CN113649075B - 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法 - Google Patents

一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法 Download PDF

Info

Publication number
CN113649075B
CN113649075B CN202111036786.9A CN202111036786A CN113649075B CN 113649075 B CN113649075 B CN 113649075B CN 202111036786 A CN202111036786 A CN 202111036786A CN 113649075 B CN113649075 B CN 113649075B
Authority
CN
China
Prior art keywords
nanbo
zif
piezoelectric
photocatalyst
balsam pear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111036786.9A
Other languages
English (en)
Other versions
CN113649075A (zh
Inventor
张丽娜
孙术博
高超民
张彦
马鹏飞
王丹
姜葱葱
于京华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202111036786.9A priority Critical patent/CN113649075B/zh
Publication of CN113649075A publication Critical patent/CN113649075A/zh
Application granted granted Critical
Publication of CN113649075B publication Critical patent/CN113649075B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化领域,尤其涉及一种类苦瓜状NaNbO3@ZIF‑8压电‑光催化剂的制备方法。本发明以氧化铌(Nb2O5)、氢氧化钠(NaOH)、硝酸锌(Zn(NO3)2)、2‑甲基咪唑(H‑MeIM)为原料,通过简单的水热法与原位生长法,成功合成类苦瓜状NaNbO3@ZIF‑8压电‑光催化剂。所得催化剂具有较好的压电‑光催化特性,实现了在超声波辅助下提高光催化分解水产氢与降解染料性能的目的。本发明为探索压电效应增强光催化性能提供了一种新材料及合成途径。

Description

一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法
技术领域
本发明属于光催化领域,具体涉及一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法。
背景技术
随着全球经济快速发展,化石能源被快速消耗,随之而来的能源短缺与环境污染等问题亟待解决。光催化技术作为可以同时解决上述两种问题的方法受到了世界范围的广泛关注。传统光催化技术通过光源激发半导体产生的电子、空穴等载流子与吸附物反应生成超氧阴离子和羟基自由基,从而实现分解水产氢与污染物降解。但目前存在的诸如载流子易复合、与表面反应速率慢等问题很大程度制约着光催化技术的快速发展。针对这一问题,科学家们采取了改变能带结构、构建异质结等方法进行一定改善,但仍存在较大的发展空间。
近年来,研究发现通过压电效应产生的内建电场,可实现对载流子定向分离的有效促进。铌酸钠(NaNbO3)具有高电荷迁移率和高化学稳定性,可以在外加应力作用下触发压电效应,产生内建电场,增强光催化效率,已吸引了越来越多的关注。目前国内外报道的关于NaNbO3压电光催化剂的研究包括无负载NaNbO3催化剂的压电-光催化罗丹明b的染料降解实验(Singh S, Khare N. Coupling of piezoelectric, semiconducting andphotoexcitation properties in NaNbO3 nanostructures for controllingelectrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst[J].NanoEnergy,2017,38:335-341.)、二维片状NaNbO3/MoS2异质结压电光催化剂实现增强的光催化性能(CN202010483649.9)等。但其比表面积低、载流子复合速率快的问题仍然存在。为此,需要对NaNbO3作进一步改性以获得其性能的增强。ZIF-8作为金属有机骨架系列物质的一种,具有极高的比表面积和永久性的孔道结构,有利于活性物质的迁移与反应活性位点的增加。目前,将ZIF-8应用于NaNbO3表面改性以提高催化效率的技术与应用还未见公开报道。本发明丰富了针对NaNbO3表面改性的手段,为解决载流子的复合问题提供了新的思路。
发明内容
本发明的目的在于:提供一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法,通过将ZIF-8颗粒均匀致密地负载到NaNbO3纳米棒表面,形成类苦瓜状形貌,用以提高催化剂在超声波辅助下的光催化效率。
为实现上述发明目的,本发明采用如下技术方案:
一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂由NaNbO3纳米棒和ZIF-8颗粒组成,均匀负载于纳米棒表面的ZIF-8颗粒排列均匀致密形成类苦瓜状结构;所述NaNbO3@ZIF-8压电-光催化剂平均长度5-10 μm,平均直径400-500 nm。
如上所述的一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法,具体包括以下步骤:
(1)水热法制备NaNbO3纳米棒:称取0.5-1 g氧化铌粉末和30-60 mL浓度为10-13mol/L的氢氧化钠溶液混合搅拌后移入反应釜中。将反应釜密封,放入不锈钢套中锁紧,置于预热至160-200 ℃烘箱中水热反应50-150分钟后自然冷却至室温;所得沉淀用去离子水洗涤数次,后转移至60-80 ℃烘箱中干燥24 小时,得到白色粉末;将该粉末放入陶瓷坩埚并移入程序控温的马弗炉中,于500-600 ℃煅烧4小时,即得具有优良压电-光催化性质的NaNbO3纳米棒;
(2)金属有机骨架ZIF-8的负载:取步骤(1)中所制得的NaNbO3纳米棒40-200 mg先加入浓度为0.04-0.2 mol/L硝酸锌甲醇溶液15 mL,搅拌5-10分钟后,再滴加0.6-1.5 mol/L 2-甲基咪唑甲醇溶液15 mL,其中NaNbO3纳米棒、硝酸锌甲醇溶液、2-甲基咪唑甲醇溶液的摩尔比为1 : (3-4) : (24-26);搅拌至形成乳状悬浊液后,于室温静置24小时,得到乳白色沉淀;将沉淀以10000转/分钟转速离心,并用去离子水洗涤数次,放入60-80 ℃烘箱中干燥24小时,即得类苦瓜状NaNbO3@ZIF-8压电-光催化剂。
本发明的显著优点在于:
(1)本发明所制得的类苦瓜状NaNbO3@ZIF-8压电-光催化剂尺寸均匀,结晶度良好,且操作简单,制备成本低;
(2)本发明所制得的类苦瓜状NaNbO3@ZIF-8压电-光催化剂具有类苦瓜状形貌,该形貌大大增加了催化剂的比表面积和反应活性位点,使催化剂的压电-光催化效率显著提升;
(3)本发明所制得的类苦瓜状NaNbO3@ZIF-8压电-光催化剂具有压电-光催化性能,可在超声波辅助作用下,触发压电效应产生内建电场,该电场促进光致载流子分离,进一步提高催化剂压电-光催化效率;
(4)本发明所制得的类苦瓜状NaNbO3@ZIF-8压电-光催化剂具有一维的纳米线结构,易出现的周期性弯折,更有利与对超声波的富集与转化;
(5)本发明所制得的类苦瓜状NaNbO3@ZIF-8压电-光催化剂实现了机械能与光能的同时利用,为多场耦合增强光催化作用提供一条新的途径。
附图说明
图1为NaNbO3@ZIF-8压电-光催化剂的低倍SEM图,图中可观察到其类苦瓜状形貌。
图2为NaNbO3@ZIF-8压电-光催化剂的高倍SEM图,图中可观察到其类苦瓜状形貌。
图3为NaNbO3@ZIF-8压电-光催化剂的XRD图,图中可观察到ZIF-8与NaNbO3的特征峰,且无其他杂峰。
图4为NaNbO3@ZIF-8压电-光催化剂与NaNbO3纳米棒的产氢速率图,图中可看出NaNbO3纳米棒的产氢速率为0.61 mmolg-1h-1,NaNbO3@ZIF-8压电-光催化剂的产氢速率为1.16 mmolg-1h-1
图5为NaNbO3压电-光催化剂的降解性能图,图中可观察到在超声辅助的光催化2小时内,罗丹明b溶液的降解率为15.3%。
图6为NaNbO3@ZIF-8压电-光催化剂的降解性能图,图中可观察到在超声辅助的光催化2小时内,罗丹明b溶液的降解率为96.3%。
具体实施方式
以下将结合实例详细说明本发明的实施方式,同时对此发明据以实施并达成技术成功的过程详细表述。
实施例1:一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法,具体步骤如下:
(1)称取0.5 g氧化铌粉末分散于30 mL浓度为11.1 mol/L的NaOH溶液中,混合搅拌后移入反应釜中;将反应釜密封,放入不锈钢套中锁紧,置于预热至180 ℃烘箱中水热反应100分钟后自然冷却至室温;所得沉淀用去离子水洗涤数次,后转移至60 ℃烘箱中干燥24 小时,得到白色粉末;将该粉末放入陶瓷坩埚并移入程序控温的马弗炉中,于550 ℃煅烧4小时,即得具有压电-光催化性质的NaNbO3纳米棒;附图3中可观察到NaNbO3纳米棒特征峰明显,且无其他杂峰;
(2)取步骤(1)中所制NaNbO3纳米棒80 mg分散于0.083 mol/L六水硝酸锌甲醇15mL中,搅拌5-10分钟后,再滴加浓度为0.67 mol/L的2-甲基咪唑甲醇溶液15 mL,并于室温反应24小时;反应完成后,将沉淀以10000转/分钟转速离心,并用去离子水洗涤数次后,放入60 ℃烘箱中干燥24小时,即得类苦瓜状NaNbO3@ZIF-8压电-光催化剂;由附图1和附图2中可观察到表面的类苦瓜状结构,且NaNbO3@ZIF-8压电-光催化剂整体为棒状,直径在400-500 nm左右;由附图3中可知NaNbO3@ZIF-8压电-光催化剂中,NaNbO3纳米棒与ZIF-8的特征峰明显,且无其他杂峰;
(3)分别取(1)与(2)中所制NaNbO3纳米棒与NaNbO3@ZIF-8压电-光催化剂30 mg与0.3 mg氯铂酸超声分散于40 mL去离子水与10 mL甲醇的混合溶液中,密闭容器并抽真空;用300 W氙灯辐照60分钟完成Pt颗粒光沉积,随后在施加40 kHz超声波的同时保持300 W氙灯光源直射,每小时取体系内1 mL气体注入气相色谱仪,根据标准曲线计算实际产氢量;附图4中显示出NaNbO3纳米棒的产氢速率为0.61 mmolg-1h-1,NaNbO3@ZIF-8压电-光催化剂的产氢速率为1.16 mmolg-1h-1,可知NaNbO3@ZIF-8压电-光催化剂的光催化产氢效率得到明显增强。
实施例2:一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法,具体步骤如下:
(1)称取1 g的氧化铌粉末分散于60 mL浓度为12 mol/L的氢氧化钠溶液中,后移入反应釜中;将反应釜密封,放入不锈钢套中锁紧,置于预热至190 ℃烘箱中水热反应90分钟后自然冷却至室温;所得沉淀用去离子水洗涤数次,后转移至60 ℃烘箱中干燥24小时,得到白色粉末;将该粉末放入陶瓷坩埚并移入程序控温的马弗炉中,于500 ℃煅烧4.5小时,即得具有压电-光催化性质的NaNbO3纳米棒;
(2)取步骤(1)中所制NaNbO3纳米棒160 mg分散于0.17 mol/L六水硝酸锌甲醇15mL中,搅拌5-10分钟后,再滴加浓度为1.33 mol/L的2-甲基咪唑甲醇溶液15 mL,并于室温反应24小时;反应完成后,将沉淀以10000转/分钟转速离心,并用去离子水洗涤数次后,放入60 ℃烘箱中干燥24小时,即得类苦瓜状NaNbO3@ZIF-8压电-光催化剂;
(3)分别取(1)与(2)中所制NaNbO3纳米棒与NaNbO3@ZIF-8压电-光催化剂10 mg超声分散于10 mg/L的罗丹明b溶液50 mL中,暗处理30分钟达到吸附-脱附平衡。随后在施加40 kHz超声波的同时保持300 W氙灯光源直射,每15分钟取1 mL溶液离心,取上清液用紫外可见分光光度计测定浓度;附图5和附图6中分别可观察到NaNbO3纳米棒的降解率为15.2%,NaNbO3@ZIF-8压电-光催化剂的降解率为96.3%,可知NaNbO3@ZIF-8压电-光催化剂的光催化降解效率得到明显增强。

Claims (2)

1.一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法,其特征在于,包括以下步骤:
(1)水热法制备NaNbO3纳米棒:称取0.5-1g氧化铌粉末和30-60mL浓度为10-13mol/L的氢氧化钠溶液混合搅拌后移入反应釜中;将反应釜密封,放入不锈钢套中锁紧,置于预热至160-200℃烘箱中水热反应50-150分钟后自然冷却至室温;所得沉淀用去离子水洗涤数次,后转移至60-80℃烘箱中干燥24小时,得到白色粉末;将该粉末放入陶瓷坩埚并移入程序控温的马弗炉中,于500-600℃煅烧4小时,即得具有压电-光催化性质的NaNbO3纳米棒;
(2)类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备:取步骤(1)中所制得的NaNbO3纳米棒40-200mg先加入浓度为0.04-0.2mol/L硝酸锌甲醇溶液15mL,搅拌5-10分钟后,再滴加0.6-1.5mol/L 2-甲基咪唑甲醇溶液15mL,其中NaNbO3纳米棒、硝酸锌甲醇溶液、2-甲基咪唑甲醇溶液的摩尔比为1∶(3-4)∶(24-26);搅拌至形成乳状悬浊液后,于室温静置24小时,得到乳白色沉淀;将沉淀以10000转/分钟转速离心,并用去离子水洗涤数次,放入60-80℃烘箱中干燥24小时,得到由NaNbO3纳米棒和ZIF-8颗粒构成的类苦瓜状NaNbO3@ZIF-8压电-光催化剂,其中ZIF-8颗粒均匀负载于纳米棒表面;
所述NaNbO3@ZIF-8催化剂平均长度5-10μm,平均直径400-500nm。
2.根据权利要求1所述的一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法,其特征在于:步骤(1)中每0.1g氧化铌使用6mL氢氧化钠溶液。
CN202111036786.9A 2021-09-06 2021-09-06 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法 Active CN113649075B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111036786.9A CN113649075B (zh) 2021-09-06 2021-09-06 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111036786.9A CN113649075B (zh) 2021-09-06 2021-09-06 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN113649075A CN113649075A (zh) 2021-11-16
CN113649075B true CN113649075B (zh) 2024-02-02

Family

ID=78482857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111036786.9A Active CN113649075B (zh) 2021-09-06 2021-09-06 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113649075B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114588890B (zh) * 2022-03-21 2023-11-03 中山大学 钒掺杂铌酸钠压电催化剂的制备及其在催化裂解中间水制备双氧水和氢气中的应用
CN115041231A (zh) * 2022-07-15 2022-09-13 济南大学 一种核壳BiFeO3@TpPa-1-COF压电光催化剂制备方法及应用
CN115463542B (zh) * 2022-10-08 2023-10-27 南京大学 一种利用金属单原子修饰的氧化锌纳米颗粒高效光催化烃类小分子气体或甲醛降解的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549082A (zh) * 2014-12-19 2015-04-29 安徽建筑大学 ZnO@ZIF-8核壳结构微球及其制备方法
CN109331883A (zh) * 2018-11-26 2019-02-15 中南大学 一种CdS/金属有机框架复合光催化材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549082A (zh) * 2014-12-19 2015-04-29 安徽建筑大学 ZnO@ZIF-8核壳结构微球及其制备方法
CN109331883A (zh) * 2018-11-26 2019-02-15 中南大学 一种CdS/金属有机框架复合光催化材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro- bi-catalytic dye decomposition of NaNbO3 nanofibers;You Huilin等人;NANO ENERGY;第52卷;351-359 *
Polymeric g‑C3N4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO2 into Renewable Fuel;Shi HF等人;ACS CATALYSIS;第10卷(第4期);3637-3643 *
Structural Evolution of Zeolitic Imidazolate Framework-8;Surendar R. Venna等人;journal of the american chemical society;第132卷(第51期);18030-18033 *
孟亚娟.g-C3N4@MOF复合材料的制备及光催化还原CO2应用研究.2019,全文. *
张宝幸.类沸石咪唑骨架ZIF-8复合材料的研究进展.2018,全文. *

Also Published As

Publication number Publication date
CN113649075A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN113649075B (zh) 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法
US11345616B2 (en) Heterojunction composite material consisting of one-dimensional IN2O3 hollow nanotube and two-dimensional ZnFe2O4 nanosheet, and application thereof in water pollutant removal
CN109092343B (zh) 一种可见光响应型g-C3N4/BiVO4异质结材料的制备方法及其应用
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN110102312B (zh) 一种一维氧化亚铜/银/氧化锌纳米棒光催化复合材料及其制备方法与应用
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN109731563B (zh) 一种同相结光催化剂及其制备方法和应用
CN109174144B (zh) Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
CN114471639B (zh) 过渡金属元素掺杂及具有硫空位的硫化镉负载过渡金属磷化物光催化材料及其制备方法
CN112675831A (zh) Mof衍生的氧化锌复合二氧化钛异质结的制备方法及光电分解水应用
CN108940255A (zh) 一种氧化锌催化材料及其制备方法与应用
CN112473712A (zh) 采用不同气氛处理的CeO2/g-C3N4异质结材料及其制备方法和应用
CN112264079A (zh) 构造金属氧化物纳米阵列/二维氮化碳的方法
CN113952986A (zh) 一种WO3/TpPa-1-COF复合材料及其制备方法与应用
CN109107600B (zh) 一种真空辅助制备三层g-C3N4/TiO2同轴复合纳米结构的方法
CN108579738B (zh) 一种金纳米颗粒/二氧化钛纳米花复合材料及其制备方法与应用
Liu et al. Photoreforming of polyester plastics into added-value chemicals coupled with H 2 evolution over a Ni 2 P/ZnIn 2 S 4 catalyst
CN111905770B (zh) 一种SrTiO3/SrSO4/Pt双异质结纳米材料的制备方法
CN108940314B (zh) 一种水体综合处理BiVO4/CdS复合物及其制备方法和应用
CN109926085A (zh) 一种非晶/结晶型催化剂的制备方法
CN113559856B (zh) 一种钛酸钡/碘酸银异质结光催化剂的制备方法
CN112517029A (zh) 富含s空位的复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant