CN108468019A - 一种采用红外线加热退火优化透明导电薄膜质量的方法 - Google Patents

一种采用红外线加热退火优化透明导电薄膜质量的方法 Download PDF

Info

Publication number
CN108468019A
CN108468019A CN201810312783.5A CN201810312783A CN108468019A CN 108468019 A CN108468019 A CN 108468019A CN 201810312783 A CN201810312783 A CN 201810312783A CN 108468019 A CN108468019 A CN 108468019A
Authority
CN
China
Prior art keywords
transparent conductive
conductive film
annealing
infrared heating
optimizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810312783.5A
Other languages
English (en)
Inventor
刘生忠
常远程
冯江山
朱小宁
朱学杰
吴强
肖锋伟
杨钊
李云虎
邓增社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Shaanxi Coal and Chemical Technology Institute Co Ltd
Original Assignee
Shaanxi Normal University
Shaanxi Coal and Chemical Technology Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University, Shaanxi Coal and Chemical Technology Institute Co Ltd filed Critical Shaanxi Normal University
Priority to CN201810312783.5A priority Critical patent/CN108468019A/zh
Publication of CN108468019A publication Critical patent/CN108468019A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种采用红外线加热退火优化透明导电薄膜质量的方法,首先在衬底上制备透明导电薄膜;再将制备的透明导电薄膜放置在红外线照射下进行加热退火热处理,得到优化的透明导电薄膜;采用红外线照射加热的方法,能够解决在低温下制备柔性衬底透明导电薄膜这一难题,并且能解决传统退火处理的不均匀性,节省炉体的建造费用及空间,红外加热为辐射加热,在真空条件下也能实现快速加热,红外加热装置的组合、安装及维修简单容易;温度控制容易、且升温迅速,并较具安全性。

Description

一种采用红外线加热退火优化透明导电薄膜质量的方法
技术领域
本发明属于材料制备领域,具体涉及一种采用红外线加热退火优化透明导电薄膜质量的方法。
背景技术
在科技飞速发展的今天,可弯曲和折叠的柔性设备越来越受到人们的重视与关注,在许多领域具有广阔的应用前景,如太阳能电池,显示设备等。这些柔性设备都离不开柔性导电薄膜对其的支持。为了得到高透过率、高导电率的透明导电薄膜,现有制备透明导电薄膜的方法都必须对衬底进行高温退火处理,传统的加热过程的不均匀性会对透明导电薄膜的均匀性造成影响。而且高分子材料柔性衬底耐热性差,在高温处理后会损伤透明导电薄膜,这是制约柔性设备发展的重要原因。如何在低温条件下制备均匀具有良好光电特性优异的透明导电薄膜成了关键。
发明内容
为了解决了现有技术中存在的问题,本发明公开了一种采用红外线加热退火优化透明导电薄膜质量的方法,该方法能够解决在低温下制备柔性衬底透明导电薄膜这一难题,并且能解决传统退火处理的不均匀性,能够应用于柔性显示领域及光伏领域。
为了实现上述目的,本发明采用的技术方案是:一种采用红外线加热退火优化透明导电薄膜质量的方法,首先在衬底上制备透明导电薄膜;再将制备的透明导电薄膜放置在红外线照射下进行加热退火热处理,得到优化的透明导电薄膜。
衬底为柔性衬底或者刚性衬底;所述柔性衬底包括可弯曲或者可缠绕的高分子薄膜;刚性衬底为玻璃、石英、蓝宝石或者硅基底中的一种。
在柔性衬底上制备透明导电薄膜和退火处理时,使用卷到卷技术。
退火热处理是在真空条件下,在氧气、空气、氮气或氩气气氛中进行。
透明导电薄膜为掺杂的氧化铟、掺杂的氧化锡和掺杂的氧化锌的一种或多种的混合物、合金或叠层薄膜。
透明导电薄膜的厚度为0.1μm~2.5μm。
红外线波长为2.5μm~15μm。
衬底上制备透明导电氧化物薄膜是采用热蒸发、电子束蒸发、真空溅射、化学气相沉积或喷涂的方式制备。
加热温度为200℃~230℃。
所述红外线加热时的加热功率为200W~300W。
与现有技术相比,本发明至少具有以下有益效果:采用红外线照射加热的方法,能够解决在低温下制备柔性衬底透明导电薄膜这一难题,并且能解决传统退火处理的不均匀性,节省炉体的建造费用及空间,红外加热为辐射加热,在真空条件下也能实现快速加热,红外加热装置的组合、安装及维修简单容易;温度控制容易、且升温迅速,并较具安全性。
附图说明
图1为本发明对柔性衬底透明导电薄膜退火处理的示意图;
图2为本发明对刚性衬底透明导电薄膜退火处理的示意图;
图3为本发明在柔性衬底沉积透明导电薄膜卷到卷技术制备应用过程示意图;
具体实施方式
下面结合具体实施例及附图对本发明进一步详细说明,但本发明并不局限于这些实施例。
如图1所示:本发明利用红外线退火处理优化透明导电氧化物薄膜质量的方法为:
首先在柔性衬底上制备透明导电薄膜;将制备的透明导电薄膜置于红外线光照下对其退火处理,退火处理过程是在有利于优化透明导电薄膜的气氛中进行,在真空条件下,在氧气、空气、氮气或氩气气氛中进行,使透明导电薄膜光学性能和电学性能提升,得到优化的透明导电氧化物薄膜;其中在柔性衬底上制备透明导电氧化物薄膜是采用热蒸发、电子束蒸发、真空溅射、化学气相沉积或喷涂的方式;本发明所使用的红外线波长为2.5μm~15μm,在柔性衬底上制备透明导电薄膜和退火处理时,使用卷到卷技术,卷到卷技术是指在固定的转轮上将柔性衬底缠绕在转轮上制备连续的柔性薄膜。在此技术中,转轮的位置是固定的,缠绕在轴轮上的柔性衬底在转动。
透明导电薄膜的厚度为0.1μm~2.5μm,其导电性能和光学性能都在预期的范围内,不会因为薄膜厚度过大影响透光率,也不会因为薄膜厚度过小而影响导电率;采用波长为2.5μm~15μm的中红外线加热,发热稳定。加热温度为200℃~230℃,所述红外线加热时的加热功率为200W~300W。
实施例1
用磁控溅射技术将氧化铟锡(ITO)透明导电薄膜沉积在柔性衬底PET上,按图1所示装置对预制好的ITO薄膜进行处理,按照以下进行:
1.用磁控溅射设备制备ITO薄膜,溅射条件:
工作气压(Pa) 温度(℃) 功率(W) 沉积速率(nm/s) 厚度(nm) 电阻率(Ω﹒cm)
4×10-3 25 100 0.1 240 9.8×10-4
2.红外线光源:功率300瓦。
3.ITO薄膜温度达到200℃(激光测温计测量)。
4.退火处理后的结果:
1)透光率:退火处理前75%,退火处理后81%;
2)电阻率:退火处理前9.8×10-4Ω·cm,退火处理后5.6×10-4Ω·cm。
实施例2
用磁控溅射技术将氧化铟锡(ITO)透明导电薄膜沉积在刚性衬底PET上,按图2所示装置对预制好的ITO薄膜进行处理,按照以下进行:
1.用磁控溅射设备制备ITO薄膜,溅射条件:
工作气压(Pa) 温度(℃) 功率(W) 沉积速率(nm/s) 厚度(nm) 电阻率(Ω﹒cm)
4×10-3 100 120 0.2 260 6.5×10-4
2.红外线光源:功率300瓦。
3.ITO薄膜温度达到200℃(激光测温计测量)。
4.处理后的结果
1)透光率:退火处理前78%,退火处理后84%;
2)电阻率:退火处理前6.5×10-4Ω·cm,退火处理后4.2×10-4Ω·cm。
实施例3
用磁控溅射系统将掺杂铝的氧化锌(AZO)透明导电薄膜沉积到玻璃衬底上,按图2所示装置对预制好的AZO薄膜进行处理,按照以下进行:
1.用磁控溅射系统制备AZO薄膜,溅射条件:
工作气压(Pa) 温度(℃) 功率(W) 沉积速率(nm/s) 厚度(nm)
2×10-2 150 140 0.3 230
2.红外线光源:功率200瓦。
3.AZO薄膜温度达到230℃(激光测温计测量)。
4.退火处理后的结果
1)透光率:退火处理前76%,退火处理后81%;
2)电阻率:退火处理前4.9×10-3Ω·cm,退火处理后1.3×10-3Ω·cm。
实施例4
用磁控溅射系统将ITO透明导电薄膜沉积到玻璃衬底上,按图2所示装置对预制好的ITO薄膜进行处理,按照以下进行:
1.用磁控溅射系统制备ITO薄膜,溅射条件:
工作气压(Pa) 温度(℃) 功率(W) 沉积速率(nm/s) 厚度(nm)
2×10-3 180 90 0.2 320
2.红外线光源:功率220瓦。
3.AZO薄膜温度达到230℃(激光测温计测量)。
4.退火处理后的结果
1)透光率:退火处理前78%,退火处理后80%;
2)电阻率:退火处理前3.6×10-3Ω·cm,退火处理后0.9×10-3Ω·cm。
实施例5
将该红外线退火处理装置集成于真空溅射腔室内,与真空溅射系统形成一套柔性衬底上优质透明导电薄膜的生产系统,如图3所示,通过溅射功率、溅射气压、溅射靶与柔性材料之间的距离等参数调整导电膜的沉积质量;通过红外线光源的功率,红外线光源与透明导电薄膜间距等参数调整膜的退火处理情况;通过调节传动速度控制沉积透明导电薄膜的厚度及加热温度。

Claims (10)

1.一种采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,首先在衬底上制备透明导电薄膜;再将制备的透明导电薄膜放置在红外线照射下进行加热退火热处理,得到优化的透明导电薄膜。
2.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,衬底为柔性衬底或者刚性衬底;所述柔性衬底包括可弯曲或者可缠绕的高分子薄膜;刚性衬底为玻璃、石英、蓝宝石或者硅基底中的一种。
3.根据权利要求2所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,在柔性衬底上制备透明导电薄膜和退火处理时,使用卷到卷技术。
4.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,退火热处理是在真空条件下,在氧气、空气、氮气或氩气气氛中进行。
5.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,透明导电薄膜为掺杂的氧化铟、掺杂的氧化锡和掺杂的氧化锌的一种或多种的混合物、合金或叠层薄膜。
6.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,透明导电薄膜的厚度为0.1μm~2.5μm。
7.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,红外线波长为2.5μm~15μm。
8.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,衬底上制备透明导电氧化物薄膜是采用热蒸发、电子束蒸发、真空溅射、化学气相沉积或喷涂的方式制备。
9.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,加热温度为200℃~230℃。
10.根据权利要求1所述的采用红外线加热退火优化透明导电薄膜质量的方法,其特征在于,所述红外线加热时的加热功率为200W~300W。
CN201810312783.5A 2018-04-09 2018-04-09 一种采用红外线加热退火优化透明导电薄膜质量的方法 Pending CN108468019A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810312783.5A CN108468019A (zh) 2018-04-09 2018-04-09 一种采用红外线加热退火优化透明导电薄膜质量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810312783.5A CN108468019A (zh) 2018-04-09 2018-04-09 一种采用红外线加热退火优化透明导电薄膜质量的方法

Publications (1)

Publication Number Publication Date
CN108468019A true CN108468019A (zh) 2018-08-31

Family

ID=63262924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810312783.5A Pending CN108468019A (zh) 2018-04-09 2018-04-09 一种采用红外线加热退火优化透明导电薄膜质量的方法

Country Status (1)

Country Link
CN (1) CN108468019A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130786A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 发光二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066471A (ja) * 1983-09-21 1985-04-16 Seiko Epson Corp 薄膜トランジスタの製造方法
CN102899631A (zh) * 2011-07-29 2013-01-30 Lg伊诺特有限公司 卷对卷ito膜的退火系统和方法
CN105039911A (zh) * 2015-08-14 2015-11-11 陕西师范大学 一种透明导电薄膜及其制备方法
CN106373669A (zh) * 2016-10-10 2017-02-01 福建农林大学 一种纤维素基铝掺杂氧化锌透明导电材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066471A (ja) * 1983-09-21 1985-04-16 Seiko Epson Corp 薄膜トランジスタの製造方法
CN102899631A (zh) * 2011-07-29 2013-01-30 Lg伊诺特有限公司 卷对卷ito膜的退火系统和方法
CN105039911A (zh) * 2015-08-14 2015-11-11 陕西师范大学 一种透明导电薄膜及其制备方法
CN106373669A (zh) * 2016-10-10 2017-02-01 福建农林大学 一种纤维素基铝掺杂氧化锌透明导电材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130786A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 发光二极管及其制备方法

Similar Documents

Publication Publication Date Title
Fernández et al. Radio frequency sputter deposition of high-quality conductive and transparent ZnO: Al films on polymer substrates for thin film solar cells applications
CN101294272A (zh) 柔性衬底上室温溅射沉积氧化铟锡透明导电薄膜的方法
Muneshwar et al. Development of low temperature RF magnetron sputtered ITO films on flexible substrate
CN104775101B (zh) 一种多孔结构二氧化钒薄膜的制备方法及应用
CN103303910A (zh) 一种制备石墨烯的方法及其制备的石墨烯
Wie et al. Fully crystallized ultrathin ITO films deposited by sputtering with in-situ electron beam irradiation for touch-sensitive screens
CN105951053A (zh) 一种铌掺杂二氧化钛透明导电膜的制备方法及铌掺杂二氧化钛透明导电膜
CN103122448A (zh) 垂直式热处理炉结构
Li et al. Structure and physical properties evolution of ITO film during amorphous-crystalline transition using a highly effective annealing technique
CN108376712A (zh) 一种基于碘化亚铜的透明薄膜晶体管及制备方法
Kim et al. Flash lamp annealing of indium tin oxide thin-films deposited on polyimide backplanes
CN108468019A (zh) 一种采用红外线加热退火优化透明导电薄膜质量的方法
CN100432284C (zh) 电子束蒸发低温制备锡掺杂氧化铟ito薄膜的方法
Zhu et al. Highly transparent conductive F-doped SnO2 films prepared on polymer substrate by radio frequency reactive magnetron sputtering
Zhao et al. Oxygen distribution of fluorine‐doped tin oxide films coated on float glass along depth before and after heat treatment
CN108337749A (zh) 一种耐氧化石墨烯电热复合膜及其制备方法
WO2019029112A1 (zh) 用于均匀控制大面积柔性衬底温度的方法
CN103824649A (zh) 一种利用电磁加热优化透明导电氧化物薄膜质量的方法
Shahiduzzaman et al. Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet
CN103996541A (zh) 一种透明压控薄膜变容管及其制备方法
CN109599470B (zh) 一种降低掺镁氧化锌薄膜电阻率的方法
CN109136845B (zh) 一种曲面玻璃上透明导电薄膜的梯度晶化方法
Zhu et al. Effect of Sputtering Power on the Optical and Electrical Properties of ITO Films on a Flexible Fluorphlogopite Substrate
CN105140117A (zh) 稳定改善石墨烯光电性能的退火方法
CN106521415B (zh) 一种改良的氧化铟透明导电薄膜退火方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180831