CN108423714A - 一种锂电池电极材料α-Fe2O3纳米球的制备方法 - Google Patents

一种锂电池电极材料α-Fe2O3纳米球的制备方法 Download PDF

Info

Publication number
CN108423714A
CN108423714A CN201810135217.1A CN201810135217A CN108423714A CN 108423714 A CN108423714 A CN 108423714A CN 201810135217 A CN201810135217 A CN 201810135217A CN 108423714 A CN108423714 A CN 108423714A
Authority
CN
China
Prior art keywords
nanosphere
electrode material
preparation
ion battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810135217.1A
Other languages
English (en)
Other versions
CN108423714B (zh
Inventor
陈泽华
张波
邢宝林
陈兴颖
张火利
曹建亮
孙广
孟哈日巴拉
张传祥
张战营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201810135217.1A priority Critical patent/CN108423714B/zh
Publication of CN108423714A publication Critical patent/CN108423714A/zh
Application granted granted Critical
Publication of CN108423714B publication Critical patent/CN108423714B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明共开了一种锂离子电池电极材料α‑Fe2O3纳米球的制备方法,具体步骤如下:将氯酸钾和硫酸亚铁溶于去离子水中得到混合溶液,采用椰油酸二乙醇酰胺溶液将溶液pH值到10,将混合溶液置于高压反应釜中,在120℃~150℃的条件下加热10 h~14 h后取出反应釜;用去离子水反复超声洗涤20 min~50 min,并分离出沉淀产物;沉淀产物进行干燥,在氧气气氛下350℃煅烧5h后得到最终黑褐色的粉末产物。用本发明方法所制备的Fe2O3的原料价格低廉,易得,并且能够在相同条件下,拥有更宽的电化学窗口,更优异的倍率性能,以及良好的循环性能。

Description

一种锂电池电极材料α-Fe2O3纳米球的制备方法
技术领域
本发明属于新能源材料制备技术领域,具体涉及一种锂电池电极材料α-Fe2O3纳米球的制备方法。
背景技术
锂离子电池因其具有高能量密度,循环寿命长,自放电率低,高工作电压,使用温度范围比较宽,没有记忆效应,开路电压高等优点,受到广大消费者的普遍欢迎,已经被广泛应用于诸如笔记本电脑,手机,相机等等移动设备,并且已经在逐步取代传统能源。在智能手机领域,人们对手机的续航稳定性提出了更高的要求,这就导致人们对于循环性能电池的需求越来越迫切。相对于当今商业化的石墨负极材料,我们所制备的Fe2O3具有更宽的电化学窗口,更优异的倍率性能,以及良好的循环性能。并且原料易得,所需成本相对较低。
目前所研究的氧化铁基负极材料主要有Fe3O4,FeO,Fe2O3这些材料都具有极好的比容量性能,但由于在充放电测试中伴随着材料的体积变化从而导致容量的快速衰减,导致其容量较差。目前公认的解决办法主要有两种,一是减小氧化铁的颗粒度,从而减短电子传输路径,缓和电极地极化;二是在氧化铁表面包覆碳,从而提高材料的导电性,并限制材料在充放电过程的体积变化。
通过以上方案制备的Fe2O3纳米球被用作锂离子电池负极材料,在电化学性能测试时,在0.2 C倍率下,电压窗口为0~3.0 V之间,初始比容量可以达到1943.05 mAh/g,得到极好的初始比容量,且制备的Fe2O3纳米球纳米颗粒度均匀,纳米球型控制好,没有出现纳米球破碎现象,且通过X射线衍射分析,结晶度好。
发明内容
针对现有技术中存在的问题,本发明提供一种锂电池电极材料Fe2O3纳米球的制备方法,这种高电化学容量的锂离子电池负极材料同其他同类材料相比,电化学性能更加优越。
为解决上述技术问题,本发明采用以下技术方案:
一种锂离子电池电极材料α-Fe2O3纳米球的制备方法,具体步骤如下:
(1)将氯酸钾和硫酸亚铁溶于去离子水中得到混合溶液;
(2)采用椰油酸二乙醇酰胺溶液调节混合溶液的pH=10,然后将混合溶液置于高压反应釜中进行水热反应;
(3)反应结束后用去离子水反复超声洗涤,并分离出沉淀产物;
(4)将沉淀产物进行干燥,在氧气气氛下煅烧后得到黑褐色的粉末产物,即为锂离子电池电极材料α-Fe2O3纳米球。
所述步骤(1)混合溶液中氯酸钾的浓度为(0.8-1.2)mol/L,硫酸亚铁的浓度为(0.4-0.6)mol /L。
所述步骤(2)中水热反应的温度为120℃-150℃,水热反应的时间为10 h-14 h。
所述步骤(2)中椰油酸二乙醇酰胺溶液的浓度为(0.2~0.3)mol/L。
所述步骤(3)用去离子水反复超声洗涤20 min ~50 min。
所述步骤(4)中的煅烧温度为300℃-400℃,煅烧时间为4 h -6h。
本发明的有益效果在于:1、用本发明方法所制备的的Fe2O3的原料价格低廉,易得,采用水热反应法合成了具有良好分散性的α-Fe2O3纳米球,由扫描电镜照片可以看,样品没有团聚现象的发生,呈现良好的分散,很好地控制了反应离子的移动性和晶核的形成速度,最终形成尺寸和形貌相近的球型产物;2、在该合成方法下的反应过程中形成的晶体颗粒表面进行吸附,从而改变形核与结晶长大的动力学过程,同时离子的选择性吸附还会引起各向异性生长,作为锂离子负极材料时,具有更好的分散性,这种独特的 α-Fe2O3纳米球结构与电解质接触面积较大,材料比较面积较大时,由于形成 SEI 膜消耗更多的电量,且由于样品的分散性较好,材料未发现团聚现象,其 SEI 在首次充放电的过程中已经完全形成,使得材料的首次放电容量较高;3、在锂嵌/脱反应过程中表现出良好的应力适应性和较快的Li+和电子传递速率,从而使α-Fe2O3纳米球电极具有稳定的放电容量和较高的倍率性能,并且能够在相同条件下,拥有更宽的电化学窗口,更优异的倍率性能以及良好的循环性能。
附图说明
图1为本发明实施例1所制备的α- Fe2O3的XRD图;
图2为本发明实施例1所制备的α- Fe2O3的SEM图;
图3为本发明实施例1所制备的α-Fe2O3的0.2 C下电压窗口为0 ~ 3.0 V之间的循环性能图。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
本实施例的锂离子电池电极材料α-Fe2O3纳米球的制备方法,具体步骤如下:
(1)将氯酸钾和硫酸亚铁溶于去离子水中得到混合溶液,其中氯酸钾的浓度为1mol/L,硫酸亚铁的浓度为0.5mol /L;
(2)采用浓度为0.25mol/L的椰油酸二乙醇酰胺将溶液pH值调到10,将混合溶液置于高压反应釜中,在140℃的条件下加热12 h后取出反应釜;
(3)用去离子水反复超声洗涤30 min,并分离出沉淀产物;
(4)沉淀产物进行干燥,在氧气气氛下350℃煅烧5h后得到最终黑褐色的粉末产物锂离子电池电极材料α-Fe2O3纳米球。
图1为所制备的氧化铁的XRD图,对比后发现制备的产品纯度较高,结晶度较好,晶型完美。
图2为所制备的氧化铁的SEM图,可以看出做制备的样品都为球状,并且颗粒粒度半径在50 nm左右,颗粒粒度均匀,表面光滑。
图3为所制备的材料在0.2 C下,电压窗口在0~3.0 V之间的循环性能图,初始容量可以达到1909.05 mAh/g,经过500次循环,放电效率保持在95.9%,该材料保持了很高的电化学容量。
实施例2
本实施例的锂离子电池电极材料α-Fe2O3纳米球的制备方法,具体步骤如下:
(1)将氯酸钾和硫酸亚铁溶于去离子水中得到混合溶液,其中氯酸钾的浓度为0.8mol/L,硫酸亚铁的浓度为0.4mol /L;
(2)采用浓度为0.2mol/L的椰油酸二乙醇酰胺将溶液pH值调到10,将混合溶液置于高压反应釜中,在120℃的条件下加热14 h后取出反应釜;
(3)用去离子水反复超声洗涤50 min,并分离出沉淀产物;
(4)沉淀产物进行干燥,在氧气气氛下300℃煅烧6h后得到最终黑褐色的粉末产物锂离子电池电极材料α-Fe2O3纳米球。
实施例3
本实施例的锂离子电池电极材料α-Fe2O3纳米球的制备方法,具体步骤如下:
(1)将氯酸钾和硫酸亚铁溶于去离子水中得到混合溶液,其中氯酸钾的浓度为1.2mol/L,硫酸亚铁的浓度为0.6mol /L;
(2)采用浓度为0.3mol/L的椰油酸二乙醇酰胺将溶液pH值调到10,将混合溶液置于高压反应釜中,在150℃的条件下加热10 h后取出反应釜;
(3)用去离子水反复超声洗涤20 min,并分离出沉淀产物;
(4)沉淀产物进行干燥,在氧气气氛下400℃煅烧4h后得到最终黑褐色的粉末产物锂离子电池电极材料α-Fe2O3纳米球。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种锂离子电池电极材料α-Fe2O3纳米球的制备方法,其特征在于:具体步骤如下:
(1)将氯酸钾和硫酸亚铁溶于去离子水中得到混合溶液;
(2)采用椰油酸二乙醇酰胺溶液调节混合溶液的pH=10,然后将混合溶液置于高压反应釜中进行水热反应;
(3)反应结束后用去离子水反复超声洗涤,并分离出沉淀产物;
(4)将沉淀产物进行干燥,在氧气气氛下煅烧后得到黑褐色的粉末产物,即为锂离子电池电极材料α-Fe2O3纳米球。
2.根据权利要求1所述的锂离子电池电极材料α-Fe2O3纳米球的制备方法,其特征在于:所述步骤(1)混合溶液中氯酸钾的浓度为(0.8-1.2)mol/L,硫酸亚铁的浓度为(0.4-0.6)mol /L。
3.根据权利要求1所述的锂离子电池电极材料α-Fe2O3纳米球的制备方法,其特征在于:所述步骤(2)中水热反应的温度为120℃-150℃,水热反应的时间为10 h-14 h。
4.根据权利要求1所述的锂离子电池电极材料α-Fe2O3纳米球的制备方法,其特征在于:所述步骤(2)中椰油酸二乙醇酰胺溶液的浓度为(0.2~0.3)mol/L。
5.根据权利要求1所述的锂离子电池电极材料α-Fe2O3纳米球的制备方法,其特征在于:所述步骤(3)用去离子水反复超声洗涤20 min ~50 min。
6.根据权利要求1所述的锂离子电池电极材料α-Fe2O3纳米球的制备方法,其特征在于:所述步骤(4)中的煅烧温度为300℃-400℃,煅烧时间为4 h -6h。
CN201810135217.1A 2018-02-09 2018-02-09 一种锂电池电极材料α-Fe2O3纳米球的制备方法 Expired - Fee Related CN108423714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810135217.1A CN108423714B (zh) 2018-02-09 2018-02-09 一种锂电池电极材料α-Fe2O3纳米球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810135217.1A CN108423714B (zh) 2018-02-09 2018-02-09 一种锂电池电极材料α-Fe2O3纳米球的制备方法

Publications (2)

Publication Number Publication Date
CN108423714A true CN108423714A (zh) 2018-08-21
CN108423714B CN108423714B (zh) 2020-03-10

Family

ID=63156722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810135217.1A Expired - Fee Related CN108423714B (zh) 2018-02-09 2018-02-09 一种锂电池电极材料α-Fe2O3纳米球的制备方法

Country Status (1)

Country Link
CN (1) CN108423714B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044674A (zh) * 2009-10-12 2011-05-04 中国科学院物理研究所 用于锂离子电池的负极材料及其制备方法
CN105883932A (zh) * 2016-06-01 2016-08-24 浙江大学 一种氧化铁纳米球的制备方法及其产物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044674A (zh) * 2009-10-12 2011-05-04 中国科学院物理研究所 用于锂离子电池的负极材料及其制备方法
CN105883932A (zh) * 2016-06-01 2016-08-24 浙江大学 一种氧化铁纳米球的制备方法及其产物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANPING ZHANG,ET AL.: "One-step synthesis and properties of urchin-like PS/α-Fe2O3 composite hollow microspheres", 《NANOTECHNOLOGY》 *

Also Published As

Publication number Publication date
CN108423714B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN106564967B (zh) 富锂锰基正极材料前驱体、正极材料及其制备方法
CN104882589B (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
CN112028126B (zh) 一种小粒径补锂添加剂Li5FeO4的制备方法和应用
CN106848315B (zh) 锌镍电池负极材料及其制备方法和使用该负极材料的电池
CN105355877B (zh) 一种石墨烯‑金属氧化物复合负极材料及其制备方法
CN109546143A (zh) 一种具有多孔结构的三元正极材料及其制备方法
Li et al. High-performance lithium-ion battery anodes based on Mn3O4/nitrogen-doped porous carbon hybrid structures
CN111180707B (zh) 二硒化锡/氧化锡-rGO纳米复合负极材料及制备方法
CN107123792A (zh) 双层复合结构三元正极材料及其制备方法
CN108767216A (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
CN102751484A (zh) 一维纳米链状结构和球形结构米四氧化三钴电极材料的制备方法
CN110165171A (zh) 一种原位自组装纳米花状二硫化钴/rGO复合材料及其制备方法和应用
CN107046126A (zh) 一种超细金属氧化物/石墨烯二维负极复合材料的制备方法
CN106784651A (zh) 碳包覆铁锰酸钾内连接纳米线材料及其制备方法和应用
CN111463418A (zh) 一种碳包覆硒化镍超薄纳米片复合材料及其制备方法
CN113603146A (zh) 一种铁锰基正极材料及其制备方法和应用
CN108470892A (zh) 一种锌掺杂的高镍三元锂电池正极材料及制备方法
CN108470893A (zh) 一种形状记忆合金框架基高镍三元锂电池材料及制备方法
CN106129383B (zh) 一种具有纳米级两相梯度分布结构的球形锂离子电池正极材料及其合成方法
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
Jia et al. In-situ formation of ultrafine ZnMn2O4-MnOOH composite nanoparticles embedded into porous carbon nanospheres for stable aqueous zinc-ion batteries
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
WO2024022428A1 (zh) 一种钠电池正极材料及其制备方法以及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200310

Termination date: 20210209