CN107857333B - 光催化降解污染物的方法 - Google Patents

光催化降解污染物的方法 Download PDF

Info

Publication number
CN107857333B
CN107857333B CN201711222720.2A CN201711222720A CN107857333B CN 107857333 B CN107857333 B CN 107857333B CN 201711222720 A CN201711222720 A CN 201711222720A CN 107857333 B CN107857333 B CN 107857333B
Authority
CN
China
Prior art keywords
biocl
substance
aqueous solution
photocatalyst
pollutants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711222720.2A
Other languages
English (en)
Other versions
CN107857333A (zh
Inventor
彭银
毛艳鸽
刘婷
徐健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201711222720.2A priority Critical patent/CN107857333B/zh
Publication of CN107857333A publication Critical patent/CN107857333A/zh
Application granted granted Critical
Publication of CN107857333B publication Critical patent/CN107857333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种光催化降解污染物的方法,包括:在光照条件下将具有高光催化活性的BiOCl光催化剂与含有污染物的水进行接触的步骤;其中,所述具有高光催化活性的BiOCl光催化剂通过以下合成方法得到:包括将含有Bi3+、[C6O7H5]3‑和Cl的水溶液进行加热反应的步骤,其中,水溶液中Bi3+与[C6O7H5]3‑的物质的量之比为6:1‑5。应用该光催化降解污染物的方法,可快速降解水中的污染物,具有效率高的特点,且该BiOCl光催化剂重复利用率高,体积大,回收简单,具有较高的推广应用价值。

Description

光催化降解污染物的方法
技术领域
本发明涉及纳米材料,具体地,涉及一种具有高光催化活性的BiOCl光催化剂及其合成方法和光催化降解污染物的方法。
背景技术
化石燃料在我们生活的各个环节都是不可或缺的,不可再生和逐渐减少的储量已经造成了能源危机,而且消耗时也伴随着严重的环境污染。目前,半导体光催化技术被认为是解决这两个问题较有前景的技术,通过水分解生成氢气,光催化还原二氧化碳产生碳氢燃料,并对有毒污染物进行光降解来弥补环境污染问题。
近年来,BiOCl的合成和光催化活性研究引起了人们极大的兴趣,主要原因一:BiOCl具有[Bi2O2]和双卤素原子交错的二维(2D)晶体结构。这种层状结构存在自发的内电场,有利于光生电荷载流子的快速分离与传递,从而有效提高光催活性;原因二:BiOCl具有较好的光稳定性,价带空穴位和导带电子位均为强氧化还原位置。它的光催化活性远强与明星材料TiO2
因此,BiOCl纳米片,分级结构的微米球,微米花等形貌以及它们的光催化活性都有大量研究。然而本专利所要保护的BiOCl微/纳米材料,其形貌与合成方法未见报道。另外,产物较高的光催化活性也是目前所报道的铋基化合物光催化剂中的佼佼者。
发明内容
本发明的目的是提供一种具有高光催化活性的BiOCl光催化剂及其合成方法以及光催化降解污染物的方法,该BiOCl光催化剂的光催化活性较高,优于一般的铋基化合物光催化剂,其形貌与合成方法均未见报道。另外,将含有Bi3+、[C6O7H5]3-和Cl-的水溶液进行加热反应的步骤,其中,水溶液中Bi3+与[C6O7H5]3-的物质的量之比为6:1-5,即可得到该具有高光催化活性的BiOCl光催化剂,合成方法简单,具有较高的应用价值。应用该光催化降解污染物的方法,可快速降解水中的污染物,具有效率高的特点,且该BiOCl光催化剂重复利用率高,体积大,回收简单。
为了实现上述目的,本发明提供了一种具有高光催化活性的BiOCl光催化剂的合成方法,包括将含有Bi3+、[C6O7H5]3-和Cl-的水溶液进行加热反应的步骤,其中,水溶液中Bi3 +与[C6O7H5]3-的物质的量之比为6:1-5。
本发明还提供一种根据前文所述的合成方法合成的具有高光催化活性的BiOCl光催化剂。
本发明还提供一种光催化降解污染物的方法,包括:在光照条件下将前文所述的具有高光催化活性的BiOCl光催化剂与含有污染物的水进行接触的步骤。
通过上述技术方案,提供一种具有高光催化活性的BiOCl光催化剂及其合成方法,该BiOCl光催化剂的光催化活性较高,优于一般的铋基化合物光催化剂,其形貌与合成方法均未见报道。另外,将含有Bi3+、[C6O7H5]3-和Cl-的水溶液进行加热反应的步骤,其中,水溶液中Bi3+与[C6O7H5]3-的物质的量之比为6:1-5,即可得到该具有高光催化活性的BiOCl光催化剂,合成方法简单,具有较高的应用价值。应用该BiOCl光催化剂在光照条件下与含有污染物的水进行接触,可快速降解水中的污染物,具有效率高的特点,且该BiOCl光催化剂重复利用率高,体积大,回收简单。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是检测例1中的X射线衍射图;
图2是检测例2中的扫描电镜(SEM)图;
图3是实施例3中的产物的扫描电镜(SEM)图;
图4是实施例4中的产物的扫描电镜(SEM)图;
图5为应用例1中的不同催化剂存在下,MO(10mg/L)的降解曲线;
图6为应用例2中的BiOCl-0.2g作为光催化剂,对不同浓度MO溶液的降解曲线;
图7为应用例3中的不同催化剂存在下,RhB(10mg/L)的降解曲线;
图8为应用例4中的不同催化剂存在下,苯酚(10mg/L)的降解曲线;
图9为应用例5中的BiOCl-0.2g对10mg/L甲基橙光催化降解重复利用率图;
图10为应用例5中的X射线衍射图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
为了实现上述目的,本发明提供了一种具有高光催化活性的BiOCl光催化剂的合成方法,包括将含有Bi3+、[C6O7H5]3-和Cl-的水溶液进行加热反应的步骤,其中,水溶液中Bi3 +与[C6O7H5]3-的物质的量之比为6:1-5。
通过上述技术方案,提供一种具有高光催化活性的BiOCl光催化剂及其合成方法,该BiOCl光催化剂的光催化活性较高,优于一般的铋基化合物光催化剂,其形貌与合成方法均未见报道。另外,将含有Bi3+、[C6O7H5]3-和Cl-的水溶液进行加热反应的步骤,其中,水溶液中Bi3+与[C6O7H5]3-的物质的量之比为6:1-5,即可得到该具有高光催化活性的BiOCl光催化剂,合成方法简单,具有较高的应用价值。
在本发明一种优选的实施方式中,为了得到具有高光催化活性的BiOCl光催化剂,优选地,水溶液中Bi3+、[C6O7H5]3-和Cl-的物质的量之比为6:1-5:6。
在本发明一种优选的实施方式中,为了得到具有高光催化活性的BiOCl光催化剂,优选地,水溶液中Bi3+的浓度为20-30mmol/L。
在本发明一种优选的实施方式中,为了得到具有高光催化活性的BiOCl光催化剂,优选地,加热反应的温度为120-180℃。
在本发明一种优选的实施方式中,为了得到具有高光催化活性的BiOCl光催化剂,优选地,加热反应的时间为8-12h。
通过上述技术方案即可得到具有高光催化活性的BiOCl光催化剂,为了得到具有高光催化活性的BiOCl光催化剂,优选地,所述水溶液的形成包括:将提供Cl-的物质和提供[C6O7H5]3-的物质预溶于水中,超声分散,然后滴加至预溶有提供Bi3+的物质的水溶液中,混合。
按照上述合成方法即可得到具有高光催化活性的BiOCl光催化剂,更进一步地,为了得到光催化活性更高的具有高光催化活性的BiOCl光催化剂,所述水溶液的形成包括:将提供Cl-的物质和提供[C6O7H5]3-的物质预溶于水中,超声分散,然后滴加至预溶有提供Bi3+的物质的水溶液中,混合。
在上述技术方案中,预溶有提供Cl-的物质和提供[C6O7H5]3-的物质的水溶液与预溶解有提供Bi3+的物质的水溶液的体积比可在较宽范围内进行调整,只要符合上述浓度或物质的量要求即可,为了得到晶形规整的暴露(110)晶面的BiOCl微米棒,优选地,预溶有提供Cl-的物质和提供[C6O7H5]3-的物质的水溶液与预溶有提供Bi3+的物质的水溶液的体积比为1:0.8-1.2。
在上述技术方案中,本领域技术人员对于提供Cl-的物质可在较宽范围内进行调整,例如,提供Cl-的物质为含有Cl-的盐或含有Cl-的酸,均可实现本发明。为了进一步使原料简单易得,优选地,提供Cl-的物质为氯化钠、氯化钾和盐酸中的一种或多种。
在上述技术方案中,本领域技术人员对于提供[C6O7H5]3-的物质可在较宽范围内进行调整,为了进一步使原料简单易得,优选地,提供[C6O7H5]3-的物质为柠檬酸盐和/或柠檬酸。
在上述技术方案中,本领域技术人员对于提供Bi3+的物质可在较宽范围内进行调整,为了进一步使原料简单易得,优选地,提供Bi3+的物质为硝酸铋和/或草酸铋。
对于反应结束后产物的处理,本领域技术人员可灵活调整,优选地,所述合成方法还包括在加热反应结束后自然冷却至室温,之后用水和/或乙醇对产物进行洗涤,然后干燥的步骤。
本发明还提供一种根据前文所述的合成方法合成的具有高光催化活性的BiOCl光催化剂。
该BiOCl光催化剂的光催化活性优于一般的铋基化合物光催化剂,其形貌与合成方法均未见报道。
进一步地,BiOCl光催化剂具有由BiOCl纳米片堆积形成的一维棒状结构。
本发明还提供一种光催化降解污染物的方法,包括:在光照条件下将具有前文所述的高光催化活性的BiOCl光催化剂与含有污染物的水进行接触的步骤。
应用该BiOCl光催化剂在光照条件下与含有污染物的水进行接触,可快速降解水中的污染物,具有效率高的特点,且该BiOCl光催化剂重复利用率高,体积大,回收简单。
对于该光催化降解污染物的方法的适用对象有很多种,在本发明一种优选的实施方式中,为了快速降解水中的污染物,且提高该BiOCl光催化剂重复利用率,优选地,所述污染物包括苯酚、罗丹明B和甲基橙中的一种或多种。
在本发明一种优选的实施方式中,为了快速降解水中的污染物,且提高该BiOCl光催化剂重复利用率,优选地,含有污染物的水中污染物的浓度为10-40mg/L。
对于具有高光催化活性的BiOCl光催化剂的用量可灵活调整,为了在具有高降解效率的基础上,节约降解成本,优选地,相对于100mL的含有污染物的水,具有高光催化活性的BiOCl光催化剂的用量为100mg。
对于具有高光催化活性的BiOCl光催化剂与含有污染物的水进行接触的接触条件,可以灵活调整,为了减少污染物残留,优选地,接触时间为4-35min。
另外,对于具有高光催化活性的BiOCl光催化剂与含有污染物的水进行接触的接触温度可以不作要求,为了提高降解效率,优选地,接触温度为30-50℃。
以下将通过实施例对本发明进行详细描述。
以下实施例中,所有原料均为市售品。
实施例1
将1mmol Bi(NO3)3·5H2O和1mmol KCl分别加入到20mL蒸馏水中,在室温20℃下连续搅拌形成溶液,将0.68mmol(0.2g)柠檬酸钠加入到上述KCl溶液中,超声分散,然后将其混合溶液滴加到上述Bi(NO3)3·5H2O溶液中,搅拌30分钟;
再转移到高压反应釜中,160℃加热8小时,反应结束后,自然冷却至室温;
产物用蒸馏水,乙醇洗涤,干燥至恒重。产物标记为BiOCl-0.2g。
实施例2
将1mmol Bi(NO3)3·5H2O加入到25mL蒸馏水中,将1mmol KCl分别加入到25mL蒸馏水中,在室温20℃下分别连续搅拌形成溶液,将0.83mmol柠檬酸钠加入到上述KCl溶液中,超声分散,然后将其混合溶液滴加到上述Bi(NO3)3·5H2O溶液中,搅拌30分钟;
再转移到高压反应釜中,120℃加热12小时,反应结束后,自然冷却至室温;
产物用蒸馏水,乙醇洗涤,干燥至恒重。
实施例3
将1mmol Bi(NO3)3·5H2O加入到18mL蒸馏水中,将1mmol KCl分别加入到17mL蒸馏水中,在室温20℃下分别连续搅拌形成溶液,将0.17mmol(0.05g)柠檬酸钠加入到上述KCl溶液中,超声分散,然后将其混合溶液滴加到上述Bi(NO3)3·5H2O溶液中,搅拌30分钟;
再转移到高压反应釜中,180℃加热10小时,反应结束后,自然冷却至室温;
产物用蒸馏水,乙醇洗涤,干燥至恒重。产物标记为BiOCl-0.05g。
实施例4
将1mmol Bi(NO3)3·5H2O和1mmol KCl分别加入到20mL蒸馏水中,在室温20℃下连续搅拌形成溶液,将0.34mmol(0.1g)柠檬酸钠加入到上述KCl溶液中,超声分散,然后将其混合溶液滴加到上述Bi(NO3)3·5H2O溶液中,搅拌30分钟;
再转移到高压反应釜中,160℃加热8小时,反应结束后,自然冷却至室温;
产物用蒸馏水,乙醇洗涤,干燥至恒重。产物标记为BiOCl-0.1g。
对比例1
按照实施例1的方法合成BiOCl,不同的是不加入柠檬酸钠,保持相同条件下获得的样品标记为BiOCl-001(BiOCl-0g)。
检测例1
X射线衍射分析实施例1、实施例3、实施例4中得到的BiOCl光催化剂,对应图中0.2g、0.05g、0.1g的曲线,以及对比例1中的BiOCl-001(对应图中0g的曲线),并与标准卡片BiOCl(JCPDS No.06-0249)进行对照,得到的X射线衍射图(XRD)如图1所示。
从图1可以看出,BiOCl光催化剂(001)晶面衍射强度比BiOCl-001衍射强度明显减弱,而(110)晶面的BiOCl-001的衍射强度强。
检测例2
扫描电镜(SEM)分析实施例1得到的BiOCl光催化剂,结果如图2所示。从图2可以看出,产物BiOCl由大量的BiOCl纳米片堆积,形成一维棒状结构。
同理,扫描电镜(SEM)分析实施例3、实施例4中得到的BiOCl光催化剂,结果分别对应如图3、图4,均显示产物BiOCl由大量的BiOCl纳米片堆积,形成一维棒状结构。
应用例1
在温度为30℃以及光照条件下将实施例1、实施例3、实施例4和对比例1中的BiOCl光催化剂0.04g与含有甲基橙(MO)(10mg/L)的水溶液40mL进行接触。如图5所示,BiOCl-0.2g样品表现出最高的光催化活性,100%的MO(10mg/L)在太阳光照射下4分钟内可以完全降解。BiOCl-0.1g、BiOCl-0.05g的降解效率也均优于对比例中的样品。
可见,本发明的BiOCl的光催剂具有较好的光催化活性,本发明的光催化降解污染物的方法具有效率高的特点。
应用例2
通过温度为30℃以及在太阳光照射条件下,将40mL不同浓度的染料甲基橙(MO)水溶液与施例1中BiOCl-0.2g光催化剂0.04g接触以评价实施例1中BiOCl-0.2g光催化剂的活性,其中甲基橙(MO)水溶液的浓度为10mg/L、20mg/L、30mg/L和40mg/L,结果如图6所示,BiOCl-0.2g样品对高浓度的MO也具有非常好的降解能力,如40mg/L的MO在30分钟即可被完全降解,降解效率较高。
应用例3
在温度为30℃以及光照条件下,将实施例1、实施例3、实施例4和对比例1中的BiOCl光催化剂0.04g与40mL含有罗丹明B(RhB)(10mg/L)的水溶液进行接触以评价实施例1、实施例3、实施例4和对比例1中BiOCl的光催化活性。如图7所示,BiOCl-0.05g,BiOCl-0.1g和BiOCl-0.2g相比于BiOCl-0g,均显示出更好的光催化活性,太阳光照射下,10mg/L的RhB分别在3分钟、6分钟和7分钟内完全降解。
可见,本发明的BiOCl的光催剂具有较好的光催化活性,本发明的光催化降解污染物的方法具有效率高的特点。
应用例4
在温度为30℃以及光照条件下,将实施例1、实施例3、实施例4和对比例1中的BiOCl光催化剂0.04g与40mL含有苯酚(10mg/L)的水溶液进行接触以评价实施例1、实施例3、实施例4和对比例1中BiOCl的光催化活性。如图8所示,BiOCl-0.05g,BiOCl-0.1g和BiOCl-0.2g相比于BiOCl-0g,均显示出更好的光催化活性,太阳光照射下,10mg/L的苯酚分别在30分钟,35分钟和30分钟内完全降解内完全降解。
可见,本发明的BiOCl的光催剂具有较好的光催化活性,本发明的光催化降解污染物的方法具有效率高的特点。
应用例5
按照应用例1的方法,应用0.04g实施例1中的BiOCl-0.2g样品对40mL10mg/L甲基橙水溶液光催化降解进行重复降解5次,观察重复利用后的降解效率,结果如图9所示,可见,BiOCl-0.2g在光催化过程中稳定性较好,重复利用率较高。
应用X射线衍射分析BiOCl-0.2光催化剂在进行五次循环前、后的衍射图,结果如图10所示,BiOCl-0.2光催化剂在进行五次循环前、后衍射峰基本变化小,可见,BiOCl-0.2g在光催化过程中稳定性较好,重复利用率较高。
由此可见,本发明的BiOCl光催化剂具有优异的光催化活性和重复利用性;并且因产物是一维微/纳米结构,具有较大的尺寸,在实际污水降解过程中利于回收。因此,本产品是具有实用价值的高效光催化剂。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (8)

1.一种光催化降解污染物的方法,其特征在于,包括:在光照条件下,将具有高光催化活性的BiOCl光催化剂与含有污染物的水进行接触的步骤;
其中,所述具有高光催化活性的BiOCl光催化剂通过以下合成方法得到:所述合成方法包括将含有Bi3+、[C6O7H5]3-和Cl-的水溶液进行加热反应的步骤,其中,水溶液中Bi3+与[C6O7H5]3-的物质的量之比为6:1-5;
所述合成方法中,水溶液中Bi3+的浓度为20-30mmol/L;
所述合成方法中,所述水溶液的形成包括:将提供Cl-的物质和提供[C6O7H5]3-的物质预溶于水中,超声分散,然后滴加至预溶有提供Bi3+的物质的水溶液中,混合;
其中,预溶有提供Cl-的物质和提供[C6O7H5]3-的物质的水溶液与预溶有提供Bi3+的物质的水溶液的体积比为1:0.8-1.2;
其中,BiOCl光催化剂具有由BiOCl纳米片堆积形成的一维棒状结构。
2.根据权利要求1所述的光催化降解污染物的方法,其中,所述合成方法中,水溶液中Bi3+、[C6O7H5]3-和Cl-的物质的量之比为6:1-5:6。
3.根据权利要求1所述的光催化降解污染物的方法,其中,所述合成方法中,加热反应的温度为120-180℃;和/或,
加热反应的时间为8-12h。
4.根据权利要求1-3中任意一项所述的光催化降解污染物的方法,其中,提供Cl-的物质为含有Cl-的盐或含有Cl-的酸;和/或,
提供[C6O7H5]3-的物质为柠檬酸盐和/或柠檬酸;和/或,
提供Bi3+的物质为硝酸铋和/或草酸铋。
5.根据权利要求1所述的光催化降解污染物的方法,其中,所述污染物包括苯酚、罗丹明B和甲基橙中的一种或多种。
6.根据权利要求5所述的光催化降解污染物的方法,其中,
含有污染物的水中污染物的浓度为10-40mg/L。
7.根据权利要求5或6所述的光催化降解污染物的方法,其中,相对于100mL的含有污染物的水,具有高光催化活性的BiOCl光催化剂的用量为100mg。
8.根据权利要求7所述的光催化降解污染物的方法,其中,接触的条件包括:接触时间为4-35min;和/或,接触温度为30-50℃。
CN201711222720.2A 2017-11-29 2017-11-29 光催化降解污染物的方法 Active CN107857333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711222720.2A CN107857333B (zh) 2017-11-29 2017-11-29 光催化降解污染物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711222720.2A CN107857333B (zh) 2017-11-29 2017-11-29 光催化降解污染物的方法

Publications (2)

Publication Number Publication Date
CN107857333A CN107857333A (zh) 2018-03-30
CN107857333B true CN107857333B (zh) 2021-03-16

Family

ID=61704247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711222720.2A Active CN107857333B (zh) 2017-11-29 2017-11-29 光催化降解污染物的方法

Country Status (1)

Country Link
CN (1) CN107857333B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579770B (zh) * 2018-05-15 2020-03-24 安徽师范大学 一种应用BiOCl纳米环进行降解污染物的方法
CN114669309B (zh) * 2022-05-07 2023-11-07 桂林电子科技大学 一种一维线状BiOCl光催化材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190448A (zh) * 2014-07-29 2014-12-10 南开大学 一种可见光光催化剂BiOCl纳米片的制备方法及应用
CN106268877A (zh) * 2016-08-09 2017-01-04 石家庄中实验学校 一种具有可见光催化活性的BiOCl及其制备方法
CN107876069A (zh) * 2017-11-29 2018-04-06 安徽师范大学 具有高光催化活性的BiOCl光催化剂及其合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190448A (zh) * 2014-07-29 2014-12-10 南开大学 一种可见光光催化剂BiOCl纳米片的制备方法及应用
CN106268877A (zh) * 2016-08-09 2017-01-04 石家庄中实验学校 一种具有可见光催化活性的BiOCl及其制备方法
CN107876069A (zh) * 2017-11-29 2018-04-06 安徽师范大学 具有高光催化活性的BiOCl光催化剂及其合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets;XiulanHu et.al;《Materials Science in Semiconductor Processing》;20160229;第41卷;第12-16页 *

Also Published As

Publication number Publication date
CN107857333A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
Meng et al. Recent advances in BiOBr-based photocatalysts for environmental remediation
Ismael et al. A mini-review on the synthesis and structural modification of gC 3 N 4-based materials, and their applications in solar energy conversion and environmental remediation
Gautam et al. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review
Zhou et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution
Huang et al. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants
Zhang et al. Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts
Chen et al. Synergy effect between adsorption and heterogeneous photo-Fenton-like catalysis on LaFeO3/lignin-biochar composites for high efficiency degradation of ofloxacin under visible light
Ahmadi et al. A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters
Bi et al. Research progress on photocatalytic reduction of CO 2 based on LDH materials
Zhang et al. Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation
Zhang et al. Recent advances in ZnIn 2 S 4-based materials towards photocatalytic purification, solar fuel production and organic transformations
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
Yang et al. Construction of a rod-like Bi 2 O 4 modified porous gC 3 N 4 nanosheets heterojunction photocatalyst for the degradation of tetracycline
Luo et al. g-C3N4-based photocatalysts for organic pollutant removal: a critical review
Hassan et al. Recent advancement in Bi5O7I-based nanocomposites for high performance photocatalysts
CN107519897B (zh) 一种三元z型结构光催化剂及其制备方法和应用
Hu et al. One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity.
Vijayakumar et al. Promoting spatial charge transfer of ZrO2 nanoparticles: embedded on layered MoS2/g-C3N4 nanocomposites for visible-light-induced photocatalytic removal of tetracycline
CN107857333B (zh) 光催化降解污染物的方法
Zhang et al. Novel Z‐scheme 2D/2D Bi4O5Br2/BiOCl heterojunction with enhanced photocatalytic activity for RhB degradation
Liu et al. Synthesis of N-C3N4/Cu/Cu2O: New strategy to tackle the problem of Cu2O photocorrosion with the help of band engineering
Yu et al. Microwave solvothermal-assisted calcined synthesis of Bi2WxMo1− XO6 solid solution photocatalysts for degradation and detoxification of bisphenol A under simulated sunlight irradiation
Li et al. A novel visible-light-driven photo-Fenton system composed of Fe-doped CdIn2S4/g-C3N4 heterojunction and H2O2 to remove methyl orange
Sharma et al. Recent advances in g-C3N4/Metal Organic Frameworks heterojunctions for high-performance photocatalytic environmental remediation and energy production
Dai et al. 0D/1D Co3O4 quantum dots/surface hydroxylated g-C3N4 nanofibers heterojunction with enhanced photocatalytic removal of pharmaceuticals and personal care products

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant