CN109599470B - 一种降低掺镁氧化锌薄膜电阻率的方法 - Google Patents

一种降低掺镁氧化锌薄膜电阻率的方法 Download PDF

Info

Publication number
CN109599470B
CN109599470B CN201811487573.6A CN201811487573A CN109599470B CN 109599470 B CN109599470 B CN 109599470B CN 201811487573 A CN201811487573 A CN 201811487573A CN 109599470 B CN109599470 B CN 109599470B
Authority
CN
China
Prior art keywords
heat treatment
film
vacuum heat
magnesium
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811487573.6A
Other languages
English (en)
Other versions
CN109599470A (zh
Inventor
王德亮
王东明
王光伟
蔡彦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201811487573.6A priority Critical patent/CN109599470B/zh
Publication of CN109599470A publication Critical patent/CN109599470A/zh
Application granted granted Critical
Publication of CN109599470B publication Critical patent/CN109599470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • H01L33/285Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供了一种降低掺镁氧化锌薄膜电阻率的处理方法,包括以下步骤:将掺镁氧化锌薄膜进行真空热处理;所述真空热处理在保护气体气氛下进行;所述真空热处理的气压为0.1~100Pa,温度为400~1000℃,时间为5~120min。本发明将掺镁氧化锌薄膜在低真空保护气氛下进行真空热处理,可以大幅度提高薄膜内的载流子浓度,使得薄膜的电阻率显著降低。同时具有较高的透光率。

Description

一种降低掺镁氧化锌薄膜电阻率的方法
技术领域
本发明属于半导体光电材料技术领域,尤其涉及一种降低掺镁氧化锌薄膜电阻率的方法。
背景技术
近年来,宽禁带半导体材料因为它在高功率和高频率器件、紫外探测器、短波长发光二极管、激光器及其相关器件方面的潜在应用引起了人们的关注。其中,掺镁氧化锌(MgxZn1-xO)薄膜是一种有很大应用前景的宽禁带半导体。氧化锌(ZnO)室温下禁带宽度为3.37eV,在紫外区具有优异的光电特性,氧化镁(MgO)的禁带宽度是7.8eV,在紫外区有较大的光透过率。因而,在ZnO中掺入Mg组分后,形成的MgxZn1-xO化合物半导体薄膜可实现禁带宽度在3.3-7.8eV之间连续可调,这使得它成为蓝紫光发光器件和低阀值紫外激光器的理想候选材料。此外,MgxZn1-xO半导体薄膜还具有制备温度低,抗辐射性能好,原材料丰富,无污染,化学性质稳定,制备技术较简单等优势。
MgxZn1-xO半导体薄膜在实际使用时,需要的电阻率各不相同,一般需要较低的电阻率以减少不必要的能量损耗。目前MgxZn1-xO半导体薄膜的制备方法多为磁控溅射法、物理气相沉积、化学气相沉积法等。在制备大面积薄膜时,其电阻率往往波动较大,同时需要精细地调控才能得到较小的电阻率,对制备所需要的设备要求较高,制备工艺严格,成本较高,不利于大规模生产。此外,不同Mg含量的MgxZn1-xO半导体薄膜电学性质差异较大,更换Mg含量配比还需重新探究制备工艺,研发投入较高。
发明内容
有鉴于此,本发明的目的在于提供一种降低掺镁氧化锌薄膜电阻率的处理方法,该方法简单,且处理得到的薄膜的电阻率较低。
本发明提供了一种降低掺镁氧化锌薄膜电阻率的处理方法,包括以下步骤:
将掺镁氧化锌薄膜进行真空热处理;
所述真空热处理在保护气体气氛下进行;
所述真空热处理的气压为0.1~100Pa,温度为400~1000℃,时间为5~120min。
优选地,所述真空热处理具体包括:
先抽真空,再通保护气体,随后以1~30℃/s的升温速率升温至400~1000℃。
优选地,所述掺镁氧化锌薄膜为MgxZn1-xO半导体薄膜,其中0<x≤0.6。
优选地,所述x为0.1、0.2或0.5。
优选地,所述掺镁氧化锌薄膜的厚度大于等于10nm。
优选地,所述保护气体选自化学性质不活跃的气体。
优选地,所述真空热处理后还包括:
真空热护理后的薄膜在0.1~100Pa的保护气氛下冷却。
本发明提供了一种降低掺镁氧化锌薄膜电阻率的处理方法,包括以下步骤:将掺镁氧化锌薄膜进行真空热处理;所述真空热处理在保护气体气氛下进行;所述真空热处理的气压为0.1~100Pa,温度为400~1000℃,时间为5~120min。本发明将掺镁氧化锌薄膜在低真空保护气氛下进行真空热处理,可以大幅度提高薄膜内的载流子浓度,使得薄膜的电阻率显著降低。同时具有较高的透光率。实验结果表明:采用该方法对Mg0.2Zn0.8O半导体薄膜真空热处理后,载流子浓度由约109cm-3上升至约1018cm-3数量级,上升了109倍,而电阻率由约107Ω·cm下降至约1Ω·cm,下降了107倍;采用该方法对Mg0.1Zn0.9O半导体薄膜真空热处理后,载流子浓度由约109cm-3上升至约1018cm-3数量级,上升了109倍;电阻率由约105Ω·cm下降至约10Ω·cm,下降了104倍。
附图说明
图1为本发明采用的真空热处理装置示意图;
图2为本发明实施例1~5和对比例1~2的Mg0.2Zn0.8O半导体薄膜的电阻率与载流子浓度随热处理温度的变化结果;
图3为本发明实施例7~10和对比例3~4的Mg0.1Zn0.9O半导体薄膜的电阻率与载流子浓度随热处理温度的变化结果;
图4为本发明实施例7提供的Mg0.1Zn0.9O半导体薄膜热处理前后的透射光谱对比图。
具体实施方式
本发明提供了一种降低掺镁氧化锌薄膜电阻率的处理方法,包括以下步骤:
将掺镁氧化锌薄膜进行真空热处理;
所述真空热处理在保护气体气氛下进行;
所述真空热处理的气压为0.1~100Pa,温度为400~1000℃,时间为5~120min。
本发明将掺镁氧化锌薄膜在低真空保护气氛下进行真空热处理,可以大幅度提高薄膜内的载流子浓度,使得薄膜的电阻率显著降低。还具有较高的透光率。该处理方法简单高效,技术操作可行性高,重复性好,成本低廉,易于工业化,可以广泛应用于掺镁氧化锌薄膜的大面积制备和包含该薄膜的光电器件产品。
在本发明中,所述掺镁氧化锌薄膜为MgxZn1-xO半导体薄膜,x为Mg元素的原子百分比,其中0<x≤0.6;优选地,x为0.1、0.2或0.5。
所述掺镁氧化锌薄膜的厚度优选大于等于10nm。在本发明具体实施例中,所述掺镁氧化锌薄膜的厚度为100nm、500nm或1μm。
在本发明中,所述掺镁氧化锌薄膜可以使用磁控溅射、热蒸发、物理气相沉积、电子束蒸发、分子束外延、化学气相沉积、化学水浴、溶胶凝胶法等多种物理、化学沉积方式制备。
在本发明中,所述保护气体为化学性质不活跃的气体,保护气体优选选自氮气、氩气或氙气。所述真空热处理的气压为0.1~100Pa。在具体实施例中,气压为1Pa、10Pa或0.5Pa。
图1为本发明采用的真空热处理装置的示意图;本发明采用图1所示的真空热处理装置进行真空热处理。在本发明中,所述真空热处理优选具体包括:
先抽真空,再通保护气体,随后以1~30℃/s的升温速率升温至400~1000℃。
在本发明具体实施例中,所述升温速率具体为10℃/s、15℃/s或20℃/s。所述真空热处理的温度为400~1000℃;在具体实施例中,所述真空热处理的温度为500℃、700℃或900℃。所述真空热处理的时间为5~120min;在具体实施例中,所述真空热处理的时间为15min、5min或30min。
在本发明中,所述真空热处理后优选还包括:
真空热护理后的薄膜在0.1~100Pa的保护气氛下冷却。
本发明在真空热处理时优选抽至高真空,再通保护气体至低真空,热处理后的薄膜继续维持在低真空的保护气氛下冷却至室温。
为了进一步说明本发明,下面结合实施例对本发明提供的一种降低掺镁氧化锌薄膜电阻率的处理方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
MgxZn1-xO半导体薄膜的准备。将洗净的玻璃衬底和Mg0.2Zn0.8O陶瓷靶放入磁控溅射真空室内,抽真空至2×10-3Pa,衬底温度为室温,通入Ar调节起辉,总压强控制在0.2~0.5Pa之间,调节靶材功率为60W,预溅射5分钟后打开遮挡样品的挡板,溅射生长15分钟,制备的Mg0.2Zn0.8O薄膜厚度约为100nm。将此薄膜记作未处理薄膜1。
将上述样品置于真空热处理装置中,抽真空至5×10-3Pa,随后通入氮气,将真空热处理装置内部气压控制在1Pa,随后以10℃/s的升温速率加热样品至500℃,保温30分钟。然后将样品在装置内自然冷却,在降至室温前,装置中的氮气气压应维持在1Pa。
本发明对未处理的薄膜1和实施例1处理的Mg0.2Zn0.8O薄膜进行载流子浓度和电阻率的测试,结果见图2,图2为本发明实施例1~5和对比例1~2的Mg0.2Zn0.8O半导体薄膜的电阻率与载流子浓度随热处理温度的变化结果;从图2可知,实施例1制备的未处理薄膜1的载流子浓度为9×109cm-3,电阻率为3×107Ω·cm;实施例1处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为4×1016cm-3,与未处理的相比,载流子浓度上升了107倍;电阻率为4Ω·cm,与未处理的相比,电阻率下降了107倍。
实施例2
与实施例1不同之处在于,加热样品至400℃。
从图2可知,实施例2处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为5×1016cm-3,与未处理的相比,载流子浓度上升了107倍;电阻率为10Ω·cm,与未处理的相比,电阻率下降了106倍。
实施例3
与实施例1不同之处在于,加热样品至450℃。
从图2可知,实施例3处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为3×1017cm-3,与未处理的相比,载流子浓度上升了108倍;电阻率为2Ω·cm,与未处理的相比,电阻率下降了107倍。
实施例4
与实施例1不同之处在于,加热样品至550℃。
从图2可知,实施例4处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为1×1018cm-3,与未处理的相比,载流子浓度上升了109倍;电阻率为1Ω·cm,与未处理的相比,电阻率下降了107倍。
实施例5
与实施例1不同之处在于,加热样品至600℃。
从图2可知,实施例5处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为2×1016cm-3,与未处理的相比,载流子浓度上升了107倍;电阻率为15Ω·cm,与未处理的相比,电阻率下降了106倍。
对比例1
与实施例1不同之处在于,加热样品至200℃。
从图2可知,对比例1处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为9×109cm-3,电阻率为3×106Ω·cm。
对比例2
与实施例1不同之处在于,加热样品至300℃。
从图2可知,对比例2处理得到的Mg0.2Zn0.8O薄膜的载流子浓度为1×1015cm-3,电阻率为171Ω·cm。
实施例6
MgxZn1-xO半导体薄膜的准备。将洗净的氧化铝衬底放入金属有机化学气相沉积系统的反应器内,向反应器中供应以氩气为载气的二乙基锌(Zn(C2H5)2)和二茂镁(Mg(C5H5)2)作为Zn和Mg前驱体,同时通入作为氧化剂的氧气。衬底温度设定为450℃,沉积期间反应室气压保持在3kPa,生长时间为1.5小时,控制二茂镁和二乙基锌原子摩尔流量比例为1:1,所制备出的Mg0.5Zn0.5O薄膜厚度约为500nm,记作未处理薄膜2。
将上述样品置于真空热处理装置中,抽真空至5×10-3Pa,随后通入氩气,将真空热处理装置内部气压控制在10Pa,随后以15℃/s的升温速率加热样品至900℃,保温5分钟。然后将样品留在真空装置内自然冷却,在降至室温前,装置中的氮气气压应维持在10Pa。
本发明实施例6处理的Mg0.5Zn0.5O薄膜的载流子浓度为8×1015cm-3,与未处理的薄膜2相比,载流子浓度上升了105倍;电阻率为122Ω·cm,与未处理的薄膜2相比,电阻率下降了105倍。
实施例7
MgxZn1-xO半导体薄膜的准备。将洗净的石英衬底和Mg0.1Zn0.9O陶瓷靶放入脉冲激光沉积真空腔内,抽真空至5×10-4Pa,设置衬底温度为450℃,控制通入O2的流量,将工作压强控制为0.3Pa,生长过程中,激光能量和频率分别固定为300mJ和5Hz,基靶间距为50mm,生长2小时,制备的Mg0.1Zn0.9O薄膜厚度约为1微米,记作未处理薄膜3。
将上述样品置于真空热处理装置中,抽真空至2×10-3Pa,随后通入氙气,将低真空热处理装置内部气压控制在0.5Pa,随后以20℃/s的升温速率加热样品至600℃,保温15分钟。然后将样品留在真空装置内自然冷却,在降至室温前,装置中的氙气气压应维持在0.5Pa。
本发明对未处理的薄膜3和实施例7处理的Mg0.1Zn0.9O薄膜的进行载流子浓度和电阻率的测试,结果见图3,图3为本发明实施例7~10和对比例3~4的Mg0.1Zn0.9O半导体薄膜的电阻率和载流子浓度的测试结果;从图3可知,
实施例7制备的未处理薄膜3的载流子浓度为8×109cm-3,电阻率为5×105Ω·cm;实施例7处理得到的Mg0.1Zn0.9O薄膜的载流子浓度为5×1016cm-3,与未处理的相比,载流子浓度上升了107倍;电阻率为67Ω·cm,与未处理的相比,电阻率下降了104倍。
本发明对实施例7处理的薄膜、衬底和未热处理的薄膜3进行透射率的测试,结果见图4,图4为本发明实施例7提供的Mg0.1Zn0.9O半导体薄膜热处理前后的透射光谱对比图,从图4可以看出:本发明提供的处理方法几乎不影响薄膜在可见光区(400~760nm)和红外光区(760~1200nm)的透射,这对薄膜的实际应用有重要意义。
实施例8
与实施例7不同之处在于,加热样品至550℃。
从图3可知,实施例8处理得到的Mg0.1Zn0.9O薄膜的载流子浓度为1×1016cm-3,与未处理的相比,载流子浓度上升了107倍;电阻率为39Ω·cm,与未处理的相比,电阻率下降了104倍。
实施例9
与实施例7不同之处在于,加热样品至500℃。
从图3可知,实施例9处理得到的Mg0.1Zn0.9O薄膜的载流子浓度为4×1017cm-3,与未处理的相比,载流子浓度上升了108倍;电阻率为47Ω·cm,与未处理的相比,电阻率下降了104倍。
实施例10
与实施例7不同之处在于,加热样品至400℃。
从图3可知,实施例10处理得到的Mg0.1Zn0.9O薄膜的载流子浓度为1×1018cm-3,与未处理的相比,载流子浓度上升了109倍;电阻率为34Ω·cm,与未处理的相比,电阻率下降了104倍。
对比例3
与实施例7不同之处在于,加热样品至200℃。
对比例3处理的Mg0.1Zn0.9O薄膜的载流子浓度为4×109cm-3;Mg0.1Zn0.9O薄膜的电阻率为5×105Ω·cm。
对比例4
与实施例7不同之处在于,加热样品至300℃。
对比例4处理的Mg0.1Zn0.9O薄膜的载流子浓度为6×1011cm-3;Mg0.1Zn0.9O薄膜的电阻率为1×103Ω·cm。
由以上实施例可知,发明提供了一种降低掺镁氧化锌薄膜电阻率的处理方法,包括以下步骤:将掺镁氧化锌薄膜进行真空热处理;所述真空热处理在保护气体气氛下进行;所述真空热处理的气压为0.1~100Pa,温度为400~1000℃,时间为5~120min。本发明将掺镁氧化锌薄膜在低真空保护气氛下进行真空热处理,可以大幅度提高薄膜内的载流子浓度,使得薄膜的电阻率显著降低。同时具有较高的透光率。实验结果表明:采用该方法对Mg0.2Zn0.8O半导体薄膜真空热处理后,载流子浓度由约109cm-3上升至约1018cm-3数量级,上升了109倍,而电阻率由约107Ω·cm下降至约1Ω·cm,下降了107倍;采用该方法对Mg0.1Zn0.9O半导体薄膜真空热处理后,载流子浓度由约109cm-3上升至约1018cm-3数量级,上升了109倍;电阻率由约105Ω·cm下降至约10Ω·cm,下降了104倍。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种降低掺镁氧化锌薄膜电阻率的处理方法,包括以下步骤:
将掺镁氧化锌薄膜进行真空热处理;
所述真空热处理在保护气体气氛下进行;所述保护气体选自化学性质不活跃的气体;
所述真空热处理的气压为0.5~1Pa,温度为400~600℃,时间为15~30min;
所述掺镁氧化锌薄膜为MgxZn1-xO半导体薄膜,其中0.1≤x≤0.2;
所述掺镁氧化锌薄膜的厚度大于等于10nm;
所述真空热处理后还包括:
真空热护理后的薄膜在0.1~100Pa的保护气氛下冷却。
2.根据权利要求1所述的处理方法,其特征在于,所述真空热处理具体包括:
先抽真空,再通保护气体,随后以1~30℃/s的升温速率升温至400~600℃。
CN201811487573.6A 2018-12-06 2018-12-06 一种降低掺镁氧化锌薄膜电阻率的方法 Active CN109599470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811487573.6A CN109599470B (zh) 2018-12-06 2018-12-06 一种降低掺镁氧化锌薄膜电阻率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811487573.6A CN109599470B (zh) 2018-12-06 2018-12-06 一种降低掺镁氧化锌薄膜电阻率的方法

Publications (2)

Publication Number Publication Date
CN109599470A CN109599470A (zh) 2019-04-09
CN109599470B true CN109599470B (zh) 2020-08-25

Family

ID=65962305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811487573.6A Active CN109599470B (zh) 2018-12-06 2018-12-06 一种降低掺镁氧化锌薄膜电阻率的方法

Country Status (1)

Country Link
CN (1) CN109599470B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730819A (zh) * 2019-11-08 2022-07-08 出光兴产株式会社 层叠体和半导体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289034A (ja) * 2003-03-25 2004-10-14 Canon Inc 酸化亜鉛膜の処理方法、それを用いた光起電力素子の製造方法
CN100365159C (zh) * 2005-09-29 2008-01-30 江苏工业学院 离子束增强沉积制备p-型氧化锌薄膜的方法
FR2981090B1 (fr) * 2011-10-10 2014-03-14 Commissariat Energie Atomique Procede de preparation d'oxyde de zinc zno de type p ou de znmgo de type p.

Also Published As

Publication number Publication date
CN109599470A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
Kim et al. Structural characterization of ZnO films grown on SiO2 by the RF magnetron sputtering
CN112126897B (zh) 一种alpha相氧化镓薄膜的制备方法
Badillo-Ávila et al. Cu2O thin films obtained from sol-gel cuo films using a simple argon/dry-air microwave plasma
CN103456603A (zh) 在镓系异质半导体衬底上制备氧化镓膜的方法及氧化镓膜
Hiramatsu et al. Influence of thermal annealing on microstructures of zinc oxide films deposited by RF magnetron sputtering
CN1738001A (zh) 一种p型ZnO薄膜的金属有机物化学气相沉积制备方法
CN108385062A (zh) 一种(AlxGa1-x)2O3合金薄膜的制备方法
KR101380509B1 (ko) 저온 금속 증착공정을 적용한 열변색성 유리의 제조방법 및 이에 의한 열변색성 유리
CN109599470B (zh) 一种降低掺镁氧化锌薄膜电阻率的方法
RU2542977C2 (ru) НАНЕСЕНИЕ ЛЕГИРОВАННЫХ ПЛЕНОК ZnO НА ПОЛИМЕРНЫЕ ПОДЛОЖКИ ХИМИЧЕСКИМ ОСАЖДЕНИЕМ ИЗ ГАЗОВОЙ ФАЗЫ ПОД ВОЗДЕЙСТВИЕМ УФ
Kumar et al. Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering
WO2015050630A2 (en) Methods of producing large grain or single crystal films
CN104058446A (zh) 一种低维氧化锌纳米材料及其低温等离子体制备方法
TWI418047B (zh) Ib-iiia-via2化合物半導體薄膜之製造裝置
Hamzah et al. Effect of post-annealing in oxygen environment on ITO thin films deposited using RF magnetron sputtering
Lee et al. Effects of O2 plasma pre-treatment on ZnO thin films grown on polyethersulfone substrates at various deposition temperatures by atomic layer deposition
Kim et al. Annealing effect for structural morphology of ZnO film on SiO2 substrates
CN107502871A (zh) 一种低温下硫化锌纳米材料的等离子体气相沉积制备方法
Guo-Liang et al. Structural and luminescent properties of ZnO thin films deposited by atmospheric pressure chemical vapour deposition
Zhang et al. Tuning the optical and electrical properties of HiPIMS-ITO films by variation of annealing temperature
JP2945968B2 (ja) 透明導電性薄膜の形成方法
CN113403682A (zh) 单结晶金属氧化物半导体外膜生长装置
KR101237466B1 (ko) 셀렌화에 의한 광흡수층 제조장치
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant