CN108470916A - 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法 - Google Patents

一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法 Download PDF

Info

Publication number
CN108470916A
CN108470916A CN201810133470.3A CN201810133470A CN108470916A CN 108470916 A CN108470916 A CN 108470916A CN 201810133470 A CN201810133470 A CN 201810133470A CN 108470916 A CN108470916 A CN 108470916A
Authority
CN
China
Prior art keywords
oxygen reduction
fuel cell
reduction catalyst
raw material
dimensional porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810133470.3A
Other languages
English (en)
Other versions
CN108470916B (zh
Inventor
何传新
张梦依
张瀚文
范梁栋
柴晓燕
张黔玲
刘剑洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201810133470.3A priority Critical patent/CN108470916B/zh
Publication of CN108470916A publication Critical patent/CN108470916A/zh
Application granted granted Critical
Publication of CN108470916B publication Critical patent/CN108470916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法,制备方法包括:首先,称取三聚氰胺置于三颈烧瓶中,再加入甲醛,磁力搅拌,充分混合之后,利用三乙醇胺调节pH至9.5,油浴30min,得到pre‑MF。接着将称取的超导电炭黑与水和适量pre‑MF混合于三颈烧瓶中,机械搅拌均匀后,利用1M稀盐酸调节pH至3,然后继续机械搅拌,接着逐滴加入甲苯,加完之后,在1000rpm条件下机械搅拌,再恢复400rpm条件下机械搅拌。紧接着加入少量过渡金属盐,于70℃油浴保持4h。然后用乙醇洗涤,除去甲苯,抽滤,真空干燥,得到PMF材料。最后将固体转移到瓷舟,置于管式炉中经500℃~1100℃煅烧,再将煅烧之后的产物经过研磨后过筛,即得到Fe/NRC富含氮量的碳材料。

Description

一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制 备方法
技术领域
本发明涉及化工领域,尤其涉及一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法。
背景技术
质子交换膜燃料电池作为燃料电池的代表,能够有效地将化学能转化为电能,因具能量转换效率高,功率密度高,启动快,零排放等特点,被认为是应用前景较好的移动能源装置。但是,质子交换膜燃料电池尚未广泛应用,原因在于,其工作过程中,需使用大量的Pt基催化剂,才能完成氧还原反应。而Pt基氧还原反应催化剂的成本高、活性低和耐久性不足,限制了质子交换膜燃料电池的进一步发展和推广应用。因此,研究制备出活性和稳定性高的非贵金属氧气还原反应催化剂,对于质子交换膜燃料电池的商业化应用是至关重要的。
对于非贵金属催化剂的制备材料,人们的研究重点逐渐由昂贵的或有化学危害的高分子聚合物转向可再生生物质,主要体现在含氮前驱体的选择上。目前,大多数专利提供的方案合成周期长、工艺难以控制、对于催化活性的形成机理研究较为困难,不利于成本低、活性高和耐久性好,以及适合商业化应用的氧气还原反应催化剂的研发。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法。本发明采用皮克林乳液聚合法,在制备的过程中,操作简单,重复性强,大大缩短了实验周期,并且形成的碳材料含有丰富的介孔。旨在解决现有的氧气还原反应催化剂的成本高、活性低和耐久性不足的问题。
本发明的技术方案如下:
一种三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,包括:
步骤A、取适量的甲醛和三聚氰胺混合,磁力搅拌,利用三乙醇胺调节pH至9.5,然后在60℃下进行油浴,得到三聚氰胺甲醛聚合物气凝胶预聚物pre-MF;
步骤B、将适量超导电炭黑、少量水,适量pre-MF混合,低速机械搅拌均匀后,利用1M稀盐酸HCl调节pH,继续在低速下机械搅拌,接着逐滴加入甲苯,加完之后,高速1000rpm条件下机械搅拌一定时间,再恢复低速条件下机械搅拌;
步骤C、紧接着加入少量过渡金属盐,其中pre-MF与过渡金属盐的质量比约为10:1,于70℃油浴保持4h;
步骤D、用乙醇除去甲苯,然后抽滤,真空干燥,得到PMF材料;
步骤E、在惰性气氛下,经过500℃~1100℃高温煅烧4h,升温速率为5℃/min,再将煅烧之后的产物研磨后过筛,得到Fe/NRC富含氮量的碳材料,即得到氧还原催化剂。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,所述步骤A中油浴过程为油浴30min。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,步骤A中所述的甲醛为1.75mL。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,所述步骤B中,1000rpm条件下机械搅拌为1~2min。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,所述步骤C中,过渡金属盐为氯化铁。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,所述步骤D中,抽滤次数为3次。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,步骤E中煅烧温度为900~1100℃。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,在氩气保护下进行煅烧。
所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,所述的超导电炭黑的型号为EC-300J。
一种以三维多孔碳材料为原料的燃料电池氧还原催化剂,其中,采用上述任一项技术方案所述的制备方法制得。
有益效果:本发明以皮克林乳液聚合的方法制备了三维多孔功能性碳材料催化剂,合成工艺简单可控,便于对其催化活性形成机理进行探究;同时,原料成本低廉且容易获取,周期短,有利于燃料电池氧还原催化剂的推广应用。
附图说明
图1为本发明中实施例1得到催化剂的形貌表征图,其中,a为实施例1制备的催化剂Fe/NRC的扫描电镜图,b为实施例1制备时超导电炭黑EC-300J的扫描电镜图。
图2为本发明中实施例1得到的催化剂的X射线衍射图谱。
图3为本发明中实施例1和实施例3得到的催化剂在0.1mol/L的KOH溶液中的氧还原反应性能测试图。
图4为本发明中实施例1和实施例4得到的催化剂与负载量量为400μg cm-2的Pt/C催化剂的氧还原反应性能对比图。
图5为本发明中实施例1得到的催化剂在不同载量时的氧还原反应性能测试图。
图6为本发明中实施例1得到的催化剂在不同循环次数时的氧还原反应性能测试图。
图7为本发明中实施例1和实施例2得到的催化剂与负载量量为400μg cm-2的Pt/C催化剂的氧还原反应性能对比图。
具体实施方式
本发明提供了一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的一种以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其中,包括:
步骤A、取适量甲醛和1.75g三聚氰胺混合,磁力搅拌,利用3.5mL三乙醇胺调节pH至9.5,然后在60℃下进行油浴,得到pre-MF;
步骤B、将30mg超导电炭黑与0.75mL水,2.25mL pre-MF混合,400rpm条件下机械搅拌均匀后,利用1M稀盐酸HCl调节pH至3,继续在400rpm条件下机械搅拌,接着逐滴加入17mL甲苯,加完之后,在1000rpm条件下机械搅拌几分钟,再恢复400rpm条件下机械搅拌;
步骤C、紧接着加入少量过渡金属盐,其中pre-MF与过渡金属盐的质量比约为10:1,于70℃油浴保持4h;
步骤D、用乙醇除去甲苯,然后抽滤,真空干燥,得到PMF材料;
步骤E、在惰性气氛下,经过500℃~1100℃高温煅烧4h,升温速率为5℃/min,再将煅烧之后的产物研磨后过筛,得到Fe/NRC碳材料,即得到氧还原催化剂。
在步骤A中,首先将适量甲醛和1.75g三聚氰胺混合,为保证较好的搅拌效果,采用磁力搅拌装置进行搅拌操作。搅拌速度不宜过快,以100~400rpm为宜,优选的,转速为200rpm。搅拌时间为10~20分钟,较佳的,搅拌时间优选15分钟,以使之混合均匀。
而且,在油浴过程中,保持冷凝管冷凝,防止局部过热,油浴时间在20min~40min为宜,优选的,油浴时间为30min。
在上述步骤B中,将30mg超导电炭黑与0.75mL水,2.25mLpre-MF混合时,超导电炭黑采用型号为EC-300J,这是因为EC-300J的作用是一方面是作为活性组分的载体,另一方面是增加催化剂的导电性,另外pre-MF的加入量在这里可做探究。此处搅拌采用400rpm条件下机械搅拌,使之充分搅拌均匀。其后加入的1M稀盐酸HCl调节pH至3,HCl加入量在10~12mL左右。
在所述步骤C中,加入少量过渡金属盐,其中pre-MF与过渡金属盐的质量比约为10:1,有利于获得较好的导电效果。过渡金属以过渡金属盐溶液的方式加入到上述混合物中,过渡金属盐溶液选择氯化铁,这是因为,在引入过渡金属的同时,氯离子在煅烧的过程中转化为氯化氢而挥发,不会对催化剂组成产生影响。作为催化剂的活性组分,为保证其在载体表面有较高的分散度,活性组分的负载量不易过多,优选pre-MF与过渡金属盐的质量比约为10:1较为合适,过渡金属离子的分散度好,有利于高效发挥催化活性。此外,为确保混合均匀,采用机械搅拌装置400rpm加速混合后,于70℃油浴保持4h。
在所述步骤E中,将步骤D中洗涤、抽滤、干燥得到的PMF转移至干净的磁舟中,并将上述磁舟置于管式加热炉中,在惰性气氛下进行煅烧,煅烧温度为500~1100℃,煅烧时间为1~3小时。所述惰性保护气可以为氮气或氩气,为了避免混合物在高温煅烧过程中发生氧化等副反应,因此优选氩气作为惰性保护气,且在试验开始前,预先向管式炉中通氩气至少20分钟,形成保护气氛围,防止混合物在升温过程中被氧化。所述加热过程采用程序升温方式进行,以5~10℃/min的速率升温到300℃,保温0.5~1h后,再以3~5℃/min的速率升温到500~1100℃,保温3~5h。采用程序升温的方法,能够使混合物在低温段进一步脱除结合在分子中的水分,避免迅速升至较高温度对催化剂的活性造成破坏。继续升温至较高温度的过程中,采用的升温速度更低,这一方面是防止温度骤然升高对催化剂造成活性组分挥发,另一方面是提供充足的时间供混合物发生化学反应,得到结构、组成更加均匀的催化剂。优选的,煅烧温度在900~1000℃较为合适,煅烧时间为4小时。
高温煅烧结束后,进行自然降温处理,当管式炉温度低于100℃时,取出磁舟,降至室温后对其进行研磨、过筛处理。首先将较大块的固体混合物用粉碎机进行粉碎,将得到的小块固体混合物用研钵进行研磨后过筛,得到不同尺寸催化剂颗粒。优选的,200~500目催化剂颗粒比表面积更合适,反应效果较好。
此外,本发明还包括一种以三维多孔碳材料为原料的燃料电池氧还原催化剂,其采用上述技术方案中的制备方法制得。
实施例1
首先,称取1.75g三聚氰胺置于三颈烧瓶中,再加入1.75mL甲醛,200rpm条件下磁力搅拌,充分混合,之后,利用3.5mL三乙醇胺调节pH至9.5,于60℃下油浴30min,得到pre-MF。接着将称取的30mg EJ-300与0.75mL水和2.25mL pre-MF混合于三颈烧瓶中,400rpm条件下机械搅拌均匀后,利用1M稀盐酸HCl调节pH至3,然后继续在400rpm条件下机械搅拌,接着逐滴加入17mL甲苯,加完之后,在1000rpm条件下机械搅拌2min,再恢复400rpm条件下机械搅拌。紧接着加入少量铁盐FeCl3·6H2O,其中pre-MF与铁盐FeCl3·6H2O质量比mpre-MF:mFeCl3·6H2O=10:1,于70℃油浴保持4h。然后用乙醇洗涤,除去甲苯,抽滤,真空干燥,得到PMF材料。最后将固体转移到瓷舟,并将上述磁舟置于管式炉中经过900℃煅烧4h,升温速率为5℃/min,再将煅烧之后的产物经过研磨,过200目筛以除去颗粒较大的杂质后,即得到Fe/NRC(同Fe/NRC-1/2、EC-300J-Fe/NRC、Fe/NRC-PE)富含氮量的碳材料。
将上述实施例1制备的Fe/NRC催化剂进行扫描电镜表征,结果如图1所示。结合图1分析可知,经过皮克林乳液聚合法直至碳化以后,形成了蜂窝状的三维立体碳结构,表明本发明的方法制备的催化剂结构有序。
将上述实施例1制备的Fe/NRC催化剂进行XRD测试,结果如图2所示。结合图2,经过定性分析可知,随着温度的提升,特征峰逐渐由宽变窄且变强,说明碳材料由无定型向晶型结构转变。
将上述实施例1制备的Fe/NRC催化剂及实施例3制备的NRC(同EC-300J-NRC)催化剂(NRC催化剂的制备方法如下述实施例3),在0.1mol/L的KOH溶液中,使用PrincetonApplied Research 263A恒电位仪和Pine AFCPRBE旋转圆盘电极装置进行测试,铂片、玻碳和Ag/AgCl电极分别作为辅助电极、工作电极和参比电极进行CV测试,测试条件为:催化剂载量为400μg cm-2;扫描速率:10mV/s,结果如图3所示。从图3中可以看出,本发明实施例1所制备的Fe/NRC催化剂的与未掺杂铁盐的NRC催化剂相比,性能明显提高,说明加入铁盐之后,随着温度的升高,碳、氮和金属会相互反应,产生一些催化活性中心,观察到的ORR活性通常认为来自碳载体表面的金属,氮配位化合物或碎片,可见,该Fe/NRC催化剂的性能较好。
将上述实施例1制备的Fe/NRC催化剂及实施例4制备的Fe/NRC-Non-PE催化剂,在0.1mol/L的KOH溶液中,使用Princeton Applied Research 263A恒电位仪和Pine AFCPRBE旋转圆盘电极装置进行测试,铂片、玻碳和Ag/AgCl电极分别作为辅助电极、工作电极和参比电极进行CV测试,测试条件为:催化剂载量为400μg cm-2,并与400μg cm-2Pt/C催化剂对比,扫描速率:10mV/s,结果如图4所示。从图4中可以看出,利用皮克林乳液聚合法合成的Fe/NRC催化剂的催化性能远远优于利用一锅合成法制得的Fe/NRC-Non-PE催化剂,说明本专利提供的皮克林乳液聚合法合成催化剂具有无可比拟的优越性。
将上述实施例1制备的Fe/NRC催化剂在0.1mol/L的KOH溶液中,使用PrincetonApplied Research 263A恒电位仪和Pine AFCPRBE旋转圆盘电极装置进行测试,铂片、玻碳和Ag/AgCl电极分别作为辅助电极、工作电极和参比电极进行氧还原反应测试,催化剂载量分别为200μg cm-2、400μg cm-2、600μg cm-2;并与400μg cm-2Pt/C催化剂对比,扫描速率:10mV/s,结果如图5所示,图中实线表示不同载量的Fe/NRC催化剂。从图中可以看出,当负载量为200ug/cm2时,由于负载量较少,相应催化活性物质也较少,导致催化活性较低,因此半波电位和极限电流密度相较最劣,当逐渐增加负载量,催化活性物质也随之增加,催化活性也相应提高,当负载量为400ug/cm2时,半波电位和极限电流密度相较达到最优,但是继续增加负载量时,由于已达到饱和状态,过多的负载量可能会导致电子传递受阻,催化活性降低,因此,当负载量为600ug/cm2时,半波电位和极限电流密度反而降低。当负载量为400μgcm-2时,实施例1合成的Fe/NRC催化剂在碱性条件下的催化性几乎能达到400μg cm-2Pt/C的水平。
将上述实施例1制备的Fe/NRC催化剂在0.1mol/L的KOH溶液中,使用PrincetonApplied Research 263A恒电位仪和Pine AFCPRBE旋转圆盘电极装置进行测试,铂片、玻碳和Ag/AgCl电极分别作为辅助电极、工作电极和参比电极进行耐久性测试,催化剂载量为400μg cm-2,扫描速率:10mV/s,结果如图6所示,图中不同颜色实线分别表示不同循环圈数的Fe/NRC催化剂。如图所示,10000圈之后,Fe/NRC的ORR极化曲线基本与未循环时的ORR极化曲线重合,这样的衰减几乎是可以忽略的。后期提高循环圈数,在循环20000圈之后,再观察ORR极化曲线的变化,发现20000圈之后,Fe/NRC的ORR极化曲线与未循环时的ORR极化曲线相差无几,说明Fe/NRC的稳定性相当可观。
实施例2
首先,称取1.75g三聚氰胺置于三颈烧瓶中,再加入3.5mL甲醛,200rpm条件下磁力搅拌,充分混合,之后,利用3.5mL三乙醇胺调节pH至9.5,于60℃下油浴30min,得到pre-MF。接着将称取的30mg EJ-300与0.75mL水和2.25mL pre-MF混合于三颈烧瓶中,400rpm条件下机械搅拌均匀后,利用1M稀盐酸HCl调节pH至3,然后继续在400rpm条件下机械搅拌,接着逐滴加入17mL甲苯,加完之后,在1000rpm条件下机械搅拌2min,再恢复400rpm条件下机械搅拌。紧接着加入少量铁盐FeCl3·6H2O,其中pre-MF与铁盐FeCl3·6H2O质量比mpre-MF:mFeCl3·6H2O=10:1,于70℃油浴保持4h。然后用乙醇洗涤,除去甲苯,抽滤,真空干燥,得到PMF材料。最后将固体转移到瓷舟,并将上述磁舟置于管式炉中经过900℃煅烧4h,升温速率为5℃/min,再将煅烧之后的产物经过研磨,过200目筛以除去颗粒较大的杂质后,即得到Fe/NRC-1富含氮量的碳材料。
图7为实施例1与实施例2所制得的催化剂和的氧还原反应性能测试与400μg cm-2的Pt/C催化剂的反应性能的对比图,从图中可以看出,载量为400μg cm-2的甲醛浓度减半的Fe/NRC-1/2催化剂比载量为400μg cm-2的Fe/NRC-1催化剂的催化性能更加优异,且Fe/NRC-1/2催化剂与载量为400μg cm-2的Pt/C催化剂的反应性能曲线非常接近,表明本发明实施例1将甲醛浓度减半后制备的催化剂与贵金属Pt催化剂的反应性能基本相同,有较好的应用前景。
实施例3
首先,称取1.75g三聚氰胺置于三颈烧瓶中,再加入1.75mL甲醛,200rpm条件下磁力搅拌,充分混合,之后,利用3.5mL三乙醇胺调节pH至9.5,于60℃下油浴30min,得到pre-MF。接着将称取的30mg EJ-300与0.75mL水和2.25mL pre-MF混合于三颈烧瓶中,400rpm条件下机械搅拌均匀后,利用1M稀盐酸HCl调节pH至3,然后继续在400rpm条件下机械搅拌,接着逐滴加入17mL甲苯,加完之后,在1000rpm条件下机械搅拌2min,再恢复400rpm条件下机械搅拌,于70℃油浴保持4h。然后用乙醇洗涤,除去甲苯,抽滤,真空干燥,得到PMF材料。最后将固体转移到瓷舟,并将上述磁舟置于管式炉中经过900℃煅烧4h,升温速率为5℃/min,再将煅烧之后的产物经过研磨,过200目筛以除去颗粒较大的杂质后,即得到NRC富含氮量的碳材料。
实施例4
将30mg EJ-300,0.56g三聚氰胺与40mL乙醇均匀混合,700rpm条件下磁力搅拌均匀后,紧接着加入少量FeCl3·6H2O,其中m三聚氰胺:mFeCl3·6H2O=10:1,继续700rpm条件下磁力搅拌24h,最后分别经过900℃煅烧4h,升温速率为5℃/min,再将煅烧之后的产物经过研磨,过200目筛以除去颗粒较大的杂质后,即得到Fe/NRC-Non-PE富含氮量的碳材料。
综上所述,本发明提供了一种以三维多孔碳材料为原料的燃料电池氧还原催化剂的催化剂及制备方法,该方法能够利用廉价原料合成催化活性高、稳定性好、绿色环保的燃料电池氧还原催化剂,且合成工艺简单,有希望取代昂贵的Pt基催化剂,有利于以三维多孔碳材料为原料的燃料电池氧还原催化剂进一步推广应用。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,包括:
步骤A、取适量的甲醛和三聚氰胺混合,磁力搅拌,利用三乙醇胺调节pH至9.5,然后在60℃下进行油浴,得到三聚氰胺甲醛聚合物气凝胶预聚物pre-MF;
步骤B、将适量超导电炭黑、少量水,适量pre-MF混合,低速机械搅拌均匀后,利用1M稀盐酸HCl调节pH,继续在低速下机械搅拌,接着逐滴加入甲苯,加完之后,高速1000rpm条件下机械搅拌一定时间,再恢复低速条件下机械搅拌;
步骤C、紧接着加入少量过渡金属盐,其中pre-MF与过渡金属盐的质量比约为10:1,于70℃油浴保持4h;
步骤D、用乙醇除去甲苯,然后抽滤,真空干燥,得到三聚氰胺甲醛聚合物气凝胶PMF;
步骤E、在惰性气氛下,经过500℃~1100℃高温煅烧4h,升温速率为5℃/min,再将煅烧之后的产物研磨后过筛,得到Fe/NRC富含氮量的碳材料,即得到氧还原催化剂。
2.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤A中油浴过程为油浴30min。
3.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤A中所述的甲醛为1.75mL。
4.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤B中,1000rpm条件下机械搅拌为1~2min。
5.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤C中,过渡金属盐为氯化铁。
6.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤D中,抽滤次数为3次。
7.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤E中,煅烧温度为900~1100℃。
8.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的步骤E中,在氩气保护下进行煅烧。
9.根据权利要求1所述的以三维多孔碳材料为原料的燃料电池氧还原催化剂的制备方法,其特征在于,所述的超导电炭黑的型号为EC-300J。
10.一种以三维多孔碳材料为原料的燃料电池氧还原催化剂,其特征在于,采用如权利要求1~9任一项所述的制备方法制得。
CN201810133470.3A 2018-02-07 2018-02-07 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法 Active CN108470916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810133470.3A CN108470916B (zh) 2018-02-07 2018-02-07 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810133470.3A CN108470916B (zh) 2018-02-07 2018-02-07 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN108470916A true CN108470916A (zh) 2018-08-31
CN108470916B CN108470916B (zh) 2020-09-01

Family

ID=63266391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810133470.3A Active CN108470916B (zh) 2018-02-07 2018-02-07 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108470916B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010279A (zh) * 2020-08-17 2020-12-01 华南农业大学 一种三维多孔碳气凝胶材料的制备方法及其在锂硫电池中的应用
CN115084554A (zh) * 2022-07-08 2022-09-20 北京亿华通科技股份有限公司 一种铁掺杂三聚氰胺甲醛凝胶催化剂及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247869A (zh) * 2011-06-10 2011-11-23 广州大学 一种球状氮掺杂碳载非贵金属氧还原催化剂及其制备方法
CN104966842A (zh) * 2015-06-05 2015-10-07 清华大学 一种基于多孔碳材料的水氧化反应催化剂及其制备方法
CN105013490A (zh) * 2015-07-03 2015-11-04 湘潭大学 金属纳米粒子-泡沫碳催化剂及其制备方法和用途
CN105293483A (zh) * 2015-12-08 2016-02-03 武汉理工大学 一种原位制备过渡金属掺杂多孔石墨烯的方法
US20160043424A1 (en) * 2014-05-28 2016-02-11 The Research Foundation For The State University Of New York Gold nanoparticles-enhanced proton exchange membrane fuel cell
CN105457666A (zh) * 2015-12-07 2016-04-06 北京理工大学 一种氮磷共掺杂多孔碳催化剂及其制备方法
CN105921164A (zh) * 2016-05-20 2016-09-07 湘潭大学 一种掺氮活性炭负载碱金属改性的镍基催化剂的制备方法和应用
CN105921163A (zh) * 2016-05-03 2016-09-07 浙江大学 一种Fe-N-C氧还原催化剂及其合成方法和应用
CN106450358A (zh) * 2016-12-08 2017-02-22 湘潭大学 氮掺杂碳纳米管/碳复合氧还原催化剂及其制备方法
CN106423243A (zh) * 2016-09-14 2017-02-22 江南大学 一种棒状多孔氮化碳光催化剂及其制备方法
CN106920973A (zh) * 2017-03-02 2017-07-04 华东师范大学 一种氮掺杂碳非贵金属氧还原电催化材料的合成方法
CN107170994A (zh) * 2017-04-14 2017-09-15 首都师范大学 一种Fe‑N掺杂多孔碳氧还原催化剂
CN107293759A (zh) * 2017-08-25 2017-10-24 河南师范大学 一种燃料电池氧还原电催化剂的制备方法
CN107425204A (zh) * 2017-05-26 2017-12-01 淄博火炬能源有限责任公司 氮磷共掺杂多孔碳的制备方法及其应用
CN107516741A (zh) * 2017-06-28 2017-12-26 浙江工业大学 一种具有优异电催化氧还原性能的金属Co负载的N掺杂三维多孔碳材料的合成方法
CN107604375A (zh) * 2017-07-12 2018-01-19 青岛科技大学 氮钴双掺杂多孔碳复合物双功能氧催化剂及其制备方法和应用
CN107661772A (zh) * 2017-10-20 2018-02-06 中国科学院化学研究所 一种非金属氧还原催化剂及其制备方法与应用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247869A (zh) * 2011-06-10 2011-11-23 广州大学 一种球状氮掺杂碳载非贵金属氧还原催化剂及其制备方法
US20160043424A1 (en) * 2014-05-28 2016-02-11 The Research Foundation For The State University Of New York Gold nanoparticles-enhanced proton exchange membrane fuel cell
CN104966842A (zh) * 2015-06-05 2015-10-07 清华大学 一种基于多孔碳材料的水氧化反应催化剂及其制备方法
CN105013490A (zh) * 2015-07-03 2015-11-04 湘潭大学 金属纳米粒子-泡沫碳催化剂及其制备方法和用途
CN105457666A (zh) * 2015-12-07 2016-04-06 北京理工大学 一种氮磷共掺杂多孔碳催化剂及其制备方法
CN105293483A (zh) * 2015-12-08 2016-02-03 武汉理工大学 一种原位制备过渡金属掺杂多孔石墨烯的方法
CN105921163A (zh) * 2016-05-03 2016-09-07 浙江大学 一种Fe-N-C氧还原催化剂及其合成方法和应用
CN105921164A (zh) * 2016-05-20 2016-09-07 湘潭大学 一种掺氮活性炭负载碱金属改性的镍基催化剂的制备方法和应用
CN106423243A (zh) * 2016-09-14 2017-02-22 江南大学 一种棒状多孔氮化碳光催化剂及其制备方法
CN106450358A (zh) * 2016-12-08 2017-02-22 湘潭大学 氮掺杂碳纳米管/碳复合氧还原催化剂及其制备方法
CN106920973A (zh) * 2017-03-02 2017-07-04 华东师范大学 一种氮掺杂碳非贵金属氧还原电催化材料的合成方法
CN107170994A (zh) * 2017-04-14 2017-09-15 首都师范大学 一种Fe‑N掺杂多孔碳氧还原催化剂
CN107425204A (zh) * 2017-05-26 2017-12-01 淄博火炬能源有限责任公司 氮磷共掺杂多孔碳的制备方法及其应用
CN107516741A (zh) * 2017-06-28 2017-12-26 浙江工业大学 一种具有优异电催化氧还原性能的金属Co负载的N掺杂三维多孔碳材料的合成方法
CN107604375A (zh) * 2017-07-12 2018-01-19 青岛科技大学 氮钴双掺杂多孔碳复合物双功能氧催化剂及其制备方法和应用
CN107293759A (zh) * 2017-08-25 2017-10-24 河南师范大学 一种燃料电池氧还原电催化剂的制备方法
CN107661772A (zh) * 2017-10-20 2018-02-06 中国科学院化学研究所 一种非金属氧还原催化剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAIGO ONODERA ET: ""Enhancement of oxygen reduction activity with addition of carbon support for non-precious metal nitrogen doped carbon catalyst"", 《JOURNAL OF POWER SOURCES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010279A (zh) * 2020-08-17 2020-12-01 华南农业大学 一种三维多孔碳气凝胶材料的制备方法及其在锂硫电池中的应用
CN112010279B (zh) * 2020-08-17 2021-09-07 华南农业大学 一种三维多孔碳气凝胶材料的制备方法及其在锂硫电池中的应用
CN115084554A (zh) * 2022-07-08 2022-09-20 北京亿华通科技股份有限公司 一种铁掺杂三聚氰胺甲醛凝胶催化剂及其制备方法

Also Published As

Publication number Publication date
CN108470916B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN110911697B (zh) 一种过渡金属/氮掺杂多孔碳纳米球电催化剂及制备方法
CN113106491B (zh) 一种氮掺杂介孔中空碳球负载铂-氧化钴复合电催化材料的制备方法及其产品和应用
CN107887613B (zh) 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN111384407A (zh) 一种金属单原子分散的有序介孔碳球的制备方法
CN108486605A (zh) 一种具有优异电解水性能的碳包覆硒化镍钴纳米材料及其制备方法
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
CN109694071A (zh) 一种以椰壳为原料制备氮掺杂多孔碳材料的方法及应用
KR20070062135A (ko) 고분산 백금 담지 촉매의 제조방법
CN111490257A (zh) 一种双功能Co-N-C电催化剂的制备方法
CN110474059B (zh) 一种固相宏量合成非贵金属氧还原催化剂的方法、催化剂及其应用
CN108470916A (zh) 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法
CN109731599B (zh) 一种2D氧还原催化剂Fe3O4@FeNC纳米片的制备方法
CN109647536B (zh) 一种钴镍双掺杂的硫化锡纳米片、其制备方法和应用
CN113410473B (zh) 基于壳聚糖修饰纤维素气凝胶的铁镍多酚网络纳米复合碳材料电催化剂及其制备方法
CN113659154A (zh) 一种碱性燃料电池阴极用碳催化剂及其制备方法
CN106848337B (zh) 一种以蛋白质为原料的燃料电池氧还原催化剂及制备方法
CN115570143B (zh) 一种低铂高熵合金纳米颗粒及其制备方法与应用
CN116200773A (zh) 富含孪晶结构的过渡族金属电催化剂及其制备方法和应用
KR20170088137A (ko) 연료전지용 비백금 촉매 및 그 제조방법
CN108011111B (zh) 一种燃料电池氧还原催化剂及其制备方法
CN113522368A (zh) 一种Fe、Co共掺杂类海胆结构空心碳球电催化剂及其制备方法
CN111408372A (zh) 具有纳米空心球形貌的铜基co2电还原催化剂的制备工艺
CN109659574A (zh) 复合正极材料及其制备方法、锂空气电池
CN110957495B (zh) 一种3D碳纳米球氧还原催化剂HFeSNC的制备方法
CN116377473B (zh) 一种氮掺杂中空碳纳米环负载金属单原子材料、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant