CN108352324A - 用于族iiia-n装置的非蚀刻性气体冷却外延堆叠 - Google Patents

用于族iiia-n装置的非蚀刻性气体冷却外延堆叠 Download PDF

Info

Publication number
CN108352324A
CN108352324A CN201680064897.1A CN201680064897A CN108352324A CN 108352324 A CN108352324 A CN 108352324A CN 201680064897 A CN201680064897 A CN 201680064897A CN 108352324 A CN108352324 A CN 108352324A
Authority
CN
China
Prior art keywords
iiia
cap layer
race
layer
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680064897.1A
Other languages
English (en)
Other versions
CN108352324B (zh
Inventor
A·M·海德尔
Q·法里德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN108352324A publication Critical patent/CN108352324A/zh
Application granted granted Critical
Publication of CN108352324B publication Critical patent/CN108352324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

在所描述实例中,一种制造用于族IIIA‑N晶体管的外延堆叠的方法(100)包含在沉积系统的沉积腔室中在衬底上沉积(102)至少一个族IIIA‑N缓冲层。随后将至少一个族IIIA‑N顶盖层沉积(103)于第一族IIIA‑N缓冲层上。在从所述顶盖层沉积的沉积温度的冷却期间,供应到所述沉积腔室的气体混合物包含NH3和至少一种其它气体。所述气体混合物在所述沉积腔室中提供相对于所述顶盖层为非蚀刻性的环境,以使得在所述顶盖层的表面处:(a)且(b)大于(>)2nm深的凹点的凹点密度小于(<)每平方μm 10个凹点,其中平均凹点直径小于(<)0.05μm。

Description

用于族IIIA-N装置的非蚀刻性气体冷却外延堆叠
技术领域
本公开涉及族IIIA-N(例如,GaN)场效应晶体管(FET),且更具体地说涉及用于此类FET的缓冲层。
背景技术
氮化镓(GaN)为常用的族IIIA-N材料,其中族IIIA元素(例如Ga、硼、铝、铟和铊)有时也被称作族13元素。GaN为具有纤维锌矿(Wurtzite)晶体结构的二元IIIA/V直接带隙半导体。其在室温下的3.4eV的相对较宽带隙(对比硅的1.1eV)使其具有用于光学电子、大功率装置和高频电子装置中的广泛多种应用的具体特性。
由于GaN和硅具有显著的热膨胀系数失配,因此缓冲层常用于硅衬底与GaN层之间以用于应变管理。此缓冲技术形成通常用于高电子迁移率晶体管(HEMT)(也被称作异质结构FET(HFET))或掺杂调变的FET(MODFET)装置的大部分硅上GaN(GaN-on-Si)的基础,所述掺杂调变的FET装置为场效应晶体管,并入有具有不同带隙的两种材料之间的接合点(即异质结)作为代替掺杂区域的沟道(对于MOSFET通常为此情况)。用于此类装置的一些缓冲布置使用超晶格结构或递变缓冲结构。
GaN顶盖层沉积在沉积至少一个缓冲层之后。常规的缓冲层和顶盖层沉积工艺在从其对应的沉积温度的冷却期间使用NH3和H2。H2体积流率大体上为NH3体积流率的若干倍。
发明内容
在所描述实例中,一种制造用于族IIIA-N晶体管的外延堆叠的方法包含在沉积系统的沉积腔室中在衬底上沉积至少一个族IIIA-N缓冲层。随后将至少一个族IIIA-N顶盖层沉积于第一族IIIA-N缓冲层上。在从所述顶盖层沉积的沉积温度的冷却期间,供应到所述沉积腔室的气体混合物包含NH3和至少一种其它气体。所述气体混合物在所述沉积腔室中提供相对于所述顶盖层为非蚀刻性的环境,以使得在所述顶盖层的表面处: 且(b)大于(>)2nm深的凹点的凹点密度小于(<)每平方μm 10个凹点,其中平均凹点直径小于(<)0.05μm。
附图说明
图1是根据实例实施例的制造包含用于功率族IIIA-N晶体管的至少一个低疵点密度顶盖层的外延层堆叠的实例方法中的步骤的流程图。
图2是根据实例实施例的包含在其上具有低疵点密度顶盖层的族IIIA-N缓冲层的实例装置堆叠的截面绘图。
图3A是根据实例实施例的外延层堆叠具有低疵点密度顶盖层的实例耗尽型高电子迁移率晶体管(HEMT)的截面视图。
图3B是根据实例实施例的外延层堆叠具有低疵点密度顶盖层的具有常闭栅极的实例增强型HEMT的截面视图。
图3C是包含均在缓冲堆叠上的相同低疵点密度顶盖层上的图3A中所示的耗尽型HEMT功率装置和图3B中所示的增强型HEMT的实例IC的截面视图。
具体实施方式
图式未必按比例绘制。在图式中,相同参考编号表示类似或等效元件。一些图解说明的动作或事件可与其它动作或事件以不同顺序和/或同时发生。此外,实施根据本说明书的方法可能不需要一些图解说明的动作或事件。
实例实施例认识到,在族IIIA-N装置的外延族IIIA-N顶盖层之后的冷却期间供应到沉积腔室的常规的NH3和H2气体混合物在冷却之后在顶盖层中产生凹点,在可能在发生优先蚀刻的后续蚀刻/清洁之后可能恶化。H2可能侵蚀族IIIA-N顶盖层(例如GaN或AlGaN),从而产生凹点。顶盖层中的疵点(例如凹点)使在功率晶体管中产生疵点,且如果其以足够高密度存在,则可能导致装置故障。
在所描述实例中,顶盖层沉积在于衬底上沉积至少一个缓冲层之后,使用冷却工艺,所述冷却工艺使用包含NH3和至少一种其它气体的供应的气体混合物,其中所述气体混合物在沉积腔室中提供相对于第一族IIIA-N层为非蚀刻性的环境。如本文所使用,“非蚀刻性”是指顶盖层的所得表面具有:的均方根(rms)粗糙度;以及(b)小于(<)每平方μm 10个凹点的大于(>)2nm深的凹点层的凹点密度,其中平均凹点直径小于(<)0.05μm。一个实例使用在冷却期间仅含有NH3和N2的气体混合物。
图1是根据实例实施例的制造包含用于族IIIA-N功率晶体管的低疵点密度顶盖层的外延层堆叠的实例方法100中的步骤的流程图。可使用金属有机化学气相沉积(MOCVD)系统、分子束外延(MBE)系统或氢化物气相外延(HVPE)系统在单次程序中外延沉积所有对应的缓冲和族IIIA-N顶盖层。
步骤101包括去除(如果存在)衬底(例如,晶片)的表面上的原生氧化物。所述衬底可包括蓝宝石、硅或碳化硅(SiC)。
步骤102包括在沉积系统的沉积腔室中使用大体上为1050℃到1300℃的沉积温度将至少第一族IIIA-N缓冲层沉积于衬底上。缓冲层可为1微米至10微米厚。本文中所描述的族IIIA-N缓冲层和顶盖层可由通式AlxGayIn1-x-yN表示,其中0<x≤1,0≤y≤1,0<x+y≤1。举例来说,族IIIA-N层可包括AlN、AlGaN、AlInN和AlInGaN中的至少一种。可包含如硼(B)的其它族IIIA元素,且N可部分地被磷(P)、砷(As)或锑(Sb)替代。族IIIA氮化物化合物半导体中的每一个可含有选自Si、C、Ge、Se、O、Fe、Mn、Mg、Ca、Be、Cd以及Zn的任选掺杂剂。
缓冲层沉积可任选地后续接着从较高缓冲层沉积温度(例如,1250℃)冷却到顶盖层沉积的较低沉积温度(例如,900℃到1050℃)的冷却工艺,所述冷却工艺使用供应到沉积腔室的包含NH3和至少一种其它气体的气体混合物,其中所述气体混合物在沉积腔室中提供相对于第一族IIIA-N缓冲层为非蚀刻性的环境。此冷却工艺期间的减速率大体上为5℃/min到40℃/min。其它气体可为N2、Ar、He、Ne、Kr及或此类气体的组合。在一个特定实施例中,以2至20升/分钟来供应NH3,且以50至150升/分钟来供应N2。在混合物保持非蚀刻性的情况下,氢气(H2)可提供按体积计至多约40%的H2。
在步骤102之后,所述方法可包括在第一族IIIA-N缓冲层上沉积至少第二族IIIA-N缓冲层以形成缓冲堆叠。其它缓冲层沉积步骤可使用与上文所描述的步骤102相同的低疵点密度沉积工艺,包含所描述的冷却工艺。
步骤103包括在第一族IIIA-N缓冲层(或缓冲堆叠)上沉积至少一个族IIIA-N顶盖层。如上文所描述,顶盖层沉积温度大体上为900℃至1050℃。
顶盖层沉积之后为从沉积温度到大体上300℃至550℃的温度的冷却工艺,所述冷却工艺使用包含NH3和至少一种其它气体的气体混合物,其中所述气体混合物在沉积腔室中提供相对于所述顶盖层为非蚀刻性的环境。如上文所描述,本文中的“非蚀刻性”是指所得顶盖层具有:的均方根(rms)粗糙度;以及(b)小于(<)每平方μm 10个凹点的大于(>)2nm深的凹点层的凹点密度,其中平均凹点直径小于(<)0.05μm。表面粗糙度可由原子力显微镜(AFM)系统来测量,而凹点密度可由疵点分析工具来测量,例如KLA-Tencor8620检测系统。
其它气体可为N2、Ar、He、Ne、Kr及或此类气体的组合。在一个特定实施例中,以2至20升/分钟来供应NH3,且以50至150升/分钟来供应N2。在混合物保持非蚀刻性的情况下,氢气(H2)可提供按体积计至多约40%的H2。此冷却工艺期间的减速率大体上为5℃/min至40℃/min,且如上文所描述可冷却至300℃至550℃的温度,其中沉积腔室排放到大气,且随后大体上从沉积腔室去除晶舟。
步骤104包括在顶盖层上形成栅极介电层(例如,SiN、SiON、Al2O3、AlN、氧化硅或任何这些层的组合),在栅极介电层上形成金属栅极电极,以及在顶盖层上形成具有源极触点的源极和具有漏极触点的漏极。在一个实施例中,栅极电极可包括TiW掺合物。在一个特定实施例中,可通过溅镀例如Ti/Al/TiN的金属堆叠来形成源极和漏极。
图2是根据实例实施例的包含包括在衬底(例如,硅)210上均展示为AlN层的第一族IIIA-N缓冲层220a和第二族IIIA-N缓冲层220b的多层缓冲堆叠(缓冲层堆叠)220的实例装置堆叠200的截面绘图。展示为GaN层的族IIIA-N顶盖层230位于第二族IIIA-N缓冲层220b上,其中族IIIA-N顶盖层230具有使用顶盖层冷却工艺形成的低疵点密度,所述冷却工艺在冷却期间使用沉积腔室中相对于顶盖层为非蚀刻性的环境。在另一布置中,第一族IIIA-N缓冲层220a包括AlN,第二族IIIA-N缓冲层220b包括GaN,且族IIIA-N顶盖层230包括AlGaN。可用作HEMT层的族IIIA-N顶盖层230的实例厚度范围可为第二族IIIA-N缓冲层220b为且第一族IIIA-N缓冲层220a为0.1μm至5μm。
实例实施例的优点包含沉积包含基本上空的且无裂纹的顶盖层的基本上空的且无裂纹的外延GaN膜堆叠的能力,以使得能够获得更高的晶体管击穿电压、更低泄漏电流以及减少的衬底弓曲/翘曲。举例来说,功率晶体管可提供在每mm2为1μamp的泄漏电流密度下至少100V的击穿电压。
可使用所描述外延堆叠的功率半导体装置的实例包含HEMT、双异质结构场效应晶体管(DHFET)、异质结双极晶体管(HBT)以及双极结晶体管(BJT)。HEMT(也被称作异质结构FET(HFET)或掺杂调变的FET(MODFET))为场效应晶体管,并入有具有不同带隙的两种半导体材料之间的接合点(即异质结)作为代替掺杂区域的二维电子气(2DEG)沟道层(对于金属氧化物半导体场效应晶体管(MOSFET)通常为此情况)。HEMT包含具有例如GaN和AlGaN的宽带隙的化合物半导体。由于GaN和IIIA-N材料系统中的高电子饱和度速率,GaN HEMT中的电子迁移率高于其它一般晶体管(例如,金属氧化物半导体场效应晶体管(MOSFET))的电子迁移率。
图3A是根据实例实施例的实例耗尽型HEMT功率装置300的截面视图,其中展示了所描述的外延层堆叠,其在衬底210的缓冲层堆叠220上包含族IIIA-N顶盖层230'。展示HEMT装置300具有栅极介电层235,例如包括氮化硅或氮氧化硅。族IIIA-N顶盖层230'为低疵点密度顶盖层,其中族IIIA-N顶盖层230'的表面具有:的均方根(rms)粗糙度;以及(b)小于(<)每平方μm 10个凹点的大于(>)2nm深的凹点层的凹点密度,其中平均凹点直径小于(<)0.05μm。在此实施例中,族IIIA-N顶盖层230'可包括夹在最顶部(第一)GaN层230c与位于第二族IIIA-N缓冲层220b上的最底部(第二)GaN层230a之间的AlGaN层230b。最顶部GaN层230c和最底部GaN层230a大体上各自具有1x 1015cm-3与1x 1018cm-3之间的掺杂浓度。掺杂剂可包含碳、镁、硅或锌,或此类掺杂剂的组合。
HEMT功率装置300可为离散装置,或IC上的许多装置中的一个。更一般地说,族IIIA-N顶盖层230'可包含GaN、InN、AlN、AlGaN、AlInN、InGaN以及AlInGaN中的一或多个。如上文所描述,族IIIA-N层可包含其它族IIIA元素,例如B,且N可部分地由P、As或Sb替代,且还可含有任选掺杂剂。在另一特定实例中,族IIIA-N顶盖层230'可包括AlxGayN层或InxAlyN层顶部上的GaN层。另一具体实例为族IIIA-N顶盖层230',三层堆叠可包括AlGaN上的InAlN上的GaN。
HEMT功率装置300包含源极241、漏极242以及栅极电极240。栅极电极240位于源极241与漏极242之间,比漏极242更接近源极241。源极241、漏极242和栅极电极240可由金属和/或金属氮化物形成,但实例实施例不限于此。
图3B是根据实例实施例的具有常闭栅极的实例增强型HEMT功率装置350的截面视图,其具有在展示为衬底210上的缓冲层堆叠220的缓冲层上的族IIIA-N顶盖层230'。族IIIA-N顶盖层230'为低疵点密度顶盖层,其中族IIIA-N顶盖层230'的表面具有: 的均方根(rms)粗糙度;以及(b)小于(<)每平方μm 10个凹点的大于(>)2nm深的凹点层的凹点密度,其中平均凹点直径小于(<)0.05μm。在此实施例中,栅极电极为与族IIIA-N顶盖层230c(例如,GaN层)直接接触的p掺杂栅极电极245(展示为p-GATEELECTRODE)。图3C是包含均使用相同顶盖层和缓冲堆叠的图3A中所示的耗尽型HEMT功率装置300和图3B中所示的增强型HEMT的实例IC 380的截面视图。
实例实施例进一步由以下实例说明。
针对使用NH3/N2顶盖层冷却形成的Si衬底上的顶盖层相较针对顶盖层冷却的使用NH3/H2气体混合物形成的已知顶盖层来采集AFM数据。在一个实例中,NH3/N2流量比为1:10,NH3的流量范围为2至20升/分钟,且N2的范围为50至150升/分钟。根据来自若干不同程序的晶片的数据,沉积时,使用所描述的NH3/N2顶盖层冷却处理的晶片一致地未表现出表面凹点。相比之下,依据来自若干不同程序的晶片的数据,使用已知NH3/H2顶盖层冷却处理的晶片一致地表现出大小在10nm到200nm范围内的每cm2的表面凹点1x 1010。
还发现在后续蚀刻/清洁之后顶盖层中的凹点可能恶化,其中在疵点部位发现发生优先蚀刻。具有来自NH3/N2冷却顶盖层工艺的顶盖层以及使用针对顶盖层冷却的N2/H2气体混合物形成的已知顶盖层的晶片经提交用于两组清洁工艺。针对两种顶盖层工艺对晶片执行AFM分析。针对具有来自NH3/N2冷却顶盖层的顶盖层的晶片,凹点的深度在沉积时为约0.7nm至1nm,其在两组清洁工艺之后保持在约0.7nm至1nm。针对具有来自已知NH3/N2冷却工艺的顶盖层的晶片,凹点的深度在沉积时为约1nm至3nm,其在两组清洁工艺之后增加到6nm至10nm。
获得高温反向偏压(HTRB)HEMT装置数据,其中顶盖层包括GaN,且缓冲层包括使用N2/NH3顶盖层冷却形成的AlGaN以及使用已知NH3/H2顶盖层冷却形成的控制GaN顶盖层。
由于GaN顶盖层凹点,HTRB故障与安全性故障相关联。具有使用已知N2/H2顶盖层冷却形成的控制GaN顶盖层的HEMT具有5%至10%的老化故障率,而具有使用NH3/N2顶盖层冷却形成的GaN顶盖层的HEMT具有<2%HTRB故障的故障率。
实例实施例可用于形成半导体管芯,所述半导体裸片可集成到多种组件流中以形成多种不同装置和相关产品。半导体裸片中可包含各种元件和/或其上可包含各种层,包含势垒层、介电层、装置结构、有源元件和无源元件,包含源极区域、漏极区域、位线、基极、发射级、集极、导电线路和导电通孔。此外,半导体裸片可由多种工艺形成,包含双极、绝缘栅双极晶体管(IGBT)、CMOS、BiCMOS和MEMS。
在所描述的实施例中可能进行修改,且其它实施例在权利要求的范围内为可能的。

Claims (17)

1.一种制造用于族IIIA-N晶体管的外延堆叠的方法,所述方法包括:
在沉积系统的沉积腔室中在衬底上沉积至少第一族IIIA-N缓冲层,以及
在所述沉积系统的所述沉积腔室中在所述第一族IIIA-N缓冲层上沉积至少一个族IIIA-N表面顶盖层(顶盖层),接着进行≤550℃的冷却工艺,所述冷却工艺使用供应到所述沉积腔室的包含NH3和至少一种其它气体的气体混合物,其中所述气体混合物在所述沉积腔室中提供相对于所述顶盖层为非蚀刻性的环境,以使得在所述顶盖层的表面处:(a)均方根rms粗糙度<且(b)大于(>)2nm深的凹点的凹点密度小于(<)每平方μm 10个凹点,其中平均凹点直径小于(<)0.05μm。
2.根据权利要求1所述的方法,其中在所述沉积所述族IIIA-N顶盖层之前沉积所述第一族IIIA-N缓冲层,接着进行所述冷却工艺。
3.根据权利要求1所述的方法,其中所述沉积系统包括金属有机化学气相沉积MOCVD系统、分子束外延MBE系统,或氢化物气相外延HVPE系统。
4.根据权利要求1所述的方法,其中所述族IIIA-N顶盖层的厚度为3nm至50nm。
5.根据权利要求1所述的方法,其中所述族IIIA-N缓冲层和所述顶盖层均包括GaN或AlGaN。
6.根据权利要求1所述的方法,其中所述衬底包括蓝宝石、硅或碳化硅SiC。
7.根据权利要求1所述的方法,其中所述气体混合物由N2和NH3构成。
8.根据权利要求1所述的方法,其进一步包括:
在所述顶盖层上形成栅极介电层;
在所述栅极介电层上形成金属栅极电极,以及
形成具有到所述顶盖层的源极触点的源极以及具有到所述顶盖层的漏极触点的漏极。
9.根据权利要求1所述的方法,其中所述气体混合物不包括H2
10.一种功率晶体管装置,其包括:
衬底;
至少第一族IIIA-N缓冲层,其位于所述衬底上,以及
至少一个族IIIA-N表面顶盖层(顶盖层),其位于所述第一族IIIA-N缓冲层上,
其中所述顶盖层的表面具有:(a)<的均方根rms粗糙度;以及(b)小于(<)每平方μm10个凹点的大于(>)2nm深的凹点层的凹点密度,其中平均凹点直径小于(<)0.05μm;
源极,其具有到所述顶盖层的源极触点,以及漏极,其具有到所述顶盖层的漏极触点,以及
栅极电极,其位于所述顶盖层上的栅极介电质上。
11.根据权利要求10所述的功率晶体管装置,其中所述衬底包括蓝宝石、硅或碳化硅SiC。
12.根据权利要求10所述的功率晶体管装置,其中所述第一族IIIA-N缓冲层和所述顶盖层均包括GaN或AlGaN。
13.根据权利要求10所述的功率晶体管装置,其中所述功率晶体管装置包括高电子迁移率晶体管HEMT。
14.根据权利要求10所述的功率晶体管装置,其中所述顶盖层的厚度为3nm至50nm。
15.根据权利要求10所述的功率晶体管装置,其中所述顶盖层包括沉积族IIIA-N三层堆叠,包含夹在第一GaN层与第二GaN层之间的AlGaN层,其中所述第一GaN层和所述第二GaN层均具有1x 1015cm-3与1x 1018cm-3之间的掺杂浓度。
16.根据权利要求10所述的功率晶体管装置,其中所述第一族IIIA-N缓冲层包括AlN上的GaN,且其中所述顶盖层包括AlGaN。
17.根据权利要求10所述的功率晶体管装置,其中所述功率晶体管装置包含均在所述第一族IIIA-N缓冲层上的至少一个增强型高电子迁移率晶体管HEMT和至少一个耗尽型HEMT。
CN201680064897.1A 2015-12-28 2016-12-28 用于族iiia-n装置的非蚀刻性气体冷却外延堆叠 Active CN108352324B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/981,348 US10529561B2 (en) 2015-12-28 2015-12-28 Method of fabricating non-etch gas cooled epitaxial stack for group IIIA-N devices
US14/981,348 2015-12-28
PCT/US2016/069051 WO2017117315A1 (en) 2015-12-28 2016-12-28 Non-etch gas cooled epitaxial stack for group iiia-n devices

Publications (2)

Publication Number Publication Date
CN108352324A true CN108352324A (zh) 2018-07-31
CN108352324B CN108352324B (zh) 2022-08-09

Family

ID=59086639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680064897.1A Active CN108352324B (zh) 2015-12-28 2016-12-28 用于族iiia-n装置的非蚀刻性气体冷却外延堆叠

Country Status (5)

Country Link
US (1) US10529561B2 (zh)
EP (1) EP3398203A4 (zh)
JP (1) JP7068676B2 (zh)
CN (1) CN108352324B (zh)
WO (1) WO2017117315A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190288089A9 (en) * 2015-12-28 2019-09-19 Texas Instruments Incorporated Methods for transistor epitaxial stack fabrication
KR102330907B1 (ko) * 2017-07-20 2021-11-25 스웨간 에이비 고 전자 이동도 트랜지스터를 위한 이종구조체 및 이를 제조하는 방법
CN108417488B (zh) * 2018-03-15 2021-04-06 吉林大学 一种复合绝缘结构、晶体管以及复合绝缘结构和晶体管的制作方法
US11742390B2 (en) 2020-10-30 2023-08-29 Texas Instruments Incorporated Electronic device with gallium nitride transistors and method of making same
CN113638043B (zh) * 2021-08-16 2022-06-03 季华实验室 外延炉吹扫冷却系统、方法、装置、电子设备及存储介质

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990495A (en) * 1995-08-25 1999-11-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method for manufacturing the same
CN1290044A (zh) * 1999-09-28 2001-04-04 晶元光电股份有限公司 半导体的制造方法
JP2001320084A (ja) * 2000-03-02 2001-11-16 Ricoh Co Ltd Iii族窒化物半導体およびその作製方法および半導体装置
JP2002164571A (ja) * 2000-11-22 2002-06-07 Otts:Kk 窒化ガリウム系化合物半導体およびその製造方法
JP2002175994A (ja) * 2000-12-08 2002-06-21 Otts:Kk 窒化ガリウム系化合物半導体の製造方法
JP2005340762A (ja) * 2004-04-28 2005-12-08 Showa Denko Kk Iii族窒化物半導体発光素子
US20060138446A1 (en) * 2003-09-03 2006-06-29 Epivalley Co., Ltd. Algainn based optical device and fabrication method thereof
US20060261371A1 (en) * 2005-05-19 2006-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method thereof
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
JP2007189028A (ja) * 2006-01-12 2007-07-26 Hitachi Cable Ltd p型窒化ガリウム系半導体の製造方法及びAlGaInN系発光素子の製造方法
CN101095233A (zh) * 2004-12-30 2007-12-26 皇家飞利浦电子股份有限公司 增强-耗尽型半导体结构及其制造方法
CN101359710A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种绿光发光二极管的制造方法
US20100244087A1 (en) * 2007-11-21 2010-09-30 Mitsubishi Chemical Corporation Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element
US20110081771A1 (en) * 2009-10-07 2011-04-07 Applied Materials, Inc. Multichamber split processes for led manufacturing
US20110169138A1 (en) * 2009-11-03 2011-07-14 The Regents Of The University Of California TECHNIQUES FOR ACHIEVING LOW RESISTANCE CONTACTS TO NONPOLAR AND SEMIPOLAR P-TYPE (Al,Ga,In)N
CN102460739A (zh) * 2009-06-05 2012-05-16 加利福尼亚大学董事会 长波长非极性及半极性(Al,Ga,In)N基激光二极管
US20120211759A1 (en) * 2011-02-18 2012-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method to reduce wafer warp for gallium nitride on silicon wafer
US20120295418A1 (en) * 2011-05-20 2012-11-22 Yuriy Melnik Methods for improved growth of group iii nitride buffer layers
US20130001586A1 (en) * 2011-06-27 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Semiconductor substrate and method of manufacturing
US20130043442A1 (en) * 2011-08-17 2013-02-21 Hitachi Cable, Ltd. Metal chloride gas generator, hydride vapor phase epitaxy growth apparatus, and nitride semiconductor template
CN102956773A (zh) * 2011-08-22 2013-03-06 日立电线株式会社 氮化物半导体模板及发光二极管
JP2013074209A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 半導体装置の製造方法及び半導体装置
CN103227191A (zh) * 2012-01-25 2013-07-31 日立电线株式会社 氮化物半导体外延晶片以及场效应型氮化物晶体管
CN104701364A (zh) * 2015-02-04 2015-06-10 厦门市三安集成电路有限公司 一种氮化镓基场效应晶体管及其制备方法
CN104716241A (zh) * 2015-03-16 2015-06-17 映瑞光电科技(上海)有限公司 一种led结构及其制作方法
US20150279658A1 (en) * 2014-03-26 2015-10-01 Sumitomo Electric Industries, Ltd. Method of growing nitride semiconductor device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
US6495867B1 (en) 2000-07-26 2002-12-17 Axt, Inc. InGaN/AlGaN/GaN multilayer buffer for growth of GaN on sapphire
US20020157596A1 (en) * 2001-04-30 2002-10-31 Stockman Stephen A. Forming low resistivity p-type gallium nitride
US8435879B2 (en) * 2005-12-12 2013-05-07 Kyma Technologies, Inc. Method for making group III nitride articles
JP4767020B2 (ja) * 2006-01-05 2011-09-07 パナソニック株式会社 窒化物系化合物半導体素子の製造方法
JP5311765B2 (ja) * 2006-09-15 2013-10-09 住友化学株式会社 半導体エピタキシャル結晶基板およびその製造方法
US8847203B2 (en) 2009-11-04 2014-09-30 Dowa Electronics Materials Co, Ltd. Group III nitride epitaxial laminate substrate
US8541817B2 (en) 2009-11-06 2013-09-24 Nitek, Inc. Multilayer barrier III-nitride transistor for high voltage electronics
JP5558454B2 (ja) * 2011-11-25 2014-07-23 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US9583574B2 (en) 2012-09-28 2017-02-28 Intel Corporation Epitaxial buffer layers for group III-N transistors on silicon substrates
EP3708699A1 (en) 2013-02-15 2020-09-16 AZUR SPACE Solar Power GmbH P-d0ping of group-i i i-nitride buffer later structure on a heterosubstrate
JP6392498B2 (ja) * 2013-03-29 2018-09-19 富士通株式会社 化合物半導体装置及びその製造方法
JP2015192026A (ja) * 2014-03-28 2015-11-02 住友電気工業株式会社 半導体装置の製造方法
JP2016171196A (ja) * 2015-03-12 2016-09-23 株式会社東芝 半導体装置の製造方法

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990495A (en) * 1995-08-25 1999-11-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method for manufacturing the same
CN1290044A (zh) * 1999-09-28 2001-04-04 晶元光电股份有限公司 半导体的制造方法
JP2001320084A (ja) * 2000-03-02 2001-11-16 Ricoh Co Ltd Iii族窒化物半導体およびその作製方法および半導体装置
JP2002164571A (ja) * 2000-11-22 2002-06-07 Otts:Kk 窒化ガリウム系化合物半導体およびその製造方法
JP2002175994A (ja) * 2000-12-08 2002-06-21 Otts:Kk 窒化ガリウム系化合物半導体の製造方法
US20060138446A1 (en) * 2003-09-03 2006-06-29 Epivalley Co., Ltd. Algainn based optical device and fabrication method thereof
JP2005340762A (ja) * 2004-04-28 2005-12-08 Showa Denko Kk Iii族窒化物半導体発光素子
CN101095233A (zh) * 2004-12-30 2007-12-26 皇家飞利浦电子股份有限公司 增强-耗尽型半导体结构及其制造方法
US20060261371A1 (en) * 2005-05-19 2006-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method thereof
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
JP2007189028A (ja) * 2006-01-12 2007-07-26 Hitachi Cable Ltd p型窒化ガリウム系半導体の製造方法及びAlGaInN系発光素子の製造方法
US20100244087A1 (en) * 2007-11-21 2010-09-30 Mitsubishi Chemical Corporation Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element
CN101359710A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种绿光发光二极管的制造方法
CN102460739A (zh) * 2009-06-05 2012-05-16 加利福尼亚大学董事会 长波长非极性及半极性(Al,Ga,In)N基激光二极管
US20110081771A1 (en) * 2009-10-07 2011-04-07 Applied Materials, Inc. Multichamber split processes for led manufacturing
US20110169138A1 (en) * 2009-11-03 2011-07-14 The Regents Of The University Of California TECHNIQUES FOR ACHIEVING LOW RESISTANCE CONTACTS TO NONPOLAR AND SEMIPOLAR P-TYPE (Al,Ga,In)N
US20120211759A1 (en) * 2011-02-18 2012-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method to reduce wafer warp for gallium nitride on silicon wafer
US20120295418A1 (en) * 2011-05-20 2012-11-22 Yuriy Melnik Methods for improved growth of group iii nitride buffer layers
US20130001586A1 (en) * 2011-06-27 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Semiconductor substrate and method of manufacturing
US20130043442A1 (en) * 2011-08-17 2013-02-21 Hitachi Cable, Ltd. Metal chloride gas generator, hydride vapor phase epitaxy growth apparatus, and nitride semiconductor template
CN102956773A (zh) * 2011-08-22 2013-03-06 日立电线株式会社 氮化物半导体模板及发光二极管
JP2013074209A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 半導体装置の製造方法及び半導体装置
CN103077890A (zh) * 2011-09-28 2013-05-01 富士通株式会社 半导体器件和制造方法
CN103227191A (zh) * 2012-01-25 2013-07-31 日立电线株式会社 氮化物半导体外延晶片以及场效应型氮化物晶体管
US20150279658A1 (en) * 2014-03-26 2015-10-01 Sumitomo Electric Industries, Ltd. Method of growing nitride semiconductor device
CN104701364A (zh) * 2015-02-04 2015-06-10 厦门市三安集成电路有限公司 一种氮化镓基场效应晶体管及其制备方法
CN104716241A (zh) * 2015-03-16 2015-06-17 映瑞光电科技(上海)有限公司 一种led结构及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓旭光: "蓝宝石,Si和SiC衬底上GaN和AlGaN的外延研究", 《硕士学位论文电子期刊》, no. 03, 15 March 2014 (2014-03-15), pages 135 - 118 *

Also Published As

Publication number Publication date
CN108352324B (zh) 2022-08-09
EP3398203A1 (en) 2018-11-07
US10529561B2 (en) 2020-01-07
WO2017117315A1 (en) 2017-07-06
US20170186859A1 (en) 2017-06-29
JP2019500755A (ja) 2019-01-10
JP7068676B2 (ja) 2022-05-17
EP3398203A4 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
He et al. Recent advances in GaN‐based power HEMT devices
US11594413B2 (en) Semiconductor structure having sets of III-V compound layers and method of forming
CN102365763B (zh) GaN缓冲层中的掺杂剂扩散调制
CN108352324A (zh) 用于族iiia-n装置的非蚀刻性气体冷却外延堆叠
TWI543380B (zh) 具有包含經氧化之鎳之閘極的半導體裝置及其相關製造方法
US8188459B2 (en) Devices based on SI/nitride structures
US9553182B2 (en) Circuit structure, transistor and semiconductor device
US20090085065A1 (en) Method to fabricate iii-n semiconductor devices on the n-face of layers which are grown in the iii-face direction using wafer bonding and substrate removal
US9847223B2 (en) Buffer stack for group IIIA-N devices
JP5266679B2 (ja) Iii族窒化物電子デバイス
CN102651385A (zh) 化合物半导体器件及其制造方法
US20220416070A1 (en) High electron mobility transistor and method of manufacturing the same
Han et al. Normally-Off MOS-HFET on AlGaN/GaN-on-Si (110) Grown by NH 3 MBE
US11424355B2 (en) Method of making a high power transistor with gate oxide barriers
JP5648307B2 (ja) 縦型AlGaN/GaN−HEMTおよびその製造方法
US20230031662A1 (en) Iii nitride semiconductor wafers
JP6156038B2 (ja) 半導体装置の製造方法
TWI730516B (zh) 氮化物半導體基板以及氮化物半導體裝置
TW202234705A (zh) 包括摻雜閘極電極之電子裝置及其形成程序
KR20220028902A (ko) 이종접합 전계효과 트랜지스터
Pang Development of high-performance gan-based power transistors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant