지 6에 대한 분해능은 하기의 표 1과 같다.
Conversion(%)
toluene ammonia formaldehyde xylene MEK
실시예 1 40 67 41 40 46
실시예 2 47 71 49 41 49
실시예 3 61 78 57 49 51
실시예 4 66 84 69 53 56
실시예 5 78 89 72 59 57
실시예 6 83 94 86 68 60
실시예 1 내지 6 모두 VOCs에 대해 분해능을 가지는 것으로 확인되었으며, 특히, ammonia에 대해 우수한 분해능을 가지며, 실시예 6 > 실시예 5 > 실시예 4 > 실시예 3 > 실시예 2 > 실시예 1 > 비교예 1 순으로 VOCs에 대해 분해능이 우수하였다.
상기 결과를 토대로, 전이금속을 대기압플라즈마를 이용하여 도핑할 때(실시예 1 vs 비교예 1), 중공형일 때(실시예 1 vs 실시예 2), 흡착성 입자에 담지되었을 때(실시예 1 vs 실시예 3, 실시예 2 vs 실시예 4) 및 흡착성 입자를 키토산에 처리하였을 때(실시예 3 vs 실시예 5, 실시예 4 vs 실시예 6) 가시광 하에서 오염물질 분해능 및 탈취능, 광촉매 기능이 우수함을 확인할 수 있었다.
이는, 전자-정공을 형성하기 위한 밴드갭 에너지를 낮추어 가시광 에서 광응답성을 향상시키고, 이산화티타늄에서 여기된 전자는 도핑된 물질로 전달되어 이산화티타늄 내에서 전자가 정공과 재결합되는 것을 방지하여 광촉매 반응효율을 향상시킬 수 있음에 기인한 것으로 판단하였다.
특히, 전이금속을 도핑함에 있어 고온공정을 이용하는 것보다 대기압 플라즈마를 이용할 때 광촉매 입자크기의 제어가 용이하고, 광촉매 효율이 우수함을 확인할 수 있었다.
대기압 플라즈마 처리 조건에 따른 광촉매 효율 비교
대기압 플라즈마 처리 조건에 따른 광촉매 효율을 확인하기 위하여 대기압 플라즈마 처리를 함에 있어 1차로 아르곤으로 15분간 처리하고, 2차로 산소를 이용하여 10분간 플라즈마 처리를 하였을 때 광촉매 효율을 확인하였다(실시예 3-1). 나머지 조건은 실시예 3과 동일하게 수행하였다.
그 결과, 실시예 3은 480~650 nm의 파장영역에서 흡수도를 보이는 반면, 실시예 3-1은 490~670nm의 파장영역에서 흡수도를 보여 가시광 영역에서 광촉매 효율을 증가시킬 수 있음을 확인할 수 있었고, 또한, 실시예 3은 VOCs 분해능에 대해 toluene, ammonia, formaldehyde, xylene, MEK 각각 61%, 78%, 57%, 49% 및 51% 의 전환율을 보이는 반면, 실시예 3-1은 64%, 81%, 62%, 54% 및 56% 의 전환율을 보여 더욱 우수한 VOCs 분해효율을 보여주었다.
이는 1차로 이산화티탄을 아르곤을 이용하여 대기압 플라즈마 처리하여 이산화티탄의 표면을 스퍼터링하여 표면거칠기를 증가시키고, 2차로 산소를 이용하여 대기압 플라즈마 처리하여 OH기를 도입하여 표면 반응성을 향상시켜 전이금속의 도입을 촉진한 것에 기인한 것으로 판단하였다.
이처럼 본 발명에 따른 전이금속이 도핑된 이산화티탄 광촉매 복합체는 광촉매 효과 및 오염물질제거효과가 우수하여 대기정화용 필터, 수처리용 필터, 가전제품, 전자기기, 농업용 소재, 건축용 소재 등 오염물질제거, 항균 및 소취효과가 필요한 분야라면 한정하지 않고 적용될 수 있을 것으로 기대한다.
이상과 같이 본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 설명하였지만 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.

Claims (6)

  1. 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하는 반응물 형성단계;와
    상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 복합체 조성물을 형성하는 담지단계;와
    상기 복합체 조성물을 건조처리하는 건조단계;를 포함하며,
    상기 반응물 형성단계에서는 1차로 아르곤을 이용하여 대기압 플라즈마 처리하고, 2차로 산소로 대기압 플라즈마 처리하며,
    상기 담지단계의 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나에 카르복실기를 도입한 후 키토산으로 코팅된 것임을 특징으로 하는
    전이금속이 도핑된 이산화티탄 광촉매 복합체의 제조방법.
  2. 삭제
  3. 제 1항에 있어서,
    상기 담지단계의 복합체 조성물은
    흡착성 입자 100중량부에 대하여 전이금속이 도핑된 이산화티탄 10 내지 30중량부를 포함하는 것을 특징으로 하는
    전이금속이 도핑된 이산화티탄 광촉매 복합체의 제조방법.
  4. 전이금속 분산액에 이산화티탄을 투입한 후 대기압 플라즈마 처리하여 전이금속이 도핑된 이산화티탄을 포함하는 반응물을 형성하고, 상기 반응물에 흡착성 입자를 투입 및 교반하여 흡착성 입자에 전이금속이 도핑된 이산화티탄을 담지하여 형성된 복합체 조성물을 건조하여 수득되며,
    반응물 형성시에 1차로 아르곤을 이용하여 대기압 플라즈마 처리하고, 2차로 산소로 대기압 플라즈마 처리하며,
    상기 흡착성 입자는 활성탄, 제올라이트, 알루미나, 실리카 또는 이들의 조합 중 어느 하나에 카르복실기를 도입한 후 키토산으로 코팅된 것임을 특징으로 하는
    전이금속이 도핑된 이산화티탄 광촉매 복합체.
  5. 삭제
  6. 제 4항에 있어서,
    상기 복합체 조성물은
    흡착성 입자 100중량부에 대하여 전이금속이 도핑된 이산화티탄 10 내지 30중량부를 포함하는 것을 특징으로 하는
    전이금속이 도핑된 이산화티탄 광촉매 복합체.
KR1020200174858A 2020-12-14 2020-12-14 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법 KR102562529B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200174858A KR102562529B1 (ko) 2020-12-14 2020-12-14 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200174858A KR102562529B1 (ko) 2020-12-14 2020-12-14 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20220085122A KR20220085122A (ko) 2022-06-22
KR102562529B1 true KR102562529B1 (ko) 2023-08-02

Family

ID=82216529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200174858A KR102562529B1 (ko) 2020-12-14 2020-12-14 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR102562529B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282788B (zh) * 2022-08-03 2024-02-02 黄河三角洲京博化工研究院有限公司 一种高结晶氮化碳膜的制备方法及其应用
CN116371443A (zh) * 2023-03-28 2023-07-04 江苏梵品新材料有限公司 一种氮化碳复合光催化剂的制备方法及其产品和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256694B2 (ja) 2007-10-31 2013-08-07 信越化学工業株式会社 酸化チタン系光触媒薄膜の製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125636A4 (en) * 1998-08-21 2002-03-06 Ecodevice Lab Co Ltd PHOTOCALYST FOR VISIBLE RADIATION AND METHOD FOR THE PRODUCTION THEREOF
EP2316568A1 (en) * 2001-12-21 2011-05-04 Showa Denko K.K. Photocatlyst particles comprising a condensed phosphate
KR101789296B1 (ko) 2015-07-02 2017-11-21 서울시립대학교 산학협력단 은(Ag) 도핑된 이산화티탄 광촉매의 제조방법 및 이에 의해 제조된 광촉매
KR20190117875A (ko) * 2018-04-09 2019-10-17 주식회사 엔팩 수중 플라즈마를 이용한 TiO2의 제조방법
KR20200032537A (ko) 2018-09-18 2020-03-26 인하대학교 산학협력단 광촉매용 구형 이산화 티타늄/카본 나이트라이드 복합체의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256694B2 (ja) 2007-10-31 2013-08-07 信越化学工業株式会社 酸化チタン系光触媒薄膜の製造法

Also Published As

Publication number Publication date
KR20220085122A (ko) 2022-06-22

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
Yadav et al. Review on undoped/doped TiO2 nanomaterial; synthesis and photocatalytic and antimicrobial activity
EP2445635B1 (en) Method for the preparation doped catalytic carbonaceous composite materials
JP4803180B2 (ja) 酸化チタン系光触媒とその製造方法及び用途
Kang et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst
KR102562529B1 (ko) 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법
Khore et al. Green sol–gel route for selective growth of 1D rutile N–TiO 2: a highly active photocatalyst for H 2 generation and environmental remediation under natural sunlight
Haruna et al. Visible light induced photodegradation of methylene blue in sodium doped bismuth barium ferrite nanoparticle synthesized by sol-gel method
Li et al. RETRACTED: Synthesis of BiVO4 nanoparticles with tunable oxygen vacancy level: The phenomena and mechanism for their enhanced photocatalytic performance
KR102562523B1 (ko) 오염물질 분해용 복합 광촉매 및 이의 제조방법
Arul et al. Visible light proven Si doped TiO2 nanocatalyst for the photodegradation of Organic dye
KR20200062049A (ko) 중공사형 광촉매 및 이의 제조방법
Hongxia et al. A new double Z‐scheme TiO2/ZnO‐g‐C3N4 nanocomposite with enhanced photodegradation efficiency for Rhodamine B under sunlight
Purnawan et al. Methyl violet degradation using photocatalytic and photoelectrocatalytic processes over graphite/PbTiO3 composite
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN107649108B (zh) 一种可见光光触媒及其制备方法
KR101400633B1 (ko) 가시광선 감응형 지르코늄 및 실리카 포함 이산화티탄 광촉매 및 그 제조방법
KR20230128805A (ko) 가시광 활성 이산화티탄 광촉매 필터
KR100354857B1 (ko) 솔-젤법을 이용한 실리카/티타니아 광촉매의 제조방법
Lee et al. A study of photocatalytic degradation of methylene blue in aqueous solution using perovskite structured PbBi2Nb2O9
KR20230130278A (ko) 가시광 활성 이산화티탄 광촉매 필터가 구비되는 공기 청정기
CN112427044B (zh) 一种氮掺杂混晶二氧化钛光催化材料及其制备方法和应用
KR20240108084A (ko) 전이금속이 도핑된 이산화티탄 광촉매를 포함하는 공기청정기용 필터 및 이의 제조방법
Tomovska et al. Current state of nanostructured TiO2-based catalysts: preparation methods
Ha et al. Study on synthesis and structural characterization of ZnO-doped gC 3 N 4 materials for treatment of ciprofloxacin antibiotic in water

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant