CN108329365B - 甜菊醇糖苷、其组合物以及其纯化 - Google Patents

甜菊醇糖苷、其组合物以及其纯化 Download PDF

Info

Publication number
CN108329365B
CN108329365B CN201810051746.3A CN201810051746A CN108329365B CN 108329365 B CN108329365 B CN 108329365B CN 201810051746 A CN201810051746 A CN 201810051746A CN 108329365 B CN108329365 B CN 108329365B
Authority
CN
China
Prior art keywords
compound
beverage
sweetness
consumable
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810051746.3A
Other languages
English (en)
Other versions
CN108329365A (zh
Inventor
因德拉·普拉卡什
文卡塔·赛·普拉卡什·查图维杜拉
胡韦纳尔·希吉罗·希吉罗
马科西安·阿韦季克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PureCircle Sdn Bhd
Coca Cola Co
Original Assignee
PureCircle Sdn Bhd
Coca Cola Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PureCircle Sdn Bhd, Coca Cola Co filed Critical PureCircle Sdn Bhd
Publication of CN108329365A publication Critical patent/CN108329365A/zh
Application granted granted Critical
Publication of CN108329365B publication Critical patent/CN108329365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • C07H15/256Polyterpene radicals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/10Chewing gum characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/08Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings

Abstract

本发明总体上涉及甜菊醇糖苷、连同包含此类甜菊醇糖苷的组合物以及其纯化。本发明进一步延伸到制备和纯化此类甜菊醇糖苷的方法以及用于使用这些甜菊醇糖苷和组合物增强消费品的风味或甜度的方法。本发明延伸到包含甜菊醇糖苷的消费品,其中此类甜菊醇糖苷是以处于或低于它们的甜度识别阈值的浓度存在,并且其中此类甜菊醇糖苷增强了该消费品的甜度。

Description

甜菊醇糖苷、其组合物以及其纯化
本申请是申请日为2014年3月18日,申请号为201480015726.0,发明名称为“甜菊醇糖苷、其组合物以及其纯化”的申请的分案申请。
相关申请的交叉引用
本申请要求2013年3月15日提交的美国临时申请号61/788,633,以及2013年8月20日提交的美国临时申请号61/867,832的权益,两者以其全文通过引用结合在此。
发明领域
本发明总体上涉及甜菊醇糖苷、连同包含此类甜菊醇糖苷的组合物。本发明进一步延伸到制备和纯化此类甜菊醇糖苷的方法、用于制备包含此类甜菊醇糖苷的组合物(例如,消费品)的方法以及用于使用甜菊醇糖苷和包含甜菊醇糖苷的组合物增强消费品的风味或甜度的方法。
发明背景
天然有热量的糖,如蔗糖、果糖和葡萄糖被用来给饮料、食品、药物、以及口腔卫生/化妆品产品提供令人愉快的味道。特别地,蔗糖赋予了为消费者所偏爱的味道。虽然蔗糖提供了优越的甜度特征,但是它是有热量的。已经引入无热量或低热量的甜味剂以满足消费者需求。然而,在此类内的甜味剂以继续阻挠消费者的方式不同于天然热量型的糖。在味道基础上,无热量或低热量的甜味剂展示了不同于糖的时间特征曲线、最大响应、风味特征曲线、口感、和/或适应行为。特别地,无热量或低热量的甜味剂展示了延迟的甜味起始、持久的甜余味、苦味、金属味、涩味、清凉味(cooling taste)和/或像甘草的味道。基于来源,许多无热量或低热量的甜味剂是合成的化学品。对尝起来像蔗糖的天然无热量或低热量的甜味剂的仍然希望很高。
甜叶菊(Stevia rebaudiana Bertoni)是天然生长在南美洲的某些地区的多年生紫莞科(Asteraceae)(菊科(Compositae))灌木。其叶已在巴拉圭和巴西传统地使用了数百年来甜味化当地的茶和药物。这种植物在日本、新加坡、马来西亚、韩国、中国、以色列、印度、巴西、澳大利亚和巴拉商业化种植。
植物的叶含有以范围从约10%至20%的总干重的量含有二萜苷的混合物。这些二萜苷是比糖甜约150至450倍。结构上,二萜苷的特征在于单个碱基、甜菊醇,并且不同在于在C13和C19位置存在碳水化合物残基。典型地,基于干重,在甜叶菊的叶中发现的四种主要的甜菊醇糖苷是杜克苷A(0.3%)、莱苞迪苷C(0.6%-1.0%)、莱苞迪苷A(3.8%)和甜菊苷(9.1%)。在甜叶菊提取物中识别的其他糖苷包括莱苞迪苷B、D、E、以及F、甜菊双糖苷和甜茶苷。在这些中,仅甜菊苷和莱苞迪苷A是在商业规模可供使用的。
甜菊醇糖苷的使用至今已被某些不希望的味道特性(包括甘草的味道、苦味、涩味、甜余味、苦余味、甘草余味)限制,并且随浓度的增加变得更显著。这些不希望的味道属性在碳酸饮料中是特别显著的,其中糖的完全取代要求超过500mg/L的甜菊醇糖苷浓度。该水平的使用导致最终产品的味道的显著劣化。
因此,对于开发天然的降低热量的或无热量的甜味剂仍然存在一种需要,这种甜味剂提供类似于蔗糖的时间和风味特征。
对于从甜叶菊纯化甜菊醇糖苷的方法仍然存在进一步的需要。
发明概述
本发明总体上涉及甜菊醇糖苷以及包含此类甜菊醇糖苷的组合物,连同制备和纯化此类甜菊醇糖苷的方法,制备包含此类甜菊醇糖苷的组合物(例如,消费品)的方法以及用于使用这些甜菊醇糖苷和组合物增强消费品的风味或甜度的方法。
本申请提供了以下内容:
1).一种具有式(1)的化合物:
Figure GDA0003476432920000031
其中R1是独立地选自下组,该组由以下各项组成:一种C-连接的单糖;一种O-连接的单糖;一种C-连接的低聚糖;一种O-连接的低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基;取代的或未取代的烷氧基烷基;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;C1-C6直链烷基;C1-C6支链烷基;C2-C6烯基;-NH2;-NHR2;-NR2;-OSO3H;-OSO2R;-OC(O)R;-OCO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-OPO3H;并且
R是烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、取代的芳基、杂芳基、取代的杂芳基,或当附接到一个氮原子上时,两个相邻的R基团可以组合以形成一个5至7元环;
其中x是一个单键或双键;
其中当x是一个单键时,R2和R3作为整体形成一个羰基或烯烃;
其中当x是一个双键时,或者R2或者R3是不存在的;并且
其中,R2和R3是独立地选自下组,该组由以下各项组成:氢;羟基;羟烷基;卤素;氨基,巯基,氰基,C1-C6直链烷基,C1-C6支链烷基,C2-C6烯基,C3-C8环烷基,杂环,杂芳基和芳基;C1-C6烷氧基;芳基;杂芳基;杂环,其中所有可以任选地被独立地选自下组的一个或多个取代,该组由以下各项组成:卤素、烷基、低级烷基、酰基、氧代基、羟基、羟烷基、烷氧基、杂环、杂芳基、氰基、氨基、氨基烷基、以及羧基;
其中R4是独立地选自下组,该组由以下各项组成:单糖;低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的烯基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基烷基;取代的或未取代的烷基胺;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;-SO3H;-SO2R;-C(O)R;-CO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-PO3H。
2).如1)所述的化合物,其中R1和/或R4是一种低聚糖。
3).如1)所述的化合物,其中R1和/或R4中的任一个是一种包含从两个至五个糖的低聚糖。
4).如1)所述的化合物,其中R1和/或R4是一种包含单糖的低聚糖,该单糖选自下组,该组由以下各项组成:蔗糖甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
5).如1)所述的化合物,其中R1和/或R4包含一种支链或非支链的低聚糖。
6).一种具有式(1a)的化合物:
Figure GDA0003476432920000051
7).一种具有式(1b)的化合物:
Figure GDA0003476432920000061
8).一种具有式(1c)的化合物:
Figure GDA0003476432920000071
9).一种具有式(1d)的化合物:
Figure GDA0003476432920000081
10).一种具有式(1e)的化合物:
Figure GDA0003476432920000082
11).一种具有式(1f)的化合物:
Figure GDA0003476432920000091
12).一种具有式(1g)的化合物:
Figure GDA0003476432920000101
13).一种具有式(2)的化合物:
Figure GDA0003476432920000102
其中R1是独立地选自下组,该组由以下各项组成:一种C-连接的单糖;一种O-连接的单糖;一种C-连接的低聚糖;一种O-连接的低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基;取代的或未取代的烷氧基烷基;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;C1-C6直链烷基;C1-C6支链烷基;C2-C6烯基;-NH2;-NHR2;-NR2;-OSO3H;-OSO2R;-OC(O)R;-OCO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-OPO3H;并且
R是烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、取代的芳基、杂芳基、取代的杂芳基,或当附接到一个氮原子上时,两个相邻的R基团可以组合以形成一个5至7元环;
其中x是一个单键或双键;
其中当x是一个单键时,R2和R3作为整体形成一个羰基或烯烃;
其中当x是一个双键时,或者R2或者R3是不存在的;并且
其中,R2和R3是独立地选自下组,该组由以下各项组成:氢;羟基;羟烷基;卤素;氨基,巯基,氰基,C1-C6直链烷基,C1-C6支链烷基,C2-C6烯基,C3-C8环烷基,杂环,杂芳基和芳基;C1-C6烷氧基;芳基;杂芳基;杂环,其中所有可以任选地被独立地选自下组的一个或多个取代,该组由以下各项组成:卤素、烷基、低级烷基、酰基、氧代基、羟基、羟烷基、烷氧基、杂环、杂芳基、氰基、氨基、氨基烷基、以及羧基;
其中R4是独立地选自下组,该组由以下各项组成:单糖;低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的烯基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基烷基;取代的或未取代的烷基胺;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;-SO3H;-SO2R;-C(O)R;-CO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-PO3H
14).如13)所述的化合物,其中R1和/或R4是一种低聚糖。
15).如13)所述的化合物,其中R1和/或R4是一种包含从两个至五个糖的低聚糖。
16).如13)所述的化合物,其中R1和/或R4是一种包含单糖的低聚糖,该单糖选自下组,该组由以下各项组成:蔗糖甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
17).如13)所述的化合物,其中R1和/或R4包含一种支链或非支链的低聚糖。
18).一种具有式(2a)的化合物:
Figure GDA0003476432920000121
19).一种具有式(2b)的化合物:
Figure GDA0003476432920000131
20).一种具有式(2c)的化合物:
Figure GDA0003476432920000141
21).一种具有式(2d)的化合物:
Figure GDA0003476432920000151
22).一种具有式(2e)的化合物:
Figure GDA0003476432920000152
23).一种具有式(2f)的化合物:
Figure GDA0003476432920000161
24).一种具有式(2g)的化合物:
Figure GDA0003476432920000171
25).一种组合物,该组合物包含一种具有式(1)或式(2)的化合物。
26).如25)所述的组合物,进一步包含选自下组的甜菊醇糖苷,该组由以下各项组成:可商购的甜叶菊提取物、从甜叶菊植物的植物材料制备的甜菊醇糖苷、甜菊醇糖苷的另一种分离和纯化过程的副产物、甜菊苷、莱苞迪苷A、莱苞迪苷C、杜克苷A、甜茶苷、甜菊双糖苷、莱苞迪苷B、莱苞迪苷D、莱苞迪苷F、以及它们的组合。
27).如25)所述的组合物,进一步包含至少一种附加的甜味剂。
28).如27)所述的组合物,其中该至少一种附加的甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、木糖、阿拉伯糖、鼠李糖、赤藓糖醇、木糖醇、甘露醇、山梨醇、肌醇、醋磺内酯钾、阿斯巴甜、纽甜、三氯蔗糖、糖精、柚苷二氢查耳酮(NarDHC)、新橙皮苷二氧查尔酮(NDHC)、甜茶苷、罗汉果苷IV、赛门苷I、罗汉果苷V、三叶苷以及它们的组合。
29).如25)所述的组合物,进一步包含至少一种选自下组的添加剂,该组由以下各项组成:碳水化合物、多元醇、氨基酸及其相应盐、聚氨基酸及其相应盐、糖酸及其相应盐、核苷酸、有机酸、无机酸、有机盐包括有机酸盐和有机碱盐、无机盐、苦味化合物、调味剂和调味成分、涩味化合物、蛋白质或蛋白质水解物、表面活性剂、乳化剂、类黄酮、醇、聚合物以及其组合。
30).如25)所述的组合物,进一步包含至少一种选自下组的功能性成分,该组由以下各项组成:皂苷、抗氧化剂、膳食纤维来源、脂肪酸、维生素、葡糖胺、矿物质、防腐剂、水合剂、益生菌、益生元、体重管理剂、骨质疏松症管理剂、植物雌激素、长链脂肪族饱和伯醇、植物甾醇以及其组合。
31).一种组合物,该组合物包含一种具有式(1)的化合物和至少一种调味成分,其中该具有式(1)的化合物的浓度是低于该化合物的风味识别阈值浓度。
32).一种组合物,该组合物包含一种具有式(2)的化合物和至少一种调味成分,其中该具有式(2)的化合物的浓度是低于该化合物的风味识别阈值浓度。
33).一种用于制备风味增强的消费品的方法,该方法包括提供包含至少一种调味成分的一种消费品并且将一种具有式(1)的化合物添加到该消费品中以提供一种风味增强的消费品,其中该具有式(1)的化合物是以低于该化合物的风味识别阈值浓度的量存在于该风味增强的消费品中。
34).一种用于制备风味增强的消费品的方法,该方法包括提供包含至少一种调味成分的一种消费品并且将一种具有式(2)的化合物添加到该消费品中以提供一种风味增强的消费品,其中该化合物是以低于该化合物的风味识别阈值浓度的量存在于该风味增强的消费品中。
35).如33)或34)所述的方法,其中该消费品是一种饮料。
36).一种用于增强饮料的风味的方法,该方法包括提供包含至少一种调味成分的一种饮料并且将一种具有式(1)的化合物添加到该饮料中以提供一种风味增强的饮料,其中该化合物是以低于风味识别阈值浓度的浓度存在于该风味增强的饮料中。
37).一种用于增强饮料的风味的方法,该方法包括提供包含至少一种调味成分的一种饮料并且一种具有式(2)的化合物到该饮料中以提供一种风味增强的饮料,其中该化合物是以低于该化合物的风味识别阈值浓度的浓度存在于该风味增强的饮料中。
38).一种消费品,该消费品包含至少一种甜味剂和一种具有式(1)的化合物,
其中该至少一种甜味剂是以高于其甜度识别阈值的浓度存在,
其中一种具有式(1)的化合物是以处于或低于其甜度识别阈值的浓度存在,并且
其中一种具有式(1)的化合物使该消费品的甜度增强了一定量,该量是大于含有相同浓度的具有式(1)的化合物在不存在该至少一种甜味剂的情况下的一种溶液的可检测甜度和/或该具有式(1)的化合物使该消费品的甜度增强了至少约2.0%蔗糖等效值。
39).如38)所述的消费品,其中该具有式(1)的化合物是选自下组,该组由以下各项组成:化合物(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)以及它们的组合。
40).如39)所述的消费品,其中该具有式(1)的化合物是化合物(2f)。
41).如39)所述的消费品,其中该具有式(1)的化合物是化合物(2g)。
42).如38)-41)中任一项所述的消费品,其中该具有式(1)的化合物是以约30ppm的浓度存在。
43).一种消费品,该消费品包含至少一种甜味剂和一种具有式(2)的化合物,
其中该至少一种甜味剂是以高于其甜度识别阈值的浓度存在,
其中一种具有式(2)的化合物是以处于或低于其甜度识别阈值的浓度存在,并且
其中一种具有式(2)的化合物使该消费品的甜度增强了一定量,该量是大于含有相同浓度的具有式(2)的化合物在不存在该至少一种甜味剂的情况下的一种溶液的可检测甜度和/或该具有式(2)的化合物使该消费品的甜度增强了至少约2.0%蔗糖等效值。
44).如43)所述的消费品,其中该具有式(2)的化合物是选自下组,该组由以下各项组成:化合物(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)以及它们的组合。
45).如44)所述的消费品,其中该具有式(2)的化合物是化合物(2f)。
46).如44)所述的消费品,其中该具有式(2)的化合物是化合物(2g)。
47).如43)-47)中任一项所述的消费品,其中该具有式(2)的化合物是以约30ppm的浓度存在。
48).如43)-47)中任一项所述的消费品,其中具有式(2)的化合物使该消费品的甜度增强了从约2.0%至约3.0%蔗糖等效值。
49).如38)-46)中任一项所述的消费品,其中该甜味剂是选自下组,该组由以下各项组成:天然甜味剂、合成甜味剂以及它们的组合。
50).如49)所述的消费品,其中该甜味剂是一种碳水化合物甜味剂。
51).如50)所述的消费品,其中该碳水化合物甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、赤藓糖醇、麦芽糖醇、乳糖醇、山梨糖醇、甘露醇、木糖醇、塔格糖、海藻糖、稀有糖糖浆、半乳糖、鼠李糖、环糊精、核酮糖、苏糖、阿拉伯糖、木糖、来苏糖、阿洛糖、阿卓糖、甘露糖、艾杜糖、乳糖、麦芽糖、转化糖、异海藻糖、新海藻糖、帕拉金糖、异麦芽酮糖、赤藓糖、脱氧核糖、古洛糖、艾杜糖、塔罗糖、赤藓酮糖、木酮糖、阿洛酮糖、松二糖、纤维二糖、葡萄糖胺、甘露糖胺、岩藻糖、墨角藻糖、葡糖醛酸、葡萄糖酸、葡萄糖酸内酯、阿比可糖、半乳糖胺、低聚木糖、龙胆低聚糖、半乳糖低聚糖、山梨糖、酮丙糖、醛丙醣、黑曲霉低聚糖、低聚果糖、麦芽四糖、麦芽三醇、四糖、聚糖低聚糖、麦芽低聚糖、糊精、乳果糖、蜜二糖、棉子糖、鼠李糖、核糖、异构化液体糖、偶联糖、大豆低聚糖、葡萄糖糖浆以及它们的组合。
52).如38)-48)中任一项所述的消费品,其中该甜味剂是选自下组,该组由以下各项组成:D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆以及它们的组合。
53).如38)-48)中任一项所述的消费品,其中该消费品是选自下组,该组由以下各项组成:药物组合物、可食用凝胶混合物和组合物、牙科组合物、食品、甜食、调味品、口香糖、谷物组合物、焙烤食品、乳制品产品、桌面甜味剂组合物、饮料以及饮料产品。
54).如38)-48)中任一项所述的消费品,其中该消费品是一种饮料。
55).一种用于增强消费品的甜度的方法,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法包括将以处于或低于其甜度识别阈值的量的一种具有式(1)的化合物添加到该消费品中,其中
该具有式(1)的化合物使该消费品的甜度增强了一定量,该量是大于含有相同浓度的该具有式(1)的化合物的一种溶液的可检测甜度和/或使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。
56).如55)所述的方法,其中该具有式(1)的化合物是选自下组,该组由以下各项组成:化合物(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)以及它们的组合。
57).如56)所述的方法,其中该具有式(1)的化合物是化合物(2f)。
58).如56)所述的方法,其中该具有式(1)的化合物是化合物(2g)。
59).如55)-58)中任一项所述的方法,其中该具有式(1)的化合物是以约30ppm的浓度存在。
60).如55)-58)中任一项所述的方法,其中具有式(1)的化合物使该消费品的甜度增强了从约2.0%至约3.0%蔗糖等效值。
61).一种用于增强消费品的甜度的方法,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法包括将以处于或低于其甜度识别阈值的量的一种具有式(2)的化合物添加到该消费品中,其中
该具有式(2)的化合物使该消费品的甜度增强了一定量,该量是大于含有相同浓度的该具有式(2)的化合物的一种溶液的可检测甜度和/或使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。
62).如61)所述的方法,其中该具有式(2)的化合物是选自下组,该组由以下各项组成:化合物(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)以及它们的组合。
63).如62)所述的方法,其中该具有式(2)的化合物是化合物(2f)。
64).如62)所述的方法,其中该具有式(2)的化合物是化合物(2g)。
65).如61)-64)中任一项所述的方法,其中该具有式(2)的化合物是以约30ppm的浓度存在。
66).如61)-64)中任一项所述的方法,其中具有式(2)的化合物使该消费品的甜度增强了从约2.0%至约3.0%蔗糖等效值。
67).如55)-66)中任一项所述的方法,其中该甜味剂是选自下组,该组由以下各项组成:天然甜味剂、合成甜味剂以及它们的组合。
68).如67)所述的方法,其中该甜味剂是一种碳水化合物甜味剂。
69).如67)所述的方法,其中该碳水化合物甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、赤藓糖醇、麦芽糖醇、乳糖醇、山梨糖醇、甘露醇、木糖醇、塔格糖、海藻糖、稀有糖糖浆、半乳糖、鼠李糖、环糊精、核酮糖、苏糖、阿拉伯糖、木糖、来苏糖、阿洛糖、阿卓糖、甘露糖、艾杜糖、乳糖、麦芽糖、转化糖、异海藻糖、新海藻糖、帕拉金糖、异麦芽酮糖、赤藓糖、脱氧核糖、古洛糖、艾杜糖、塔罗糖、赤藓酮糖、木酮糖、阿洛酮糖、松二糖、纤维二糖、葡萄糖胺、甘露糖胺、岩藻糖、墨角藻糖、葡糖醛酸、葡萄糖酸、葡萄糖酸内酯、阿比可糖、半乳糖胺、低聚木糖、龙胆低聚糖、半乳糖低聚糖、山梨糖、酮丙糖、醛丙醣、黑曲霉低聚糖、低聚果糖、麦芽四糖、麦芽三醇、四糖、甘露低聚糖、麦芽低聚糖、糊精、乳果糖、蜜二糖、棉子糖、鼠李糖、核糖、异构化液体糖、偶联糖、大豆低聚糖、葡萄糖糖浆以及它们的组合。
70).如55)-66)中任一项所述的方法,其中该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆以及它们的组合。
71).如55)-66)中任一项所述的方法,其中该甜味剂是选自下组,该组由以下各项组成:D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆以及它们的组合。
72).如55)-66)中任一项所述的方法,其中该消费品是选自下组,该组由以下各项组成:药物组合物、可食用凝胶混合物和组合物、牙科组合物、食品、甜食、调味品、口香糖、谷物组合物、焙烤食品、乳制品产品、桌面甜味剂组合物、饮料以及饮料产品。
73).如55)-66)中任一项所述的方法,其中该消费品是一种饮料。
74).一种制备具有式(1)的化合物的方法,该方法包括:
(a)使一种包含莱苞迪苷X的溶液与一种无机酸接触;
(b)加热该溶液持续足够的时间以提供一种具有式(1)的化合物;并且
(c)从该溶液中回收该具有式(1)的化合物。
75).如74)所述的方法,其中该具有式(1)的化合物是选自下组,该组由以下各项组成:(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)、(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)以及它们的组合。
76).如74)所述的方法,其中该无机酸是磷酸。
77).如74)所述的方法,其中将该溶液加热至在约50℃与约90℃之间的温度。
78).一种用于纯化具有式(1)的化合物的方法,该方法包括:
(a)使用一种洗脱液使包含该具有式(1)的化合物的一种溶液通过制备型HPLC;并且
(b)洗脱出包含该具有式(1)的化合物的部分。
79).如78)所述的方法,其中该步骤(b)的部分进一步包含其他甜菊醇糖苷。
80).如78)所述的方法,进一步包括从该洗脱的部分中去除溶剂。
81).如78)所述的方法,其中在一种代表性样品上进行分析HPLC方案以确定一种代表性制备型HPLC方案。
82).如78)所述的方法,其中该洗脱液是选自下组,该组由以下各项组成:水、乙腈、甲醇、2-丙醇、乙酸乙酯、二甲基甲酰胺、二甲基硫醚、吡啶、三乙胺、甲酸、三氟乙酸、乙酸、含有乙酸铵的一种水溶液、七氟丁酸、以及它们的任何组合。
83).如78)所述的方法,其中该通过制备型HPLC的纯化是梯度进行的。
84).如78)所述的方法,进一步包括在洗脱该具有式(1)的化合物的溶液之前从该HPLC柱去除杂质。
85).如78)所述的方法,其中该方法重复2、3或4次。
86).一种通过如78)所述的方法制备的具有式(1)的化合物。
87).一种组合物,该组合物包含一种通过如78)所述的方法制备的具有式(1)的化合物。
在一个方面中,本发明是一种具有式(1)的甜菊醇糖苷:
Figure GDA0003476432920000251
其中R1是独立地选自下组,该组由以下各项组成:一种C-连接的单糖;一种O-连接的单糖;一种C-连接的低聚糖;一种O-连接的低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基;取代的或未取代的烷氧基烷基;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;C1-C6直链烷基;C1-C6支链烷基;C2-C6烯基;-NH2;-NHR2;-NR2;-OSO3H;-OSO2R;-OC(O)R;-OCO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-OPO3H;并且
R是烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、取代的芳基、杂芳基、取代的杂芳基,或当附接到一个氮原子上时,两个相邻的R基团可以组合以形成一个5至7元环;
其中x是一个单键或双键;
其中当x是一个单键时,R2和R3作为整体形成一个羰基或烯烃;
其中当x是一个双键时,或者R2或者R3是不存在的;并且
其中,R2和R3是独立地选自下组,该组由以下各项组成:氢;羟基;羟烷基;卤素;氨基,巯基,氰基,C1-C6直链烷基,C1-C6支链烷基,C2-C6烯基,C3-C8环烷基,杂环,杂芳基和芳基;C1-C6烷氧基;芳基;杂芳基;杂环,其中所有可以任选地被独立地选自下组的一个或多个取代,该组由以下各项组成:卤素、烷基、低级烷基、酰基、氧代基(oxo)、羟基、羟烷基、烷氧基、杂环、杂芳基、氰基、氨基、氨基烷基、以及羧基;
其中R4是独立地选自下组,该组由以下各项组成:单糖;低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的烯基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基烷基;取代的或未取代的烷基胺;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;-SO3H;-SO2R;-C(O)R;-CO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-PO3H。
在一个更具体的实施例中,x是一个单键并且R2和R3作为整体形成一种烯烃或一个羰基。
在另一个具体的实施例中,x是一个单键并且R2和R3是选自C1-C6直链烷基和羟基。
在另一个具体的实施例中,R1和R4各自独立地选自氢、甲基和一种O-连接的低聚糖,其中该低聚糖包含从两个到五个糖。
在其他实施例中,R1和R4各自独立地是一种包含单糖的低聚糖,该单糖选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖(sedoheltulose)、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖(sialose)。
在一个更具体的实施例中,本发明是一种甜菊醇糖苷,该甜菊醇糖苷是选自下组,该组由以下各项组成:(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、以及(1g):
Figure GDA0003476432920000271
Figure GDA0003476432920000281
Figure GDA0003476432920000291
Figure GDA0003476432920000301
在另一个实施例中,本发明是一种具有式(2)的甜菊醇糖苷:
Figure GDA0003476432920000302
其中R1、R2、R3、以及R4保持如上所定义。
在一个更具体的实施例中,x是一个单键并且R2和R3作为整体形成一种烯烃或一个羰基。
在另一个具体的实施例中,x是一个单键并且R2和R3是选自C1-C6直链烷基和羟基。
在另一个具体的实施例中,R1和R4各自独立地选自氢、甲基和一种O-连接的低聚糖,其中该低聚糖包含从两个到五个糖。
在另一个具体的实施例中,R1和R4各自独立地选自氢、甲基和一种O-连接的低聚糖,其中该低聚糖包含从两个到五个糖。
在其他实施例中,R1和R4各自独立地是一种包含单糖的低聚糖,该单糖选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
在一个具体的实施例中,该低聚糖包含一种或多种葡萄糖。
在更具体的实施例中,本发明是一种甜菊醇糖苷,该甜菊醇糖苷是选自(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、以及(2g):
Figure GDA0003476432920000321
Figure GDA0003476432920000331
Figure GDA0003476432920000341
Figure GDA0003476432920000351
Figure GDA0003476432920000361
Figure GDA0003476432920000362
以及
Figure GDA0003476432920000371
甜菊醇糖苷(2f)也被称为莱苞迪苷N并且甜菊醇糖苷(2g)也被称为莱苞迪苷O。
在另一个方面中,本发明是一种包含具有式(1)的化合物的组合物。
在一个实施例中,本发明是一种包含具有式(1)的化合物的甜味剂组合物。
在另一个实施例中,本发明是一种风味增强组合物,该风味增强组合物包含一种具有式(1)的化合物,其中当将该风味增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效地提供处于或低于该具有式(1)的化合物的阈值风味识别水平的浓度的量存在。在一个具体的实施例中,当将该风味增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供低于该具有式(1)的化合物的阈值风味识别水平的浓度的量存在。在一个实施例中,当将该风味增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供比该具有式(1)的化合物的阈值风味识别水平低至少约1%、至少约5%、至少约10%、至少约15%、至少约20%或至少约25%或更低的浓度的量存在。
在又另一个实施例中,本发明是一种甜度增强组合物,该甜度增强组合物包含一种具有式(1)的化合物,其中当将该甜度增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供处于或低于该具有式(1)的化合物的阈值甜度识别水平的浓度的量存在。在一个具体的实施例中,当将该甜度增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供低于该具有式(1)的化合物的阈值甜度识别水平的浓度的量存在。在一个实施例中,当将该甜度增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供比该具有式(1)的化合物的阈值甜度识别水平低至少约1%、至少约5%、至少约10%、至少约15%、至少约20%或至少约25%或更低的浓度的量存在。
在又另一个实施例中,本发明是一种包含具有式(1)的化合物的消费品。合适的消费品包括,但不限于,基于液体的或干燥的消费品,例如像,药物组合物、可食用凝胶混合物和组合物、牙科组合物、食品、饮料和饮料产品。
在一个具体的实施例中,本发明是一种包含具有式(1)的化合物的饮料。在一个具体的实施例中,该具有式(1)的化合物是以高于、处于或低于该具有式(1)的化合物的阈值甜度识别浓度的浓度存在于该饮料中。
在另一个具体的实施例中,本发明是一种包含具有式1的化合物的饮料产品。在一个具体的实施例中,该具有式(1)的化合物是以高于、处于或低于该具有式(1)的化合物的阈值风味识别浓度的浓度存在于该饮料产品中。
在一个实施例中,本发明是一种消费品,该消费品包含至少一种甜味剂和一种具有式(1)的化合物,其中该至少一种甜味剂是以高于其甜度识别阀值的浓度存在于该消费品中,其中该具有式(1)的化合物是以处于或低于其甜度识别阀值的浓度存在于该消费品中,并且其中该具有式(1)的化合物使该消费品的甜度增强了一定量,该量大于含有相同浓度的该具有式(1)的化合物不存在该至少一种甜味剂的一种溶液的可检测甜度和/或该具有式(1)的化合物使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大,例如像,约2.0%(w/v)或更大。在另一个实施例中,该具有式(1)的化合物使该消费品的甜度增强了至少约2.5%蔗糖等效值。在另一个实施例中,该具有式(1)的化合物使该消费品的甜度增强了从约2.0%(w/v)至约3.0%(w/v)蔗糖等效值。
在另一个实施例中,本发明是一种消费品,该消费品包含至少一种甜味剂和一种具有式(2)的化合物,其中该至少一种甜味剂是以高于其甜度识别阀值的浓度存在于该消费品中,其中该具有式(2)的化合物是以处于或低于其甜度识别阀值的浓度存在于该消费品中,并且其中该具有式(2)的化合物使该消费品的甜度增强了一定量,该量大于含有相同浓度的该具有式(2)的化合物不存在该至少一种甜味剂的一种溶液的可检测甜度和/或该具有式(2)的化合物和/或使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大,例如像,约2.0%(w/v)或更大。在另一个实施例中,该具有式(2)的化合物使该消费品的甜度增强了至少约2.5%蔗糖等效值。在另一个实施例中,该具有式(2)的化合物使该消费品的甜度增强了从约2.0%(w/v)至约3.0%(w/v)蔗糖等效值。
在又另一个实施例中,本发明提供了一种消费品,该消费品包含至少一种甜味剂和一种选自化合物(2f)和(2g)的甜度增强剂,其中该至少一种甜味剂是以高于其甜度识别阀值的浓度存在于该消费品中,其中化合物(2f)或(2g)是以处于或低于其甜度识别阀值的浓度存在于该消费品中,并且其中化合物(2f)或(2g)使该消费品的甜度增强了一定量,该量大于含有相同浓度的化合物(2f)或(2g)不存在该至少一种甜味剂的一种溶液的可检测甜度和/或化合物(2f)或(2g)使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大,例如像,从约2.0%(w/v)至约3.0%(w/v)。在一个实施例中,化合物(2f)使该消费品的甜度增强了从约2.5%(w/v)至约3.0%(w/v)蔗糖等效值。在另一个实施例中,化合物(2g)使该消费品的甜度增强了约2.0%(w/v)。
该至少一种甜味剂可以是任何有热量的甜味剂,如碳水化合物甜味剂。也可以使用稀有糖。在一个实施例中,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆和/或它们的组合。
在一些实施例中,本发明的组合物包含一种或多种附加的甜菊醇糖苷,其中这些附加的甜菊醇糖苷是选自下组,该组由以下各项组成:可商购的甜叶菊提取物、从甜叶菊植物的植物材料(例如叶)制备的甜菊醇糖苷、甜菊醇糖苷的另一种分离和纯化过程的副产物、甜菊苷、莱苞迪苷A、莱苞迪苷C、杜克苷A、甜茶苷、甜菊双糖苷、莱苞迪苷B、莱苞迪苷D、莱苞迪苷F、以及它们的组合。
在其他实施例中,本发明的组合物包含一种或多种甜味剂或附加的甜味剂。在一个实施例中,该附加的甜味剂是一种天然甜味剂或合成甜味剂。在一个具体的实施例中,该附加的甜味剂是一种高强度甜味剂。在一个具体的实施例中,该附加的甜味剂是一种甜菊醇糖苷。
在一些实施例中,本发明的组合物包含一种或多种添加剂。在一个具体的实施例中,这些消费品、饮料和/或浓缩物组合物含有添加剂,这些添加剂包括但不限于,碳水化合物、多元醇、氨基酸及其相应盐、聚氨基酸及其相应盐、糖酸及其相应盐、核苷酸、有机酸、无机酸、有机盐(包括有机酸盐和有机碱盐)、无机盐、苦味化合物、调味剂和调味成分、涩味化合物、蛋白质或蛋白质水解物、乳化剂、增重剂、树胶、着色剂、类黄酮、醇、聚合物、香精油、抗真菌剂以及其组合。
在一些实施例中,本发明的组合物包含一种或多种功能性成分。在一个具体的实施例中,该功能性成分是选自下组,该组由以下各项组成:皂苷、抗氧化剂、膳食纤维来源、脂肪酸、维生素、葡糖胺、矿物质、防腐剂、水合剂、益生菌、益生元、体重管理剂、骨质疏松症管理剂、植物雌激素、长链脂肪族饱和伯醇、植物甾醇以及其组合。
在一些方面中,本发明是一种制备具有式(1)的化合物的方法,该方法包括(i)使一种包含莱苞迪苷X的溶液与一种无机酸接触,(ii)加热该溶液持续足够的时间以提供一种具有式(1)的化合物并且(iii)从该溶液中回收该具有式(1)的化合物。
在另一个方面中,本发明是一种纯化具有式(1)的化合物的方法,该方法包括(1)使一种包含甜菊醇糖苷的溶液通过HPLC柱并且(ii)洗脱包含一种具有式(1)的化合物的部分。该HPLC柱可以是任何合适的HPLC制备级柱。这些部分可以通过添加一种适当的洗脱液来洗脱。该洗脱液可以是任何合适的溶剂或溶剂的组合。在一个实施例中,该洗脱液是水和/或乙腈。该方法可以任选地包括附加的步骤,如从该洗脱的溶液中去除溶剂以提供一种包含具有式(1)的化合物的浓缩物。
在另一个方面中,本发明是一种用于制备消费品的方法,该方法包括(i)提供一种消费品基质并且(ii)将一种具有式(1)的化合物添加到该消费品基质中以提供一种消费品。在一个具体的实施例中,该具有式(1)的化合物是以高于、处于或低于该具有式(1)的化合物的阈值甜度识别的浓度存在于该消费品中。在另一个具体的实施例中,该具有式(1)的化合物是以高于、处于或低于该具有式(1)的化合物的阈值风味识别的浓度存在于该消费品中。
在一个具体的实施例中,本发明是一种用于制备饮料的方法,该方法包括(i)提供一种饮料基质并且(ii)将一种具有式(1)的化合物添加到该饮料基质中以提供一种消费品。在一个具体的实施例中,该具有式(1)的化合物是以高于、处于或低于该具有式(1)的化合物的阈值甜度识别的浓度存在于该消费品中。在另一个具体的实施例中,该具有式(1)的化合物是以高于、处于或低于该具有式(1)的化合物的阈值风味识别浓度的浓度存在于该消费品中。
在另一个方面中,本发明是一种用于增强消费品的甜度的方法,该方法包括(i)提供一种消费品,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂并且(ii)将一种具有式(1)的化合物以处于或低于该化合物的甜度识别阈值的浓度添加到该消费品中,其中该具有式(1)的化合物使该消费品的甜度增强了一定量,该量大于含有相同浓度的该具有式(1)的化合物的一种溶液的可检测甜度和/或该具有式(1)的化合物使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大。
另一个方面,本发明是一种用于增强消费品的甜度的方法,该方法包括(i)提供一种消费品,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂并且(ii)将一种具有式(2)的化合物以处于或低于该化合物的甜度识别阈值的浓度添加到该消费品中,其中该具有式(2)的化合物使该消费品的甜度增强了一定量,该量大于含有相同浓度的该具有式(2)的化合物的一种溶液的可检测甜度和/或该具有式(2)的化合物使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大。
在又另一个方面中,本发明是一种用于增强消费品的甜度的方法,该方法包括(i)提供一种消费品,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂并且(ii)将化合物(2f)或(2g)以处于或低于(2f)或(2g)的甜度识别阈值的浓度添加到该消费品中,其中化合物(2f)或(2g)使该消费品的甜度增强了一定量,该量大于含有相同浓度的化合物(2f)或(2g)的一种溶液的可检测甜度和/或化合物(2f)或(2g)使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大。
附图简要说明
图1:(2a)的分离样品的LC-MS分析从上到下示出了TIC、在13.2分钟的(2a)峰值的质谱图、UV(210nm)色谱图和ELS色谱图。
图2:(2a)的1H NMR(500MHz,吡啶-d5)。
图3:(2b)的分离样品的LC-MS分析从上到下示出了TIC、在14.6分钟的(2b)峰值的质谱图、UV(210nm)色谱图和ELS色谱图。
图4:(2b)的1H NMR(500MHz,吡啶-d5)。
图5:(2c)的分离样品的LC-MS分析从上到下示出了TIC、在15.9分钟的(2c)峰值的质谱图、UV(210nm)色谱图和ELS色谱图。
图6:(2c)的1H NMR(500MHz,吡啶-d5)。
图7:(2d)的分离样品的LC-MS分析从上到下示出了TIC、在7.3分钟的(2d)峰值的质谱图、UV(210nm)色谱图和ELS色谱图。
图8:(2d)的1H NMR(500MHz,吡啶-d5)。
图9:(2e)的分离样品的LC-MS分析从上到下示出了TIC、在24.2分钟的(2e)峰值的质谱图、UV(210nm)色谱图和ELS色谱图。
图10:(2e)的1H NMR(500MHz,吡啶-d5)。
图11:(2f)的分离样品的LC-MS分析从上到下示出了TIC、在11.3分钟的(2f)峰值的质谱图、ELS色谱图和UV(PDA)色谱图。
图12:(2f)在吡啶-d5/D2O(10:1)中的500MHz 1H NMR谱。
图13:(2g)的分离样品的LC-MS分析从上到下示出了TIC、在9.3分钟的(2g)峰值的质谱图、ELS色谱图和UV(PDA)色谱图。
图14:(2g)在吡啶-d5/D2O(10:1)中的500MHz 1H NMR谱。
发明详细说明
I.化合物
在一个方面中,本发明提供了具有式(1)的甜菊醇糖苷化合物:
Figure GDA0003476432920000431
其中R1是独立地选自下组,该组由以下各项组成:一种C-连接的单糖;一种O-连接的单糖;一种C-连接的低聚糖;一种O-连接的低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基;取代的或未取代的烷氧基烷基;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;C1-C6直链烷基;C1-C6支链烷基;C2-C6烯基;-NH2;-NHR2;-NR2;-OSO3H;-OSO2R;-OC(O)R;-OCO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-OPO3H;并且
R是烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、取代的芳基、杂芳基、取代的杂芳基,或当附接到一个氮原子上时,两个相邻的R基团可以组合以形成一个5至7元环;
其中x是一个单键或双键;
其中当x是一个单键时,R2和R3作为整体形成一个羰基或烯烃;
其中当x是一个双键时,或者R2或者R3是不存在的;并且
其中R2和R3是独立地选自下组,该组由以下各项组成:氢;羟基;羟烷基;卤素;氨基,巯基,氰基,C1-C6直链烷基,C1-C6支链烷基,C2-C6烯基,C3-C8环烷基,杂环,杂芳基和芳基;C1-C6烷氧基;芳基;杂芳基;杂环,其中所有可以任选地被独立地选自下组的一个或多个取代,该组由以下各项组成:卤素、烷基、低级烷基、酰基、氧代基、羟基、羟烷基、烷氧基、杂环、杂芳基、氰基、氨基、氨基烷基、以及羧基;
其中R4是独立地选自下组,该组由以下各项组成:单糖;低聚糖;氢;羟基;卤素;酰基;取代的或未取代的酯;取代的或未取代的芳基;取代的或未取代的杂芳基;取代的或未取代的烷基;取代的或未取代的烯基;取代的或未取代的5至7元环;取代的或未取代的杂环;取代的或未取代的烷氧基烷基;取代的或未取代的烷基胺;取代的或未取代的烷硫基;取代的或未取代的烷基硫代烷基;取代的或未取代的烷基磺酰基;取代的或未取代的烷基磺酰基烷基;-SO3H;-SO2R;-C(O)R;-CO2H;-CO2R;-C(O)NH2;-C(O)NHR;-C(O)NR2;-SO3H;-SO2R;-SO2NH2;-SO2NHR;-SO2NR2;或-PO3H。
在一个更具体的实施例中,x是一个单键并且R2和R3作为整体形成一种烯烃或一个羰基。
在另一个具体的实施例中,x是一个单键并且R2和R3是选自C1-C6直链烷基和羟基。
在一个实施例中,x是一个单键并且R2和R3作为整体是一种烯烃。在一个具体的实施例中,x是一个单键并且R2和R3作为整体是一个羰基。在另一个实施例中,x是一个单键,R2是一个甲基并且R3是一个羟基。
在另一个具体的实施例中,R1和R4各自独立地选自氢、甲基和一种O-连接的低聚糖,其中该低聚糖包含从两个到五个糖。
在一些实施例中,R1是一种O-连接的低聚糖。在具体的实施例中,R1是包含单糖的一种O-连接的低聚糖,这些单糖包括,但不限于,葡萄糖、6-脱氧-葡萄糖、以及它们的组合。在其他实施例中,R1是一种支链的、O-连接的低聚糖。在还其他实施例中,R1是一种直链的、O-连接的低聚糖。
在一些实施例中,R4是一种O-连接的低聚糖。在具体的实施例中,R4是包含单糖的一种O-连接的低聚糖,这些单糖包括,但不限于、葡萄糖、鼠李糖、木糖以及它们的组合。在其他实施例中,R4是一种支链的、O-连接的低聚糖。在还其他实施例中,R4是一种直链的、O-连接的低聚糖。
在一些实施例中,R1和R4是独立地选自单糖、包含两个糖的低聚糖、包含三个糖的低聚糖、包含四个糖的低聚糖以及包含五个糖的低聚糖。在一些实施例中,R1是一种低聚糖,选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
在一些实施例中,R4是一种低聚糖,选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
本领域普通技术人员将理解具有式(1)的化合物包含一个或多个立构中心。每个立构中心可以呈R或S构型,这取决于在空间中原子的安排和取向。除非另外指明,应该理解的是该具有式(1)的化合物可以具有任何适合的立体化学构型。
在一个实施例中,本发明是一种具有式(1a)的化合物:
Figure GDA0003476432920000471
在另一个实施例中,本发明是具有式(1b)的化合物:
Figure GDA0003476432920000481
在还另一个实施例中,本发明是具有式(1c)的化合物:
Figure GDA0003476432920000491
在另一个实施例中,本发明是具有式(1d)的化合物:
Figure GDA0003476432920000501
在另一个实施例中,本发明是具有式(1e)的化合物:
Figure GDA0003476432920000502
在还另一个实施例中,本发明是具有式(1f)的化合物:
Figure GDA0003476432920000511
在又另一个实施例中,本发明是具有式(1g)的化合物:
Figure GDA0003476432920000521
在其他实施例中,本发明是一种具有式(2)的化合物,其中式(2)是具有式(1)的一个子集:
Figure GDA0003476432920000522
其中R1、R2、R3、以及R4保持如上所述。
在一个更具体的实施例中,x是一个单键并且R2和R3作为整体形成一种烯烃或一个羰基。
在另一个具体的实施例中,x是一个单键并且R2和R3是选自C1-C6直链烷基和羟基。
在一个实施例中,x是一个单键并且R2和R3作为整体是一种烯烃。在一个具体的实施例中,x是一个单键并且R2和R3作为整体是一个羰基。在另一个实施例中,x是一个单键,R2是一个甲基并且R3是一个羟基。
在另一个具体的实施例中,R1和R4各自独立地选自氢、甲基和一种O-连接的低聚糖,其中该低聚糖包含从两个到五个糖。
在一些实施例中,R1是一种O-连接的低聚糖。在具体的实施例中,R1是包含单糖的一种O-连接的低聚糖,这些单糖包括,但不限于,葡萄糖、6-脱氧-葡萄糖、以及它们的组合。在其他实施例中,R1是一种支链的、O-连接的低聚糖。在还其他实施例中,R1是一种直链的、O-连接的低聚糖。
在一些实施例中,R4是一种O-连接的低聚糖。在具体的实施例中,R4是包含单糖的一种O-连接的低聚糖,这些单糖包括,但不限于、葡萄糖、鼠李糖、木糖以及它们的组合。在其他实施例中,R4是一种支链的、O-连接的低聚糖。在还其他实施例中,R4是一种直链的、O-连接的低聚糖。
在一些实施例中,R1和R4是独立地选自单糖、包含两个糖的低聚糖、包含三个糖的低聚糖、包含四个糖的低聚糖以及包含五个糖的低聚糖。
在一些实施例中,R1是一种低聚糖,选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
在一些实施例中,R4是一种低聚糖,选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖以及唾液糖。
在具体的实施例中,R1和/或R4是包含一个或多个葡萄糖的低聚糖。
在给定低聚糖内的单糖可以是相同或不同的,即一种低聚糖可以包含两个或更多个相同的单糖或可以包含两个或更多个不同的单糖。
低聚糖的单糖之间的键,以及低聚糖与式(1)或(2)的R位置之间的键可以是β-连接或α-连接。在又另一个实施例中,该低聚糖是与β-(l,2)-连接、β-(l,3)-连接、β-(l,4)-连接、β-(l,6)-连接、α-(l,2)-连接、α-(l,3)-连接、α-(l,4)-连接、α-(l,6)-连接、以及它们的任何组合键合。
在一个具体的实施例中,本发明是具有式13-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映-贝壳杉-15-烯-19-羧酸-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯](2a)的化合物:
Figure GDA0003476432920000551
在另一个具体的实施例中,本发明是具有式(13-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映-贝壳杉-16-烯-19-羧酸-[(2-O-β-D-吡喃木糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯](2b)的化合物。
Figure GDA0003476432920000561
在还另一个具体的实施例中,本发明是具有式(13-[(2-O-6-脱氧-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映-贝壳杉-16-烯-19-羧酸-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯](2c)的化合物:
Figure GDA0003476432920000571
在还另一个具体的实施例中,本发明是具有式(13-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映-贝壳杉-16-羟基-19-羧酸-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯](2d)的化合物:
Figure GDA0003476432920000581
在还另一个具体的实施例中,本发明是具有式(13-甲基-16-氧代-17-去甲-对映-贝壳杉-19-羧酸-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯])(2e)的化合物:
Figure GDA0003476432920000582
在还另一个具体的实施例中,本发明是具有式(13-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映-贝壳杉-16-烯-19-羧酸-[(2-O-α-D-吡喃鼠李糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯](2f;也称为莱苞迪苷N)的化合物:
Figure GDA0003476432920000591
在还另一个具体的实施例中,本发明是具有式(13-[(2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映-贝壳杉-16-烯-19-羧酸-[(2-O-(3-O-β-D-吡喃葡萄糖基-α-D-吡喃鼠李糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)酯](2g;也称为莱苞迪苷O)的化合物:
Figure GDA0003476432920000601
在一些实施例中,该具有式(1)或(2)的化合物是甜的。
在其他实施例中,当以比其阈值风味识别浓度更低的浓度添加到一种组合物(例如,消费品)中时,该具有式(1)或(2)的化合物是风味增强剂,如在本文第II部分所述的。
在其他实施例中,如在此所述,当以比其阈值甜度识别浓度更低的浓度添加到一种组合物(例如,消费品)中时,该具有式(1)或(2)的化合物是甜度增强剂,如在此处第II部分所述的。
II.组合物
本发明包括以下组合物,这些组合物包含本发明的一种或多种甜菊醇糖苷。该组合物可以是,例如,一种味道增强组合物,甜度增强组合物或消费品,如在此将进一步描述的。
在一个实施例中,该组合物包含选自具有式(1)的化合物的一种或多种甜菊醇糖苷。在另一个实施例中,该组合物包含选自具有式(2)的化合物的一种或多种甜菊醇糖苷。在一些实施例中,该组合物包含选自下组的一种或多种甜菊醇糖苷,该组由以下各项组成:(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)、(2)、(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、以及(2g)。在一个具体的实施例中,该组合物包含选自下组的一种或多种甜菊醇糖苷,该组由以下各项组成:(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)以及它们的组合。
在一个实施例中,该组合物包含本发明的一种化合物,其作为选自由以下各项组成的组的混合物的一部分提供:甜菊醇糖苷的混合物、甜叶菊提取物、其他甜菊醇糖苷的分离和纯化过程的副产物、可商购的甜叶菊提取物或它们的任何组合。在另一个实施例中,该组合物包含本发明的一种化合物,其作为在酸性溶液中已经降解的甜叶菊提取物的混合物的一部分提供。此类混合物可以包含本发明的一种化合物,其量的范围是基于干重按重量计从约1%至约99%,例如像,基于干重按重量计约5%至约99%、从约10%至约99%、从约20%至约99%、从约30%至约99%、从约40%至约99%、从约50%至约99%、从约60%至约99%、从约70%至约99%、从约80%至大约99%以及从约90%至约99%。在还另外的实施例中,此类混合物包含本发明的一种化合物,其量为基于干重按重量计大于约90%,例如,大于约91%、大于约92%、大于约93%、大于约94%、大于约95%、大于约96%、大于约97%、大于约98%以及大于约99%。
在一个实施例中,该组合物包含本发明的一种化合物,其中本发明的化合物是以甜叶菊提取物的形式提供。该甜叶菊提取物包含一种或多种附加的甜菊醇糖苷(不是化合物(2a)-(2g))包括,但不限于,甜菊苷、莱苞迪苷A、莱苞迪苷C、杜克苷A、甜茶苷、甜菊双糖苷、莱苞迪苷B、莱苞迪苷D、莱苞迪苷F、以及它们的组合。
在还另一个实施例中,本发明是一种包含本发明的化合物的组合物,其中该具有式(1)的化合物作为一种纯化合物(即基于干重按重量计>99%含量)提供。
当存在于一种消费品中时,本发明的化合物可以是以有效提供从约1ppm至约10,000ppm的浓度的量存在于该组合物中,例如像,从约1ppm至约4,000ppm、从约1ppm至约3,000ppm、从约1ppm至约2,000ppm、从约1ppm至约1,000ppm。在另一个实施例中,当存在于一种消费品中时,本发明的化合物是以有效提供从约10ppm至约1,000ppm的浓度的量存在于该组合物中,例如像,从约10ppm至约800ppm、从约50ppm至约800ppm、从约50ppm至约600ppm或从约200ppm至约250ppm。在一个具体的实施例中,本发明的化合物是以有效提供从约300ppm至约600ppm的浓度的量存在于该组合物中。
在一个实施例中,本发明是一种包含本发明的化合物的甜味剂组合物。“甜味剂组合物,”如在此所用的,是指一种组合物,该组合物对于甜味化含有至少一种甜味组分与至少一种其他物质相结合的可甜味化的组合物是有用的。
在一个实施例中,本发明的化合物是该甜味剂组合物中的单独的甜味剂,即本发明的化合物是存在于提供可检测的甜度的甜味剂组合物中的唯一化合物。在另一个实施例中,该甜味剂组合物包括本发明的一种化合物与一种或多种甜味剂化合物相结合。
在该甜味剂组合物中的本发明的化合物的量可以变化。在一个实施例中,当甜味剂组合物存在于一种消费品中时,本发明的化合物是以赋予所希望的甜度的任何量存在于该甜味剂组合物中。
一种非蔗糖甜味剂的甜度也可以是相对于一种蔗糖参考物通过测定非蔗糖甜味剂的蔗糖等效物来测量的。典型地,训练品尝小组以检测含有1%-15%之间的蔗糖(w/v)的参考蔗糖溶液的甜度。然后在一系列稀释下品尝其他非蔗糖甜味剂,以确定与给定百分比的蔗糖参考物一样甜的非蔗糖甜味剂的浓度。例如,如果一种甜味剂的1%溶液与一种10%蔗糖溶液一样甜,那么该甜味剂被称为效力是蔗糖的10倍。
在一个实施例中,本发明的化合物是以当存在于消费品中时有效提供大于约10%(w/v)的蔗糖等效物的量存在,例如像,大于约11%(w/v)、大于约12%(w/v)、大于约13%(w/v)或大于约14%(w/v)。
能够以白利糖度(°Bx)描述在一种参比溶液中的蔗糖的量,以及因此甜度的另一种测量。一白利糖度是在100克溶液中的1克蔗糖,并表示作为重量百分比的该溶液的强度(%w/w)(严格地说,按质量计)。在一个实施例中,当存在于一种消费品中时,甜味剂组合物含有以有效提供等效于从约0.50至14白利糖度糖的甜度的量的具有式(1)的化合物例如像,从约5至约11白利糖度、从约4至约7白利糖度、或约5白利糖度。在又另一个实施例中,包含本发明的化合物的一种甜菊醇糖苷混合物与至少一种其他甜味剂是以有效提供以上列出的甜度等效量的任一个的量存在。
在另一个实施例中,当存在于一种消费品中时,本发明的化合物是以有效提供从约1ppm至约10,000ppm的浓度的量存在于该甜味剂组合物中例如像,从约1ppm至约4,000ppm、从约1ppm至约3,000ppm、从约1ppm至约2,000ppm或从约1ppm至约1,000ppm。在另一个实施例中,当存在于一种消费品中时,本发明的化合物是以有效提供从约10ppm至约1,000ppm的浓度的量存在于该甜味剂组合物中例如像,从约10ppm至约800ppm、从约50ppm至约800ppm、从约50ppm至约600ppm或从约200ppm至约250ppm。在一个具体的实施例中,本发明的化合物是以有效提供从约300ppm至约600ppm的浓度的量存在于该甜味剂组合物中。
在一个方面中,本发明是一种风味增强组合物,该风味增强组合物包含一种具有式(1)的化合物。
如在此所用,术语“风味增强剂组合物”指的是一种组合物,该组合物能够增强或强化在一种消费品中具体风味的感觉。术语“风味增强组合物”或“风味增强剂”是与术语“风味增效剂”、“风味放大剂”、以及“风味强化剂”同义。通常,在此提供的风味增强组合物可以增强或增效调味成分的味道,即提供甜味、酸味、咸味、香味、苦味、金属味、涩味、持久甜余味、甜味起始等的任何物质。不受任何理论束缚,该风味增强组合物可能不能促进它所加入的消费品的任何显著的味道,因为该具有式(1)的化合物是以处于或低于该具有式(1)的化合物的风味识别阈值浓度的浓度存在于该消费品中。
如在此所用,术语“风味识别阈值浓度”是指一种组分(例如,化合物)的具体风味或后味在消费品中是可察觉的最低浓度。风味识别阈值浓度对于不同的化合物改变,并且可以相对于感知风味的个体或具体消费品改变。风味识别阈值浓度对于一种特定的化合物可以是特有的。
在一个实施例中,该风味增强组合物包含一种具有式(1)的化合物,其中当将该风味增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供处于或低于该具有式(1)的化合物的阈值风味识别浓度的该化合物(1)的浓度的浓度存在。
在一个具体的实施例中,当将该风味增强组合物添加到一种消费品中时,具有式(1)的化合物是以有效提供低于该具有式(1)的化合物的阈值风味识别浓度的该具有式(1)的化合物的浓度的浓度存在于该风味增强组合物中。
在某些实施例中,当将该风味增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供低于该具有式(1)的化合物的阈值风味识别浓度至少约1%、至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%或至少约50%或更多的该具有式(1)的化合物的浓度的浓度存在于该风味增强组合物中。
在一些实施例中,一种具有式(1)的化合物是以一定量存在于该组合物中,当添加到消费品中时,将提供范围从约0.5ppm至约1000ppm的该具有式(1)的化合物的浓度。例如,该具有式(1)的化合物是以一定量存在于该组合物中,当添加到消费品中时,将提供以从约1ppm至约300ppm、从约0.1ppm至约75ppm、或从约500ppm至约3,000ppm范围的量的该具有式(1)的化合物的浓度。
本领域普通技术人员将能够选择该具有式(1)的化合物在该风味增强组合物中的浓度,使得它可以赋予包含至少一种调味成分的消费品增强的风味。例如,一名熟练技术人员可以选择具有式(1)的化合物在该风味增强组合物中的浓度,使得当将该风味增强组合物添加到消费品中时,该风味增强组合物和/或该具有式(1)的化合物不赋予消费品任何可察觉的风味。
在一个实施例中,与不存在该风味增强剂的消费品中的相同成分的检测风味相比,添加风味增强组合物增加了消费品中至少一种调味成分的检测风味。
适合的调味成分包括但不限于,香草醛、香草提取物、芒果提取物、肉桂、柑橘、椰子、姜、白千层醇、扁桃、薄荷醇(包括不含薄荷的薄荷醇)、葡萄皮提取物、以及葡萄籽提取物。“调味剂”和“调味成分”是同义词并且可以包括天然物质或合成物质或其组合。调味剂还包括赋予风味的任何其他物质并且可以包括在以一个通常接受的范围使用时对于人或动物是安全的天然物质或非天然(合成)物质。专用调味剂的非限制性实例包括
Figure GDA0003476432920000651
天然调味甜味增强剂K14323(
Figure GDA0003476432920000652
德国达姆施塔特(Darmstadt,Germany))、甜味剂161453和164126的SymriseTM天然调味遮掩物(SymriseTM,德国霍尔茨明登(Holzminden,Germany))、Natural AdvantageTM苦味阻滞剂1、2、9和10((Natural AdvantageTM,美国新泽西州弗里霍尔德(Freehold,New Jersey,U.S.A.))、以及SucramaskTM(创造性科研管理(Creative Research Management),美国加利福尼亚州斯托克顿市(Stockton,California,U.S.A.))。
在另一个实施例中,包含一种具有式(1)的化合物的风味增强剂组合物当添加到该消费品中增强了风味(单独的风味亦或整体的风味)。这些调味剂包括但不限于,水果调味剂,包括热带水果调味剂,以及香草-焦糖类型调味剂。
可替代地,该具有式(1)的化合物可以直接添加到消费品中,即,不以一种组合物的形式提供,以增加风味。在此实施例中,该具有式(1)的化合物是一种甜度增强剂并且它是以处于或低于该具有式(1)的化合物的阈值风味识别浓度的浓度添加到消费品中。
甜度增强组合物
在一个具体的实施例中,本发明是一种包含本发明的化合物的组合物。
如在此所用,术语“甜度增强剂”指的是一种能够增强或强化在消费品(如饮料)中甜味的感觉的化合物。术语“甜度增强剂”与术语“甜味增效剂”、“甜度增效剂”、“甜度放大剂”、以及“甜度强化剂”同义。
如通常在此所用,术语“甜度识别阈值”是由人类味觉可感知的一种甜化合物的最低已知的浓度。这样,本发明的一种化合物当处于或低于其甜度识别阈值浓度存在时增强或增效了这些甜味剂的甜味而没有独自地提供任何显著的甜味。然而,本发明的一种化合物在高于其甜度识别阈值的浓度下可以提供可检测的甜味。例如,莱苞迪苷N(化合物2f)和莱苞迪苷O(化合物2g)的甜度识别阀值是约30ppm。
术语“等甜,”如在此所用,是指具有等效甜度的组合物。总体上,典型地参考一种蔗糖溶液测量一种给定组合物的甜度。参见“甜味剂的浓度-反应关系的系统研究(ASystematic Study of Concentration-Response Relationships of Sweeteners)”,G.E.杜布瓦(G.E.DuBois)、D.E.沃尔特斯(D.E.Walters)、S.S.谢夫曼(S.S.Schiffman)、Z.S.沃里克(Z.S.Warwick)、B.J.博特(B.J.Booth)、S.D.皮科瑞(S.D.Pecore)、K.吉比斯(K.Gibes)、B.T.凯尔(B.T.Carr)、以及L.M.布兰茨(L.M.Brands),在甜味剂:发现、分子设计和化学感应(Sweeteners:Discovery,Molecular Design and Chemoreception),D.E.沃尔特斯、F.T.Orthoefer和G.E.杜布瓦编辑,美国化学学会(American Chemical Society),华盛顿(Washington),DC(1991),第261-276页。
术语“蔗糖等效值,”如在此所用,是指相对于一种蔗糖参考物,含有至少一种甜味剂的组合物的甜度,其中该甜味剂不是具有式(1)的化合物。典型地,训练品尝小组以检测含有1%-15%之间的蔗糖(w/v)的参考蔗糖溶液的甜度。然后在一系列稀释下品尝其他非蔗糖甜味剂以确定与一种给定百分比的蔗糖参考物一样甜(即等甜)的非蔗糖(即具有式(1)的化合物)甜味剂的浓度。
例如,如果含有碳水化合物甜味剂和具有式(1)的化合物的甜味剂组合物的1%溶液与10%蔗糖溶液一样甜,那么该甜味剂组合物被称为效力是蔗糖的10倍,并且具有10%的蔗糖等效值。
在一个实施例中,本发明是包含一种具有式(1)的化合物的甜度增强剂组合物。
在另一个实施例中,本发明是包含具有式(2)的化合物的一种甜度增强组合物。更具体地,本发明是一种甜度增强组合物,该甜度增强组合物包含一种选自下组的化合物,该组由以下各项组成:化合物(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)或它们的组合。
在一个具体的实施例中,当将该甜度增强组合物添加到一种消费品中时,具有式(1)的化合物是以有效提供低于该具有式(1)的化合物的阈值甜度识别浓度的该具有式(1)的化合物的浓度的浓度存在于该风味增强组合物中。
在某些实施例中,当将该甜度增强组合物添加到一种消费品中时,该具有式(1)的化合物是以有效提供低于该具有式(1)的化合物的阈值甜度识别浓度至少约1%、至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%或至少约50%或更多的该具有式(1)的化合物的浓度的浓度存在于该甜度增强组合物中。
在一些实施例中,一种具有式(1)的化合物是以一定量存在于该组合物中,当添加到消费品中时,将提供范围从约0.5ppm至约1000ppm的该具有式(1)的化合物的浓度。例如,该具有式(1)的化合物是以一定量存在于该组合物中,当添加到消费品中时,将提供以从约1ppm至约300ppm、从约0.1ppm至约75ppm、或从约500ppm至约3,000ppm范围的量的该具有式(1)的化合物的浓度。
在一些实施例中,该具有式(1)的化合物是以从约0.5ppm至约1000ppm的范围的量存在。例如,该具有式(1)的化合物可以是以从约1ppm至约300ppm、从约0.1ppm至约75ppm、或从约500ppm至约3,000ppm范围的量存在。
在一个实施例中,本发明提供了一种消费品,该消费品包含至少一种甜味剂和一种具有式(1)的化合物,其中该至少一种甜味剂是以高于其甜度识别阀值的浓度存在,其中该具有式(1)的化合物是以处于或低于其甜度识别阀值的浓度存在,并且其中该具有式(1)的化合物使该消费品的甜度增强了一定量,该量大于含有相同浓度的该具有式(1)的化合物不存在该至少一种甜味剂的一种溶液的可检测甜度和/或该具有式(1)的化合物使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大,例如像,约2.5%(w/v)或更大。在另一个实施例中,该具有式(1)的化合物使该消费品的甜度增强了至少约3.0%蔗糖等效值。在另一个实施例中,该具有式(1)的化合物使该消费品的甜度增强了从约2.0%(w/v)至约3.0%(w/v)蔗糖等效值。
在一个更具体的实施例中,本发明提供了一种消费品,该消费品包含至少一种甜味剂和一种具有式(2)的化合物,其中该至少一种甜味剂是以高于其甜度识别阀值的浓度存在,其中该具有式(2)的化合物是以处于或低于其甜度识别阀值的浓度存在,并且其中该具有式(2)的化合物使该消费品的甜度增强了一定量,该量大于含有相同浓度的该具有式(2)的化合物不存在该至少一种甜味剂的一种溶液的可检测甜度和/或该具有式(2)的化合物使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大,例如像,约2.5%(w/v)或更大。在另一个实施例中,该具有式(2)的化合物使该消费品的甜度增强了至少约3.0%蔗糖等效值。在另一个实施例中,该具有式(2)的化合物使该消费品的甜度增强了从约2.0%(w/v)至约3.0%(w/v)蔗糖等效值。
考虑的是该组合物可以包含一种或多种甜度增强剂。在一个实施例中,该组合物可以包含一种甜度增强剂。在其他实施例中,该组合物可以包含两种或更多种甜度增强剂。在利用两种或更多种甜度增强剂的实施例中,每一种甜度增强剂应低于其各自的甜度识别阈值浓度存在。
在一些实施例中,本发明的甜度增强剂是与选自但不限于下组的一种或多种其他甜度增强剂组合,该组由以下各项组成:2-羟基苯甲酸、3-羟基苯甲酸、4-羟基苯甲酸、2,4-二羟基苯甲酸、3,4-二羟基苯甲酸、2,5-二羟基苯甲酸、2,6-二羟基苯甲酸、2,3,4-三羟基苯甲酸、2,4,6-三羟基苯甲酸、3-氨基苯甲酸、4-氨基苯甲酸、FEMA GRAS增强剂4469、FEMAGRAS增强剂4701、FEMA GRAS增强剂4720、FEMA GRAS增强剂4774、FEMA GRAS增强剂4708、FEMA GRAS增强剂4728、FEMA GRAS增强剂4601以及它们的组合。
甜味剂可以选自,但不限于下组,该组由以下各项组成:蔗糖、甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖、唾液糖、莱苞迪苷A、莱苞迪苷B、莱苞迪苷C、莱苞迪苷D、莱苞迪苷E、莱苞迪苷F、莱苞迪苷I、莱苞迪苷H、莱苞迪苷L、莱苞迪苷K、莱苞迪苷J、莱苞迪苷N、莱苞迪苷O、杜克苷A、杜克苷B、甜茶苷、甜叶菊、甜菊苷、罗汉果苷IV、罗汉果苷V、罗汉果、赛门苷、莫那甜及其盐(莫那甜SS、RR、RS、SR)、仙茅甜蛋白(curculin)、甘草酸及其盐、索马甜、莫内林(monellin)、马宾灵(mabinlin)、布拉齐因(brazzein)、荷南度辛(hernandulcin)、叶甘素、根皮酚苷、根皮苷、三叶苷、白元参苷(baiyunoside)、欧亚水龙骨甜素(osladin)、聚波朵苷(polypodoside)A、蝶卡苷(pterocaryoside)A、蝶卡苷B、慕库若苷(mukurozioside)、弗米索苷(phlomisoside)I、巴西甘草甜素(periandrin)I、相思子三萜苷(abrusoside)A、甜菊双糖苷以及青钱柳苷I、糖醇类如赤藓糖醇、三氯蔗糖、乙酰舒泛钾、安赛蜜酸及其盐、阿司帕坦、阿力甜、糖精及其盐、新橙皮苷二氢查尔酮、环己基氨基磺酸盐、环己氨磺酸及其盐、纽甜、糖精(advantame)、糖基化的甜菊醇糖苷(GSG)以及它们的组合。
值得注意的是,该甜味剂与本发明的甜度增强剂是不相同的。
在一个实施例中,该甜味剂是一种有热量的甜味剂或有热量的甜味剂的混合物。因此,结合该甜度增强剂由此降低了在一种给定消费品中必须使用的提供热量的甜味剂的量,由此允许制备低热量的消费品。
该有热量的甜味剂可以选自,例如,蔗糖、果糖、葡萄糖、高果糖玉米/淀粉糖浆、甜菜糖、蔗糖、以及它们的组合。
在一个实施例中,该甜味剂是一种稀有糖。
在另一个实施例中,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆和/或它们的组合。
在又另一个实施例中,该甜味剂是一种无热量的甜味剂或无热量的甜味剂的混合物。在一个实例中,该没有热量的甜味剂是一种天然高效甜味剂。如在此所用,短语“天然高效甜味剂”是指在自然界中未天然地发现并且特征地具有大于蔗糖、果糖、或葡萄糖的甜度效力,又具有较小热量的任何组合物。天然高效甜味剂可以作为一种纯化合物或者可替代地作为一种提取物的一部分来提供。
在一个实施例中,与不存在甜度增强剂的相同消费品中的蔗糖等效值相比,添加该甜度增强剂增加了消费品中至少一种甜味剂的检测蔗糖等效值。
甜度识别阈值浓度对于一种特定的化合物可以是特有的。在一些实施例中,该至少一种甜度增强剂是以从约0.5ppm至约1000ppm的范围的量存在。例如,该至少一种甜度增强剂可以是以从约1ppm至约300ppm、从约0.1ppm至约75ppm、或从约500ppm至约3,000ppm范围的量存在。
在一个实施例中,本发明提供了包含至少一种甜味剂和化合物(2f)的一种消费品。该至少一种甜味剂(不是化合物(2f))是以高于甜度识别阈值的浓度存在。相比之下,化合物(2f)是以处于或低于其甜度识别阈值的浓度存在于该消费品中。化合物(2f)的甜度识别阈值是约30ppm,其足以提供约1.0%-1.5%(w/v)的大约蔗糖等效值。
化合物(2f),当以处于或低于甜度识别阈值的浓度存在于该消费品中时,使该消费品的甜度增强了一定量,该量大于含有相同浓度的化合物(2f)的一种溶液(在不存在任何附加的甜味剂的情况下)的可检测甜度。换言之,与在不存在化合物(2f)的情况下相同消费品相比,含有以处于或低于其甜度识别阈值浓度的量的化合物(2f)的消费品的等甜度的增加是大于化合物(2f)的一种溶液(在不存在任何附加的甜味剂的情况下)的等甜度。
作为一个实例,发现含有30ppm的化合物(2f)的一种溶液是与1.0%-1.5(w/v)蔗糖溶液等甜。含有8%(w/v)蔗糖和30ppm化合物(2f)的一种饮料是与10.5%-11.0%(w/v)蔗糖溶液等甜。因此,由30ppm化合物(2f)提供的等甜度的增加(2.5%-3.0%(w/v))是大于单独的30ppm化合物(2f)的甜度(1.0%-1.5%(w/v))。因此,可以说化合物(2f)的作用不仅仅是饮料中蔗糖的添加剂(如果是这种情况,人们将期望9%-9.5%(w/v)的甜度),而是用来增强饮料中蔗糖的检测甜度。
在另一个具体的实施例中,化合物(2f)使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大。化合物(2f)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值,例如像,约2.0%、约2.1%、约2.2%、约2.3%、约2.4%、约2.5%、约2.6%、约2.7%、约2.8%、约2.9%或约3.0%蔗糖等效值。
化合物(2f)可以作为一种纯化材料(例如>99%纯)或作为一种甜菊提取物或甜菊醇糖苷的混合物的一部分提供。在一个实施例中,化合物(2f)是从约80%至约99%纯,即,在一种甜菊提取物或甜菊醇糖苷混合物中化合物(2f)占按重量计约80%至约99%。在一个具体的实施例中,化合物(2f)是约95%纯的。
此外,化合物(2f)的形式可以是多态的、非晶相的、任何类型的无序结晶材料或它们的组合。
在一个实施例中,本发明提供了包含至少一种甜味剂和化合物(2g)的一种消费品。该至少一种甜味剂(不是化合物(2g))是以高于甜度识别阈值的浓度存在。相比之下,化合物(2g)是以处于或低于其甜度识别阈值的浓度存在于该消费品中。化合物(2g)的甜度识别阈值是约30ppm,其足以提供约1.0%-1.5%(w/v)的大约蔗糖等效值。
化合物(2g),当以处于或低于甜度识别阈值的浓度存在于该消费品中时,使该消费品的甜度增强了一定量,该量大于含有相同浓度的化合物(2g)的一种溶液(在不存在任何附加的甜味剂的情况下)的可检测甜度。换言之,与在不存在化合物(2g)的情况下相同消费品相比,含有以处于或低于其甜度识别阈值浓度的量的化合物(2g)的消费品的等甜度的增加是大于化合物(2g)的一种溶液(在不存在任何附加的甜味剂的情况下)的等甜度。
作为一个实例,发现含有30ppm的化合物(2g)的一种溶液是与1.0%-1.5(w/v)蔗糖溶液等甜。含有8%(w/v)蔗糖和30ppm化合物(2g)的一种饮料是与10.0%(w/v)蔗糖溶液等甜。因此,由30ppm化合物(2g)提供的等甜度的增加(2.0%(w/v))是大于单独的30ppm化合物(2g)的甜度(1.0%-1.5%(w/v))。因此,可以说化合物(2g)的作用不仅仅是饮料中蔗糖的添加剂(如果是这种情况,人们将期望9%-9.5%(w/v)的甜度),而是用来增强饮料中蔗糖的检测甜度。
在另一个具体的实施例中,化合物(2g)使该消费品的甜度增强了约2.0%(w/v)蔗糖等效值或更大。化合物(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值,例如像,约2.0%、约2.1%、约2.2%、约2.3%、约2.4%、约2.5%、约2.6%、约2.7%、约2.8%、约2.9%或约3.0%蔗糖等效值。
化合物(2g)可以作为一种纯化材料(例如>99%纯)或作为一种甜菊提取物或甜菊醇糖苷的混合物的一部分提供。在一个实施例中,化合物(2g)是从约80%至约99%纯,即,在一种甜菊提取物或甜菊醇糖苷混合物中化合物(2g)占按重量计约80%至约99%。在一个具体的实施例中,化合物(2g)是约95%纯的。
此外,化合物(2g)的形式可以是多态的、非晶相的、任何无序结晶材料或它们的组合。
在一个实施例中,一种消费品包含具有大于约95%纯度的一种具有式(1)的化合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆和/或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中该具有式(1)的化合物是以处于或低于甜度识别阈值的浓度存在,并且其中该具有式(1)的化合物使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的该具有式(1)的化合物的一种溶液(在不存在任何附加的甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个实施例中,一种消费品包含具有大于约95%纯度的一种具有式(2)的化合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆和/或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中该具有式(2)的化合物是以处于或低于甜度识别阈值的浓度存在,并且其中该具有式(2)的化合物使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的该具有式(2)的化合物的一种溶液(在不存在任何附加的甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在又另一个实施例中,一种消费品包含具有大于约95%纯度的化合物(2f)或(2g)和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆和/或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阈值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何附加的甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和蔗糖,其中蔗糖是以高于甜度识别阀值的浓度存在,其中该化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和果糖,其中果糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和葡萄糖,其中葡萄糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和高果糖玉米糖浆,其中高果糖玉米糖浆是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-阿洛酮糖,其中D-阿洛酮糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-阿洛糖,其中D-阿洛糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-松二糖,其中D-松二糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-塔格糖,其中D-塔格糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-海藻糖,其中D-海藻糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-白菌二糖,其中D-白菌二糖是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和稀有糖糖浆,其中稀有糖糖浆是以高于甜度识别阀值的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使所述消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液(在不存在任何其他甜味剂的情况下)的可检测甜度。在一个具体的实施例中,该消费品是一种饮料。
在一个实施例中,一种消费品包含具有纯度大于约95%的一种具有式(1)的化合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中该具有式(1)的化合物是以处于或低于甜度识别阈值的浓度存在,并且其中该具有式(1)的化合物使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个实施例中,一种消费品包含具有纯度大于约95%的一种具有式(2)的化合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中该具有式(2)的化合物是以处于或低于甜度识别阈值的浓度存在,并且其中该具有式(2)的化合物使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在一个实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阈值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在一个更具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和蔗糖,其中蔗糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)该消费品的甜度从约2.0%(w/v)至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和果糖,其中果糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和葡萄糖,其中葡萄糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和高果糖玉米糖浆,其中高果糖玉米糖浆是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-阿洛酮糖,其中D-阿洛酮糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-阿洛糖,其中D-阿洛糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-松二糖,其中D-松二糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-塔格糖,其中D-塔格糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)该消费品的甜度从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-海藻糖,其中D-海藻糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和D-白菌二糖,其中D-白菌二糖是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
在另一个具体的实施例中,一种消费品包含具有纯度大于约95%的化合物(2f)或(2g)和稀有糖糖浆,其中稀有糖糖浆是以高于甜度识别阀值浓度的浓度存在,其中化合物(2f)或(2g)是以处于或低于甜度识别阀值的浓度存在,并且其中化合物(2f)或(2g)使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值。在一个更具体的实施例中,化合物(2f)或(2g)使该消费品的甜度增强了从约2.0%至约3.0%(w/v)蔗糖等效值。在一个具体的实施例中,该消费品是一种饮料。
该消费品可以是适合用在口中或摄取的任何可食用或口服组合物。示例性消费品包括,例如,药物组合物、可食用凝胶混合物和组合物、牙科组合物、食品(甜食、调味品、口香糖、谷物组合物、烤焙食品、乳制品、以及桌面(tabletop)甜味剂组合物)、饮料和饮料产品。
添加剂
在此披露的组合物,例如,消费品,可以进一步含有以下详述的一种或多种功能性成分。功能性成分包括但不限于,维生素、矿物质、抗氧化剂、防腐剂、葡萄糖胺、多元酚以及其组合。可以使用在此所述的任何适合的功能性成分。
该消费品可以进一步包含一种或多种添加剂,该添加剂包括但不限于碳水化合物、多元醇、氨基酸及其相应盐、聚氨基酸及其相应盐、糖酸及其相应盐、核苷酸、有机酸、无机酸、有机盐(包括有机酸盐和有机碱盐)、无机盐、苦味化合物、咖啡因、调味剂和调味成分、涩味化合物、蛋白质或蛋白质水解物、表面活性剂、乳化剂、增重剂、汁、乳制品、谷物和其他植物提取物、类黄酮、醇、聚合物以及其组合。可以使用在此所述的任何适合的添加剂。
a.饮料
在一个具体的实施例中,本发明是一种包含本发明的化合物的饮料。
如在此所用,“饮料”是一种立即可饮的饮料。适合的立即可饮的饮料包括碳酸饮料和非碳酸饮料。碳酸饮料包括但不限于,软饮料、可乐、柠檬-酸橙味起泡饮料、橙风味起泡饮料、葡萄风味起泡饮料、草莓风味起泡饮料、菠萝风味起泡饮料、姜汁酒、软饮料、沙士以及麦芽饮料。
非碳酸饮料包括但不限于,果汁、水果风味果汁、果汁饮料、花蜜、蔬菜汁、蔬菜风味汁、运动饮料、能量饮料、蛋白饮料、具有维生素的增强水、近水饮料(例如,具有天然调味剂或合成调味剂的水)、椰子汁、茶类型(例如,黑茶、绿茶、红叶、乌龙茶)、咖啡、可可饮料、含有乳组分的饮料(例如,乳饮料、含乳组分的咖啡、欧蕾咖啡(caféau lait)、奶茶、果奶饮料)、含有谷物提取物的饮料、冰沙以及其组合。
饮料含有一种液体基质,即其中溶解了这些成分(包括甜味剂和本发明的组合物)的基础成分。在一个实施例中,该液体基质是饮料质量的水,例如像,可以使用去离子水、蒸馏水、反渗透水、碳处理水、纯水、软化水以及其组合。附加适合的液体基质包括但不限于,磷酸、磷酸盐缓冲液、柠檬酸、柠檬酸盐缓冲液以及碳处理水。
在一个实施例中,该饮料包含内含物、即果肉、籽、块状物、等。
碳水化合物甜味剂可以是以从约100ppm至约140,000ppm的浓度存在于该饮料中的。稀有糖可以是以从约50ppm至约100,000ppm的浓度存在于该饮料中的。合成甜味剂可以是以从约0.3ppm至约3,500ppm的浓度存在于该饮料中的。天然高效甜味剂可以是以从约0.1ppm至约3,000ppm的浓度存在于该饮料中的。
该饮料可以进一步包含添加剂,该添加剂包括但不限于碳水化合物、多元醇、氨基酸及其相应盐、聚氨基酸及其相应盐、糖酸及其相应盐、核苷酸、有机酸、无机酸、有机盐(包括有机酸盐和有机碱盐)、无机盐、苦味化合物、咖啡因、调味剂和调味成分、涩味化合物、蛋白质或蛋白质水解物、表面活性剂、乳化剂、增重剂、汁、乳制品、谷物和其他植物提取物、类黄酮、醇、聚合物以及其组合。可以使用在此所述的任何适合的添加剂。
在一个实施例中,该多元醇可以是以从约100ppm至约250,000ppm,例如像,从约5,000ppm至约40,000ppm的浓度存在于该饮料中。
在另一个实施例中,该氨基酸可以是以从约10ppm至约50,000ppm,例如像,从约1,000ppm至约10,000ppm、从约2,500ppm至约5,000ppm或者从约250ppm至约7,500ppm的浓度存在于该饮料中。
在又一个实施例中,该核苷酸可以是以从约5ppm至约1,000ppm的浓度存在于该饮料中。
在另一个实施例中,该有机酸添加剂可以是以从约10ppm至约5,000ppm的浓度存在于该饮料中。
在又一个实施例中,该无机酸添加剂可以是以从约25ppm至约25,000ppm的浓度存在于该饮料中。
在另一个实施例中,该苦味化合物可以是以从约25ppm至约25,000ppm的浓度存在于该饮料中。
在另一个实施例中,该调味剂可以是以从约0.1ppm至约5,000ppm的浓度存在于该饮料中。
在又一个实施例中,该聚合物可以是以从约30ppm至约2,000ppm的浓度存在于该饮料中。
在另一个实施例中,该蛋白质水解物可以是以从约200ppm至约50,000ppm的浓度存在于该饮料中。
在另一个实施例中,该表面活性剂添加剂可以是以从约30ppm至约2,000ppm的浓度存在于该饮料中。
在又一个实施例中,该类黄酮添加剂可以是以从约0.1ppm至约1,000ppm的浓度存在于该饮料中。
在另一个实施例中,该醇添加剂可以是以从约625ppm至约10,000ppm的浓度存在于该饮料中。
在又一个实施例中,涩味添加剂可以是以从约10ppm至约5,000ppm的浓度存在于该饮料中。
该饮料可以进一步含有以下详述的一种或多种功能性成分。功能性成分包括但不限于,维生素、矿物质、抗氧化剂、防腐剂、葡萄糖胺、多元酚以及其组合。可以使用在此所述的任何适合的功能性成分。
考虑到饮料的pH不会实质上或不利地影响甜度的增强。该饮料的pH范围的一个非限制性实例可以是从约1.8至约10。另一个实例包括从约2至约5的一个pH范围。在一个具体实施例中,饮料的pH可以是从约2.5至约4.2。本领域技术人员将理解,饮料的pH可以基于饮料的类型而改变。例如,乳品饮料可以具有大于4.2的pH。
该饮料的可滴定酸度的范围可以例如是按饮料重量计从约0.01%至约1.0%。
在一个实施例中,起泡饮料产品具有按饮料重量计从约0.01%至约1.0%,例如像按饮料重量计从约0.05%至约0.25%的酸度。
一种起泡饮料产品的碳酸化作用具有0至约2%(w/w)二氧化碳或其等效物,例如从约0.1%至约1.0%(w/w)。
该饮料的温度的范围可以是例如从约4℃至约100℃,例如像,从约4℃至约25℃。
该饮料可以是一种富含热量的饮料,它具有最高达约120卡路里/8盎司份。
该饮料可以是一种中值热量的饮料,它具有最高达约60卡路里/8盎司份。
该饮料可以是一种低热量的饮料,它具有最高达约40卡路里/8盎司份。
该饮料可以是一种零热量的饮料,它具有小于约5卡路里/8盎司份。
在一个实施例中,一种饮料包含一种碳水化合物甜味剂和约30ppm的具有式(1)的化合物,其中该饮料的液体基质是选自下组,该组由以下各项组成:水、磷酸、磷酸盐缓冲液、柠檬酸、柠檬酸盐缓冲剂、碳处理水及其组合。该饮料的pH可以是从约2.5至约4.2。该饮料可以进一步包含添加剂,例如像,赤藓糖醇。该饮料可以进一步包含功能性成分,例如像维生素。
在另一个实施例中,一种饮料包含一种碳水化合物甜味剂和约30ppm的具有式(2)的化合物,其中该饮料的液体基质是选自下组,该组由以下各项组成:水、磷酸、磷酸盐缓冲液、柠檬酸、柠檬酸盐缓冲剂、碳处理水及其组合。该饮料的pH可以是从约2.5至约4.2。该饮料可以进一步包含添加剂,例如像,赤藓糖醇。该饮料可以进一步包含功能性成分,例如像维生素。
在还另一个实施例中,一种饮料包含一种碳水化合物甜味剂和约30ppm的化合物(2f),其中该饮料的液体基质是选自下组,该组由以下各项组成:水、磷酸、磷酸盐缓冲液、柠檬酸、柠檬酸盐缓冲剂、碳处理水及其组合。该饮料的pH可以是从约2.5至约4.2。该饮料可以进一步包含添加剂,例如像,赤藓糖醇。该饮料可以进一步包含功能性成分,例如像维生素。
在还另一个实施例中,一种饮料包含一种碳水化合物甜味剂和约30ppm的化合物(2g),其中该饮料的液体基质是选自下组,该组由以下各项组成:水、磷酸、磷酸盐缓冲液、柠檬酸、柠檬酸盐缓冲剂、碳处理水及其组合。该饮料的pH可以是从约2.5至约4.2。该饮料可以进一步包含添加剂,例如像,赤藓糖醇。该饮料可以进一步包含功能性成分,例如像维生素。
在一个更具体的实施例中,一种饮料包含至少一种甜味剂和具有纯度大于约95%的一种具有式(1)的化合物,其中该至少一种甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,是以高于其甜度识别阈值的浓度存在,该具有式(1)的化合物是以处于或低于其甜度识别阈值的浓度存在,并且其中该具有式(1)的化合物使该饮料的甜度增强了一定量,该量是大于含有相同浓度的该具有式(1)的化合物在不存在该至少一种甜味剂的情况下的一种溶液的可检测甜度。
在另一个更具体的实施例中,一种饮料包含至少一种甜味剂和具有纯度大于约95%的一种具有式(2)的化合物,其中该至少一种甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,是以高于其甜度识别阈值的浓度存在,该具有式(2)的化合物是以处于或低于其甜度识别阈值的浓度存在,并且其中该具有式(2)的化合物使该饮料的甜度增强了一定量,该量是大于含有相同浓度的该具有式(2)的化合物在不存在该至少一种甜味剂的情况下的一种溶液的可检测甜度。
在一个更具体的实施例中,一种饮料包含至少一种甜味剂和具有纯度大于约95%的化合物(2f),其中该至少一种甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,是以高于其甜度识别阈值的浓度存在,化合物(2f)是以处于或低于其甜度识别阈值的浓度存在,并且其中化合物(2f)使该饮料的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)在不存在该至少一种甜味剂的情况下的一种溶液的可检测甜度。
在一个更具体的实施例中,一种饮料包含至少一种甜味剂和具有纯度大于约95%的化合物(2g),其中该至少一种甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,是以高于其甜度识别阈值的浓度存在,具有式(2g)的化合物是以处于或低于其甜度识别阈值的浓度存在,并且其中化合物(2g)使该饮料的甜度增强了一定量,该量是大于含有相同浓度的化合物(2g)在不存在该至少一种甜味剂的情况下的一种溶液的可检测甜度。
在另一个实施例中,一种饮料包含具有纯度大于约95%的一种具有式(1)的化合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中该具有式(1)的化合物是以处于或低于甜度识别阈值的浓度存在,并且其中该具有式(1)的化合物使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如像,增强了至少约2.5%(w/v)蔗糖等效值或从约2.0%至约3.0%。
在另一个实施例中,一种饮料包含具有纯度大于约95%的一种具有式(2)的化合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中该具有式(2)的化合物是以处于或低于甜度识别阈值的浓度存在,并且其中该具有式(2)的化合物使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如像,增强了至少约2.5%(w/v)蔗糖等效值或从约2.0%至约3.0%。
在另一个实施例中,一种饮料包含具有纯度大于约95%的化合物(2f)和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中化合物(2f)是以处于或低于甜度识别阈值的浓度存在,并且其中化合物(2f)使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如像,增强了至少约2.5%(w/v)蔗糖等效值或从约2.0%至约3.0%。
在另一个实施例中,一种饮料包含具有纯度大于约95%的化合物(2g)和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合,其中该至少一种甜味剂是以高于甜度识别阈值浓度的浓度存在,其中化合物(2g)是以处于或低于甜度识别阈值的浓度存在,并且其中化合物(2g)使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如,增强了至少约2.5%(w/v)蔗糖等效值或例如,从约2.0%至约3.0%。
在一个实施例中,低热量的苏打包含,例如,焦糖色素、磷酸、糖(即蔗糖、HFCS或HFSS)、化合物(2f)和/或(2g)、苯甲酸钾、天然色素、柠檬酸、以及咖啡因。
在另一个实施例中,低热量的苏打包含,例如,焦糖色素、磷酸、糖、赤藓糖醇、化合物(2f)和/或(2g)、苯甲酸钾、天然色素、柠檬酸、以及咖啡因。
在还另一个实施例中,低热量的苏打包含,例如,焦糖色素、磷酸、糖、赤藓糖醇、D-塔格糖、化合物(2f)和/或(2g)、苯甲酸钾、天然色素、柠檬酸、以及咖啡因。
在又另一个实施例中,低热量的苏打包含,例如,焦糖色素、磷酸、糖、D-塔格糖、化合物(2f)和/或(2g)、苯甲酸钾、天然色素、柠檬酸、以及咖啡因。
在一个实施例中,低热量的苏打包含,例如,焦糖色素、磷酸、糖、D-阿洛酮糖、化合物(2f)和/或(2g)、苯甲酸钾、天然色素、柠檬酸、以及咖啡因。
在另一个实施例中,低热量的柠檬味碳酸软饮料包含,例如,糖、化合物(2f)和/或(2g)、天然风味剂、柠檬酸、柠檬酸钠、苯甲酸钠、苹果酸和甜叶菊叶提取物。
在还另一个实施例中,半热量柠檬味碳酸软饮料包含,例如,糖、赤藓糖醇、化合物(2f)和/或(2g)、天然风味剂、柠檬酸、苹果酸、柠檬酸钠、苯甲酸钠和甜叶菊叶提取物。
在一个实施例中,低热量的橙味碳酸软饮料包含,例如,糖、化合物(2f)和/或(2g)、天然风味剂、柠檬酸、改性食品淀粉、六偏磷酸钠、松香甘油酯、黄色6、苯甲酸钠、甜叶菊叶提取物、溴化植物油和红色40。
在另一个实施例中,低热量的柑橘味碳酸软饮料包含,例如,糖、化合物(2f)和/或(2g)、天然风味剂、柠檬酸、柠檬酸钾、浓缩葡萄果汁、山梨酸钾、苯甲酸钾、EDTA、阿拉伯胶、松香甘油酯、溴化植物油和角豆胶。
在另一个实施例中,低热量的运动饮品包含,例如,化合物(2f)和/或(2g)、柠檬酸、盐、磷酸一钾、氯化镁、氯化钙、天然风味剂、糖、维生素B3、B6、B12、蓝色1、抗坏血酸、以及EDTA二钠钙。
在还另一个实施例中,低热量的新鲜樱桃碳酸软饮料包含,例如,化合物(2f)和/或(2g)、糖焦糖色素、磷酸、山梨酸钾、苯甲酸钾、人工和天然风味剂、咖啡因、磷酸一钠、乳酸、以及聚乙二醇。
在又另一个实施例中,增强水饮料包含,例如,化合物(2f)和/或(2g)、赤藓糖醇、糖、乳酸镁和乳酸钙、磷酸钾、柠檬酸、天然风味剂、维生素C(抗坏血酸)、磷酸、磷酸钙、维生素B3、E、B5、B6、B12、葡萄糖酸锌以及维生素A棕榈酸酯。
在含有以高于其甜度识别阈值的浓度的甜味剂的一种饮料中使用处于或低于其甜度识别阈值的浓度的化合物(2f)或(2g)意味着要求更少的热量甜味剂来提供相同的蔗糖等效值。因此,在一种饮料中有热量的甜味剂的量可以减少约15%至约20%,同时提供相同的蔗糖等效值。
含有以高于其甜度识别阈值的浓度的甜味剂的一种饮料中使用处于或低于其甜度识别阈值的浓度的化合物(2f)或(2g)可以提供具有从约7.5%至约10.0%(w/v)的蔗糖等效值的一种低热量的饮料,其中蔗糖在该饮料中的量是小于通常用于提供7.5%-10.0%(w/v)的蔗糖溶液(在不存在任何附加的甜味剂的情况下)。
b.浓缩物组合物
本发明还包括含有本发明的化合物的缩物组合物。合适的浓缩物组合物包括,但不限于,糖浆、粉末状饮料、风味剂包和风味增强剂滴。
饮料糖浆是用初始体积的液体基质(例如,水)和所希望的饮料成分制备的。全强度饮料然后是通过添加另外体积的水来制备的。固体饮料(powdered beverage)是通过在一种液体基质缺乏下干燥混合所有饮料成分来制备的。全强度饮料(full strengthbeverage)然后是通过添加全部体积的水来制备的。风味剂包和风味增强剂滴通常被加入到饮料(例如水)中以提供增强水,即,例如,更甜、富含营养素和/或果味的。
因此,在一个实施例中,提供了一种浓缩物组合物,该浓缩物组合物包含至少一种甜味剂和具有式(1)的化合物。在该具有式(1)的化合物是一种甜度增强剂的实施例中,将该浓缩物添加到一种饮料中使所述饮料的甜度增强了一定量,该量是大于在该浓缩物组合物中含有相同浓度的该具有式(1)的化合物的一种溶液的可检测甜度。在另一个实施例中,该浓缩物组合物使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值。
在一个实施例中,一种浓缩物组合物包含具有纯度大于约95%的一种具有式(1)的化合物和至少一种甜味剂,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该至少一种甜味剂是以高于其甜度识别阈值的浓度存在。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该具有式(1)的化合物是以处于或低于其甜度识别阈值的浓度存在。该浓缩物组合物使该饮料的甜度增强了一定量,该量是大于在该浓缩物组合物中含有相同浓度的该具有式(1)的化合物的一种溶液的可检测甜度。
在一个实施例中,一种浓缩物组合物包含具有纯度大于约95%的一种具有式(1)的化合物和至少一种甜味剂,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该至少一种甜味剂是以高于其甜度识别阈值的浓度存在。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该具有式(1)的化合物是以处于或低于其甜度识别阈值的浓度存在。该浓缩物组合物使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值。
在一个实施例中,一种浓缩物组合物包含具有纯度大于约95%的一种具有式(2)的化合物和至少一种甜味剂,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该至少一种甜味剂是以高于其甜度识别阈值的浓度存在。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该具有式(1)的化合物是以处于或低于其甜度识别阈值的浓度存在。该浓缩物组合物使该饮料的甜度增强了一定量,该量是大于在该浓缩物组合物中含有相同浓度的该具有式(2)的化合物的一种溶液的可检测甜度。
在一个实施例中,一种浓缩物组合物包含具有纯度大于约95%的一种具有式(2)的化合物和至少一种甜味剂,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该至少一种甜味剂是以高于其甜度识别阈值的浓度存在。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该具有式(1)的化合物是以处于或低于其甜度识别阈值的浓度存在。该浓缩物组合物使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值。
在一个实施例中,一种浓缩物组合物包含具有纯度大于约95%的化合物(2f)或(2g)和至少一种甜味剂,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该至少一种甜味剂是以高于其甜度识别阈值的浓度存在。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),化合物(2f)或(2g)是以处于或低于其甜度识别阈值的浓度存在。该浓缩物组合物使该饮料的甜度增强了一定量,该量是大于在该浓缩物组合物中含有相同浓度的化合物(2f)或(2g)的一种溶液的可检测甜度。
在一个实施例中,一种浓缩物组合物包含具有纯度大于约95%的化合物(2f)或(2g)和至少一种甜味剂,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),该至少一种甜味剂是以高于其甜度识别阈值的浓度存在。一旦该浓缩物组合物被添加到该全强度饮料中(当该浓缩物组合物是一种风味剂包或风味增强剂滴时)或一旦该浓缩物组合物被稀释到全强度饮料中(当该浓缩物组合物是粉末状饮料或糖浆时),化合物(2f)或(2g)是以处于或低于其甜度识别阈值的浓度存在。该浓缩物组合物使该饮料的甜度增强了至少约2.0%(w/v)蔗糖等效值。
该浓缩物组合物可以进一步包含一种液体基质,即水、柠檬酸或磷酸盐缓冲液。
该浓缩物组合物可以进一步含有以下详述的一种或多种功能性成分。功能性成分包括但不限于,维生素、矿物质、抗氧化剂、防腐剂、葡萄糖胺、多元酚以及其组合。可以使用在此所述的任何适合的功能性成分。
该浓缩物组合物可以进一步包含一种或多种添加剂,该添加剂包括但不限于碳水化合物、多元醇、氨基酸及其相应盐、聚氨基酸及其相应盐、糖酸及其相应盐、核苷酸、有机酸、无机酸、有机盐(包括有机酸盐和有机碱盐)、无机盐、苦味化合物、咖啡因、调味剂和调味成分、涩味化合物、蛋白质或蛋白质水解物、表面活性剂、乳化剂、增重剂、汁、乳制品、谷物和其他植物提取物、类黄酮、醇、聚合物以及其组合。可以使用在此所述的任何适合的添加剂。
c.其他消费品
在一个实施例中,本发明是一种消费品,该消费品包含本发明的一种化合物。
在另一个实施例中,该消费品包含一种含本发明的化合物的组合物。
该消费品可以任选地包含添加剂、附加的甜味剂、功能性成分以及其组合。以上描述的任何添加剂、附加的甜味剂和功能性成分可以存在于该消费品中。
i.药物组合物
本发明延伸到包含本发明的化合物的药物组合物。在一个实施例中,一种药物组合物含有药物活性物质和本发明的化合物。在另一个实施例中,一种药物组合物含有药物活性物质和包含本发明的化合物的组合物。本发明的化合物或包含本发明的化合物的组合物可以作为一种赋形剂材料存在于该药物组合物中,该赋形剂材料可以掩盖一种药物活性物质或另一种赋形剂材料的苦味或其他不希望的味道。该药物组合物可以是呈以下形式:片剂、胶囊、液体、气雾剂、粉剂、泡腾片剂或粉末、糖浆、乳剂、悬浮液、溶液、或任何其他形式,以为患者提供药物组合物。在具体实施例中,该药物组合物可以处于一个形式中,以用于口服给予、口腔给予、舌下给予、或本领域已知的任何其他给予路径。
如在此所提及的,“药物活性物质”意指具有生物活性的任何药物、药物制剂、药剂、预防剂、治疗剂、或其他物质。如在此所提及的,“赋形剂材料”是指用作一种活性成分的媒剂的任何无活性物质,如有助于药物活性物质的处理、稳定性、可分散性、可湿性、和/或释放动力学的任何材料。
适合的药物活性物质包括但不限于,用于胃肠道或消化系统的药剂、用于心血管系统的药剂、用于中枢神经系统的药剂、用于疼痛或意识的药剂、用于肌肉骨骼病症的药剂、用于眼睛的药剂、用于耳朵、鼻子和口咽的药剂、用于呼吸系统的药剂、用于内分泌问题的药剂、用于生殖系统或泌尿系统的药剂、用于避孕的药剂、用于产科学和妇科学的药剂、用于皮肤的药剂、用于传染和感染的药剂、用于免疫学的药剂、用于变态反应性病症的药剂、用于营养的药剂、用于血液肿瘤疾病的药剂、用于诊断的药剂、用于安乐死的药剂、或用于其他生物功能或病症的药剂。用于本发明的实施例的适合药物活性物质的实例包括但不限于,抗酸剂、回流抑制剂、抗气胀药、抗多巴胺药、质子泵抑制剂、细胞保护剂、前列腺素类似物、轻泻药、解痉药、止泻剂、胆汁酸螯合剂、阿片样物质、β-受体阻断剂、钙通道阻断剂、利尿剂、强心苷、抗心律失常药、硝酸酯、抗心绞痛药、血管收缩药、血管扩张药、末梢血管活化剂、ACE抑制剂、血管紧张素受体阻断剂、α阻断剂、抗凝血剂、肝素、抗血小板药、纤溶剂、抗血友病因子、止血药、降血脂剂、他汀类、安眠药(hynoptics)、麻醉剂、抗精神病药、抗抑郁药、止吐药、抗惊厥药、抗癫痫药、抗焦虑药、巴比妥类、运动障碍药物、刺激剂、苯二氮卓类、环吡咯酮、多巴胺拮抗剂、抗组胺剂、胆碱能药物、抗胆碱能药、催吐剂、大麻素、止痛药、肌肉松弛药、抗生素、氨基糖苷类、抗病毒剂、抗真菌剂、抗炎药、抗青光眼药、拟交感神经药、类固醇、耵聍溶解药(ceruminolytics)、支气管扩张药、NSAID、镇咳药、粘液溶解药、减充血药、皮质类固醇、雄激素、抗雄激素、促性腺激素、生长激素、胰岛素、抗糖尿病药、甲状腺激素、降钙素、二膦酸化合物、抗利尿激素类似物、碱化剂、喹诺酮类、抗胆碱酯酶、西地那非、口服避孕药、激素替代治疗、骨调节剂、促卵泡激素、促黄体激素、亚麻酸(gamolenicacid)、孕激素、多巴胺激动剂、雌激素、前列腺素、促性腺激素释放因子、氯米芬、他莫昔芬、己烯雌酚、抗麻风药、抗结核药、抗疟药、驱虫药、抗原生动物药、抗血清、疫苗、干扰素、补养药、维生素、细胞毒性药、性激素、芳香酶抑制剂、促生长素抑制素抑制剂、或类似类型物质、或其组合。此类组分通常被视为安全的(GRAS)和/或是美国食品药品管理局(FDA)批准的。
该药物活性物质是以广泛范围的量存在于该药物组合物中的,该量取决于所使用的具体药物活性剂和其预期应用。任何在此所述的药物活性物质的一个有效剂量可以是容易通过使用常规技术并且通过观察在类似情况下获得的结果来确定的。在确定有效剂量时,考虑多种因素,包括但不限于:患者的种类;其大小、年龄和总体健康;所涉及的具体疾病;涉及程度或疾病严重性;个体患者的反应;所给药的具体药物活性剂;给药模式;所给药的制剂的生物利用度特征;所选择的给药方案;以及合并用药的使用。该药物活性物质是以足以递送给患者的量被包含在药学上可接受的载体、稀释剂或赋形剂中,该量是该药物活性物质的体内有效量,当以通常可接受的量使用时不存在严重毒性作用。因此,适合的量可以是容易通过本领域技术人员判断的。
根据本发明的具体实施例,在药物组合物中药物活性物质的浓度将取决于药物的吸收、失活和排泄的速率以及本领域技术人员已知的其他因素。应注意剂量值将随着病状严重性减轻而改变。应进一步理解,对于任何特定受试者,应随着时间根据个体需要和给予的人或者监控药物组合物的给予的人的专业判断来调整特定给药方案,并且在此所述的剂量范围仅是示例性的并且并不旨在限制要求保护的组合物的范围和实践。药物活性物质可以是一次给予,或者可以被分成多个较小剂量以在不同时间间隔内给予。
除了本发明的化合物或包含本发明的化合物的组合物之外,该药物组合物还可以包含其他药学上可接受的赋形剂材料。用于本发明的实施例的适合赋形剂材料的实例包括但不限于,抗粘附剂、粘合剂(例如,微晶纤维素、黄蓍胶或明胶)、包衣、崩解剂、填充剂、稀释剂、软化剂、乳化剂、调味剂、着色剂、佐剂、润滑剂、功能性试剂(例如,营养物)、粘度调节剂、膨胀剂、助流剂(例如,胶体二氧化硅)、表面活性剂、渗透剂、稀释剂、或任何其他非活性成分、或其组合。例如,本发明的药物组合物可以包括选自下组的赋形剂材料,该组由以下各项组成:碳酸钙、着色剂、增白剂、防腐剂和风味调料、三醋精、硬脂酸镁、氢化植物油(sterote)、天然风味调料或人工风味调料、精油、植物提取物、水果香精、明胶、或其组合。
药物组合物的赋形剂材料可以任选地包括其他人工甜味剂或天然甜味剂、填充型甜味剂或其组合。填充型甜味剂包括有热量化合物和无热量化合物二者。在一个具体实施例中,添加剂用作填充型甜味剂。填充型甜味剂的非限制性实例包括蔗糖、右旋糖、麦芽糖、糊精、干燥的转化糖、果糖、高果糖玉米糖浆、左旋糖、半乳糖、玉米糖浆固体、塔格糖、多元醇(例如,山梨糖醇、甘露糖醇、木糖醇、乳糖醇、赤藓糖醇、以及麦芽糖醇)、氢化淀粉水解物、异麦芽酮糖醇、海藻糖、以及其混合物。在具体实施例,填充型甜味剂以广泛范围的量存在于药物组合物中,该量取决于所希望的甜度。两种甜味剂的适合的量是本领域技术人员容易辨别的。
ii.可食用凝胶混合物和可食用凝胶组合物
本发明延伸到包含本发明的一种化合物的可食用凝胶混合物或组合物。
在一个实施例中,一种可食用凝胶或可食用凝胶混合物包含本发明的一种化合物。在另一个实施例中,一种可食用凝胶或可食用凝胶混合物包含一种含本发明的化合物的组合物。
可食用凝胶是可以吃的凝胶。凝胶是其中一个颗粒网络跨越液体介质的体积的胶体系统。尽管凝胶主要由液体组成并且因此展现出与液体类似的密度,但是凝胶由于跨越液体介质的颗粒网络而具有固体的结构连贯。出于这个原因,凝胶通常出现为固体、果冻样材料。凝胶可以用于多种应用中。例如,凝胶可以用于食物、颜料和粘附剂中。
用于具体实施例的可食用凝胶组合物的非限制性实例包括凝胶点心、布丁、果冻、糊剂、松糕、花色肉冻(aspics)、棉花糖、胶质奶糖等。可食用凝胶混合物通常是粉状或颗粒状固体,其中可添加一种流体以形成一种可食用凝胶组合物。用于具体实施例中的流体的非限制性实例包括水、乳品流体、乳品类似物流体、果汁、酒精、酒精饮料以及其组合。可以用于具体实施例中的乳品流体的非限制性实例包括奶、酸奶、奶油、流体乳清以及其混合物。可以用于具体实施例中的乳品类似物流体的非限制性实例包括例如豆奶和非乳品咖啡增白剂。因为在市场上可见的可食用凝胶产品典型地是用蔗糖甜味化的,所以希望用一种替代甜味剂甜味化的可食用凝胶以便提供一种低热量或无热量替代物。
如在此所用的,术语“胶凝成分”是指可以在一种液体介质内形成一种胶体系统的任何材料。用于具体实施例中的胶凝成分的非限制性实例包括明胶、藻酸盐、角叉藻胶、树胶、果胶、魔芋胶、琼脂、食用酸、凝乳酶、淀粉、淀粉衍生物以及其组合。本领域普通技术人员已熟知的是,用于一种可食用凝胶混合物或可食用凝胶组合物中的胶凝成分的量根据多种因素而适当改变,这些因素例如所使用的具体胶凝成分、所使用的具体基液、以及所希望的凝胶特性。
本领域普通技术人员熟知的是这些可食用凝胶混合物和可食用凝胶可以是使用除本发明的一种化合物或包含本发明的化合物的组合物和胶凝剂之外的其他成分制备的。用于具体实施例的其他成分的非限制性实例包括一种食用酸、食用酸盐、缓冲系统、膨胀剂、螯合剂、交联剂、一种或多种风味调料、一种或多种颜料、以及其组合。用于具体实施例的食用酸的非限制性实例包括柠檬酸、己二酸、富马酸、乳酸、苹果酸以及其组合。用于具体实施例中的食用酸盐的非限制性实例包括食用酸的钠盐、食用酸的钾盐以及其组合。用于具体实施例中的膨胀剂的非限制性实例包括低聚果糖(raftilose)、异麦芽酮糖醇、山梨糖醇、聚葡萄糖、麦芽糖糊精以及其组合。用于具体实施例中的螯合剂的非限制性实例包括乙烯四乙酸钙二钠、葡糖酸δ-内酯、葡糖酸钠、葡糖酸钾、乙二胺四乙酸(EDTA)以及其组合。用于具体实施例中的交联剂的非限制性实例包括钙离子、镁离子、钠离子、以及其组合。
iii.牙科组合物
在一个实施例中,一种牙科组合物包含本发明的一种化合物。在另一个实施例中,一种牙科组合物包含一种含本发明的化合物的组合物。牙科组合物通常包含一种活性牙齿物质和一种基底材料。本发明的化合物或包含本发明的化合物的一种组合物可以用作该基底材料以甜味化该牙科组合物。牙科组合物可以是处于用于口腔的任何口服组合物形式,例如像,口腔清新制剂、漱口剂、口腔清洗剂、洁齿剂、牙齿抛光剂、洁牙剂、口腔喷雾剂、牙齿增白剂、牙线等。
如在此所提及的,“活性牙齿物质”意指可以用于提高牙齿或牙龈式样美观和/或健康或者预防龋齿的任何组合物。如在此所提及的,“基底材料”是指用作一种活性牙齿物质的媒剂的任何无活性物质,如有助于一种活性牙齿物质的处理、稳定性、可分散性、可湿性、发泡、和/或释放动力学的任何材料。
用于本发明的实施例的适合活性牙齿物质包括但不限于,去除牙菌斑的物质、从牙齿去除食物的物质、有助于消除和/或掩盖口臭的物质、预防龋齿的物质、以及预防牙龈病(即,齿龈)的物质。用于本发明的实施例的适合活性牙齿物质的实例包括但不限于,防龋齿药、氟化物、氟化钠、单氟磷酸钠、氟化亚锡、过氧化氢、过氧化脲(即过氧化尿素)、抗菌剂、牙斑清除剂、去污剂、抗结石剂、研磨剂、小苏打、过碳酸盐、碱金属和碱土金属的过硼酸盐、或者类似类型的物质、或其组合。此类组分通常被视为安全的(GRAS)和/或是美国食品药品管理局(FDA)批准的。
根据本发明的具体实施例,活性牙齿物质是以牙科组合物的从约50ppm至约3000ppm的范围的量存在于该牙科组合物中。通常,活性牙科组合物是以有效于至少提高牙齿或牙龈式样美观和/或健康或者预防龋齿的量存在于牙科组合物中。例如,包含一种洁齿剂的一种牙科组合物可以包含一种活性牙科物质,该牙科物质包含约850至1,150ppm的量的氟。
除了本发明的化合物或包含本发明的化合物的组合物之外,该牙科组合物还可以包含其他基底材料。用于本发明的实施例的适合基底材料的实例包括但不限于,水、十二烷基硫酸钠或其他硫酸盐、润湿剂、酶、维生素、药草、钙、调味剂(例如,薄荷、泡泡糖、肉桂、柠檬、或橙)、表面活性剂、粘合剂、防腐剂、胶凝剂、pH调节剂、过氧化物活化剂、稳定剂、着色剂、或相似类型的材料、以及其组合。
牙科组合物的基底材料可以任选地包括其他人工甜味剂或天然甜味剂、填充型甜味剂或其组合。填充型甜味剂包括有热量化合物和无热量化合物二者。填充型甜味剂的非限制性实例包括蔗糖、右旋糖、麦芽糖、糊精、干燥的转化糖、果糖、高果糖玉米糖浆、左旋糖、半乳糖、玉米糖浆固体、塔格糖、多元醇(例如,山梨糖醇、甘露糖醇、木糖醇、乳糖醇、赤藓糖醇、以及麦芽糖醇)、氢化淀粉水解物、异麦芽酮糖醇、海藻糖、以及其混合物。通常,存在于牙科组合物中的填充型甜味剂的量的广泛范围取决于牙科组合物的具体实施例和所希望的甜度。本领域普通技术人员将容易确定填充型甜味剂的适当量。在具体实施例中,填充型甜味剂是以牙科组合物的约0.1重量%至约5重量%的范围的量存在于牙科组合物中。
根据本发明的具体实施例,该基底材料是以按牙科组合物重量计从约20%至约99%的范围的量存在于该牙科组合物中。通常,该基底是以有效于为一种活性牙齿物质提供一种媒剂的量存在的。
在一个具体的实施例中,一种牙科组合物包含本发明的一种化合物和一种活性牙科物质。在另一个具体的实施例中,一种牙科组合物包含一种含本发明的化合物的组合物和一种活性牙科物质。通常,该甜味剂的量根据特定牙科组合物的性质和所希望的甜度而广泛改变。
食品包括但不限于,甜食、调味品、口香糖、谷物、烘焙食品、以及乳制品。
iv.甜食
在一个实施例中,一种甜食包含本发明的一种化合物。在另一个实施例中,一种甜食包含一种含本发明的化合物的组合物。
如在此所提及的,“甜食”可以意指糖果、糖(lollie)、糕点糖果或类似术语。甜食通常含有一种基底组成组分和一种甜味剂组分。本发明的化合物或包含本发明的化合物的一种组合物可以充当该甜味剂组分。该甜食可以是处于任何食物形式中,它典型地被认为富含糖或典型地是糖果。根据本发明的具体实施例,甜食可以是烘焙食品,如糕点;甜点,如酸乳、果冻、可饮用果冻、布丁、巴伐利亚奶油、牛奶冻、蛋糕、巧克力饼、慕斯等、在下午茶时或在餐后食用的甜食品;冷冻食品;冷甜食,例如,冰淇淋类型,例如冰淇淋、冰牛奶、奶味冰激淋(lacto-ice)等(其中甜味剂和各种其他类型的原料被加入到奶制品中并且所得到的混合物被搅动并冷冻的食品),以及冰冻甜食,例如冰冻果子露(sherbet)、点心冰淇淋(dessert ice)等(其中各种其他类型的原料被添加一种含糖液体并且所得到的混合物被搅动并冷冻的食品);一般甜食,例如烘焙甜食或蒸煮甜食,如薄脆饼干、饼干、具有豆果酱填料的小圆面包、芝麻酥糖、甜奶夹心饼(alfajor)等;米糕和点心;桌面产品;一般糖类甜食,如口香糖(例如包括含有一种基本上不溶于水、可咀嚼的胶基的组合物,如糖胶树胶(chicle)或其替代物,包括节路顿胶(jetulong)、古塔柯(guttakay)橡胶或某种可食用天然合成树脂或蜡)、硬糖、软糖、薄荷糖、牛轧糖、软心豆粒糖、奶油软糖、乳脂糖、太妃糖、瑞士乳片剂、甘草糖、巧克力糖、凝胶糖、棉花糖、杏仁蛋白软、奶油蛋白软糖(divinity)、棉花糖等;沙司,包括水果风味酱、巧克力酱等;食用凝胶;乳油,包括黄油乳油、面粉糊、生奶油等;果酱,包括草莓果酱、柑橘酱等;以及面包,包括甜面包等或其他淀粉产品,以及其组合。
如在此所提及的,“基底组合物”意指可以是一种食品并且提供用于携带甜味剂组分的一种基质的任何组合物。
用于本发明的实施例的适合基底组合物可以包括面粉、酵母、水、盐、黄油、鸡蛋、奶、奶粉、烈酒、明胶、坚果、巧克力、柠檬酸、酒石酸、富马酸、天然风味调料、人工风味调料、色素、多元醇、山梨糖醇、异麦芽酮糖醇、麦芽糖醇、乳糖醇、苹果酸、硬脂酸镁、卵磷脂、氢化葡萄糖浆、甘油、天然树胶或合成树胶、淀粉等,以及其组合。此类组分通常被视为安全的(GRAS)和/或是美国食品药品管理局(FDA)批准的。根据本发明的具体实施例,该基底组合物是以按甜食重量计从约0.1重量%至约99重量%的范围的量存在于该甜食中。通常,该基底组合物是以一定量存在于该甜食中,与一种具有式(1)的化合物或包含具有式(1)的化合物的组合物组合以提供一种食品产品。
甜食的基底材料可以任选地包括其他人工甜味剂或天然甜味剂、填充型甜味剂或其组合。填充型甜味剂包括有热量化合物和无热量化合物二者。填充型甜味剂的非限制性实例包括蔗糖、右旋糖、麦芽糖、糊精、干燥的转化糖、果糖、高果糖玉米糖浆、左旋糖、半乳糖、玉米糖浆固体、塔格糖、多元醇(例如,山梨糖醇、甘露糖醇、木糖醇、乳糖醇、赤藓糖醇、以及麦芽糖醇)、氢化淀粉水解物、异麦芽酮糖醇、海藻糖、以及其混合物。通常,存在于甜食中的填充型甜味剂的量的广泛范围取决于甜食的具体实施例和所希望的甜度。本领域普通技术人员将容易确定填充型甜味剂的适当量。
在一个具体的实施例中,一种甜食包含本发明的一种化合物或包含本发明的化合物和一种基础组成的组合物。通常,甜食中的本发明的化合物的量的广泛范围取决于甜食的具体实施例和所希望的甜度。本领域普通技术人员将容易确定适当的量。在一个具体的实施例中,本发明的化合物是以甜食的约30ppm至约6000ppm的范围的量存在于甜食中。在另一个实施例中,本发明的化合物是以甜食的约1ppm至约10,000ppm的范围的量存在于甜食中。在甜食包含硬糖的实施例中,本发明的化合物是以硬糖的约150ppm至约2250ppm的范围的量存在。
v.调味品组合物
在一个实施例中,一种调味品包含本发明的一种化合物。在另一个实施例中,一种调味品包含一种含本发明的化合物的组合物。如在此所用的调味品是用于增强或改善一种食品或饮料的风味的组合物。调味品的非限制性实例包括番茄沙司(番茄酱);芥菜;烤肉调味酱;黄油;辣酱油;酸辣酱;开胃沙司;咖喱粉;蘸料;鱼露;辣根酱;辣椒酱;果冻、果酱、柑橘酱、或蜜饯;美乃滋;花生酱;开胃小菜(relish);蛋黄酱;色拉调味料(例如,油和醋、凯撒酱(Caesar)、法国酱(French)、牧场酱(ranch)、蓝干酪、俄国酱(Russian)、千岛酱、意大利酱(Italian)、以及香醋汁)、萨尔萨辣酱(salsa);德国泡菜;酱油;牛排酱;糖浆;塔塔酱;以及伍斯特沙司。
调味品基料通常包含一种不同成分的混合物,它的非限制性包括媒剂(例如,水和醋);香辛料或佐料(例如,盐、胡椒、大蒜、芥菜籽、洋葱、辣椒、姜黄、以及其组合);水果、蔬菜、或其产品(例如,番茄或基于番茄的产品(糊状物、浓汤)、果汁、果皮汁(fruit juicepeel)、以及其组合);油或油乳液,具体地是蔬菜油;增稠剂(例如,黄原胶、食物淀粉、其他水解胶体、以及其组合);及乳化剂(例如,蛋黄固体、蛋白质、阿拉伯树胶、角豆树胶、瓜尔胶、刺梧桐树胶、黄蓍胶、卡拉胶、果胶、海藻酸的丙二醇酯、羧甲基纤维素钠、聚山梨醇酯、以及其组合)。调味品基质的食品和制备调味品基质的方法是本领域普通技术人员已熟知的。
通常,调味品还包含有热量甜味剂,如蔗糖、高果糖玉米糖浆、糖蜜、蜂蜜、或红糖。在此处提供的调味品的示例性实施例中,使用本发明的一种化合物或包含本发明的化合物的组合物,而不是传统的有热量的甜味剂。因此,一种调味品组合物令人希望地包含本发明的一种化合物或包含本发明的化合物和一种调味品基料的组合物。
该调味品组合物任选地可以包含其他天然和/或合成的高效甜味剂、填充型甜味剂、pH改性剂(例如,乳酸、柠檬酸、磷酸、盐酸、乙酸、以及其组合)、填充剂、功能性试剂(例如,药剂、营养物、或食物或植物的组分)、调味剂、着色剂或其组合。
vi.口香糖组合物
在一个实施例中,一种口香糖组合物包含本发明的一种化合物。在另一个实施例中,一种口香糖组合物包含一种含本发明的化合物的组合物。口香糖组合物通常包含一个水溶性部分和一个水不溶性可咀嚼胶基部分。该水溶性部分,典型地包含本发明的组合物,随部分调味剂在咀嚼过程中在一段时间内消散而不溶性胶基部分保留在口中。不溶性胶基通常决定一种树胶是否被视为口香糖、泡泡糖或功能性口香糖。
不溶性胶基通常是以口香糖组合物的约15重量%至约35重量%的范围的量存在于口香糖组合物中,它通常包含弹性体、软化剂(增塑剂)、乳化剂、树脂、以及填充剂的组合。此类组分通常被视为食用级的,被视为安全的(GRA)和/或是美国食品药品管理局(FDA)批准的。
弹性体是胶基的主要组分,它为口香糖提供了橡胶样、粘着性质,并且可以包括一种或多种天然橡胶(例如,烟熏乳胶、液态乳胶、或银胶菊);天然树胶(例如节路顿胶、佩里洛胶(perillo)、香豆果树胶、二齿铁线子胶、巧克力铁线子胶、人心果胶(nispero)、罗斯印迪哈胶(rosindinha)、糖胶树胶、以及马来乳胶(gutta hang kang));或合成弹性体(例如,丁二烯-苯乙烯共聚物、异丁烯-异戊二烯共聚物、聚丁二烯、聚异丁烯、以及乙烯基聚合弹性体)。在一个具体实施例中,该弹性体是以胶基的约3重量%至约50重量%的范围的量存在于胶基中。
使用树脂改变胶基的坚固度,并且帮助软化胶基的弹性体组分。适合的树脂的非限制性实例包括松香酯、萜烯树脂(例如,来自α-蒎烯、β-蒎烯和/或d-柠檬烯的萜烯树脂)、聚乙酸乙烯酯、聚乙烯醇、乙烯乙酸乙烯酯、以及乙酸乙烯酯-月桂酸乙烯酯共聚物。松香酯的非限制性实例包括部分氢化松香的甘油酯、聚合松香的甘油酯、部分二聚松香的甘油酯、松香甘油酯,部分氢化松香的季戊四醇酯、松香甲酯、或部分氢化松香的甲酯。在一个具体实施例中,该树脂是以胶基的约5重量%至约75重量%的范围的量存在于胶基中。
软化剂也称为增塑剂,它们用于改变咀嚼容易度和/或口香糖组合物的口感。通常,软化剂包括油、脂肪、蜡、以及乳化剂。油和脂肪的非限制性实例包括牛脂、氢化牛脂、大的氢化或部分氢化植物油(如大豆油、菜籽油、棉籽油、向日葵油、棕榈油、椰子油、玉米油、红花油、或棕榈仁油))、可可脂、单硬脂酸甘油酯、三乙酸甘油酯、松香甘油酯、卵磷脂(leithin)、甘油单酯、甘油二酯、甘油三酯乙酰化单甘油酯、以及游离脂肪酸。蜡的非限制性实例包括聚丙烯/聚乙烯/费-托氏(Fisher-Tropsch)蜡、石蜡、以及微晶蜡和天然蜡(例如,小烛树蜡、蜂蜡和棕榈蜡)。微晶蜡,特别是具有高结晶度和高溶点的那些微晶蜡也可以被视为稠化剂或结构改性剂。在一个具体实施例中,这些软化剂是以胶基的约0.5重量%至约25重量%的范围的量存在于胶基中。
乳化剂用于形成口香糖组合物的不溶相和可溶相的一种均匀分散物并且也具有增塑特性。适合的乳化剂包括单硬脂酸甘油酯(GMS)、卵磷脂(磷脂酰胆碱)、聚甘油多聚蓖麻油酸(PPGR)、脂肪酸的单甘油酯和二甘油酯、甘油二硬脂酸酯、三醋精、乙酰化甘油单酯、甘油三乙酸酯、以及硬脂酸镁。在一个具体实施例中,这些乳化剂是以胶基的约2重量%至约30重量%的范围的量存在于胶基中。
口香糖组合物还可以在口香糖组合物的胶基和/或可溶性部分中包含佐剂或填充剂。适合的佐剂和填充剂包括卵磷脂、菊糖、聚糊精、碳酸钙、碳酸镁、硅酸镁、石灰石粉、氢氧化铝、硅酸铝、滑石、粘土、氧化铝、二氧化钛、以及磷酸钙。在具体实施例中,卵磷脂可以用作一种惰性填充剂以减小口香糖组合物的粘度。在其他具体实施例中,乳酸共聚物、蛋白质(例如,谷蛋白和/或玉米蛋白)和/或瓜胶可以用于形成更容易生物降解的一种口香糖。这些佐剂或填充剂通常是以胶基的最高达约20重量%的量存在于该胶基中。其他任选成分包括着色剂、增白剂、防腐剂、以及风味调料。
在口香糖组合物的具体实施例中,该胶基构成该口香糖组合物的约5重量%至约95重量%,更理想地是构成该口香糖组合物的约15重量%至约50重量%并且甚至更理想地构成该口香糖组合物的从约20重量%至约30重量%。
该口香糖组合物的可溶性部分可以任选地包括其他人工甜味剂或天然甜味剂、填充型甜味剂、软化剂、乳化剂、调味剂、着色剂、佐剂、填充剂、功能性试剂(例如,药物或营养物)、或其组合。以上描述了适合的软化剂和乳化剂的实例。
填充型甜味剂包括有热量化合物和无热量化合物二者。填充型甜味剂的非限制性实例包括蔗糖、右旋糖、麦芽糖、糊精、干燥的转化糖、果糖、高果糖玉米糖浆、左旋糖、半乳糖、玉米糖浆固体、塔格糖、多元醇(例如,山梨糖醇、甘露糖醇、木糖醇、乳糖醇、赤藓糖醇、以及麦芽糖醇)、氢化淀粉水解物、异麦芽酮糖醇、海藻糖、以及其混合物。在具体实施例中,填充型甜味剂是以口香糖组合物的约1重量%至约75重量%的范围的量存在于口香糖组合物中。
调味剂可以用于口香糖组合物的不溶性胶基或可溶性部分中。此类调味剂可以是天然风味调料或人工风味调料。在一个具体实施例中,该调味剂包括精油,如源于植物或水果的油、椒样薄荷油、绿薄荷油、其他薄荷油、丁香油、肉桂油、冬青油、月桂油、百里香油、雪松叶油、肉豆蔻油、多香果油、鼠尾草油、肉豆蔻衣油、以及杏仁油。在另一个具体实施例中,该调味剂包括植物提取物或水果香精,如苹果、香蕉、西瓜、梨、桃、葡萄、草莓、覆盆子、樱桃、李子、菠萝、杏、以及其混合物。在又一个具体实施例中,该调味剂包括柑橘调味剂,如提取物、香精、或者柠檬、酸橙、橙、橘子、葡萄柚、香橼、或金橘的油。
在一个具体的实施例中,一种口香糖组合物包含本发明的一种化合物或包含本发明的化合物和一种胶基的组合物。在一个具体的实施例中,本发明的一种化合物是以口香糖组合物的约1ppm至约10,000ppm的范围的量存在于该口香糖组合物中。
vii.谷物组合物
在一个实施例中,一种谷物组合物包含本发明的一种化合物。在另一个实施例中,一种谷物组合物包含一种含本发明的化合物的组合物。谷物组合物典型地是作为主食或作为小吃食用的。用于具体实施例中的谷物组合物的非限制性实例包括可即食谷物以及热谷物。可即食谷物是可以食用而不用消费者进一步加工(即,烹煮)的谷物。可即食谷物的实例包括早餐谷物和小吃棒。早餐谷物典型地被加工来产生一种切碎、薄片、膨胀或挤压形式。早餐谷物通常是冷却食用的并且通常与奶和/或水果混合。小吃棒包括例如能量棒、米糕、格兰诺拉麦片棒、以及营养棒。热谷物通常在吃之前是以奶或水烹煮的。热谷物的非限制性实例包括粗燕麦粉、粥、玉米粥、大米、以及燕麦片。
谷物组合物通常包含至少一种谷物成分。如在此所用的,术语“谷物成分”是指诸如全部或部分谷粒、全部或部分种子、以及全部或部分禾草的材料。用于具体实施例中的谷物成分的非限制性实例包括玉米、小麦、大米、大麦、麸皮、麸皮胚乳(bran endosperm)、碾碎的干小麦(bulgur)、高粱、粟、燕麦、黑麦、黑小麦、荞麦、福尼奥米(fonio)、藜麦、菜豆、大豆、苋菜、埃塞俄比亚画眉草(teff)、斯佩耳特小麦(spelt)、以及卡瓦尼(kaniwa)。
在一个具体的实施例中,该谷物组合物包含本发明的一种化合物或包含本发明的化合物和至少一种谷物成分的组合物。本发明的一种化合物或包含本发明的一种化合物的组合物可以是以多种方式,例如作为涂料、作为霜、作为釉、或作为基质共混物添加到该谷物组合物中(即,在制备最终谷物产品之前作为一种成分添加到谷物制剂中)。
因此,在一个具体的实施例中,本发明的一种化合物或包含本发明的化合物的组合物是作为一种基质共混物添加到该谷物组合物中。在一个实施例中,本发明的一种化合物或包含本发明的化合物的组合物是在烹煮之前与一种热谷物共混以提供一种甜味化的热谷物产品。在另一个实施例中,本发明的一种化合物或包含本发明的化合物的组合物是在挤压该谷物之前与谷物基质共混。
在另一个具体的实施例中,本发明的一种化合物或包含本发明的化合物的组合物是作为涂料添加到谷物组合物中,例如像通过将本发明的一种化合物或包含本发明的化合物的组合物与一种食用级油组合并且将该混合物应用于谷物中。在一个不同的实施例中,本发明的一种化合物或包含本发明的化合物的组合物和食用级油可以通过首先应用油亦或甜味剂来单独地应用于谷物中。用于具体实施例的食用级油的非限制性实例包括植物油,如玉米油、大豆油、棉籽油、花生油、椰子油、菜籽油、橄榄油、芝麻籽油、棕榈油、棕榈仁油、以及其混合物。在另一个实施例中,食用级脂肪可以用于替代这些油,只要该脂肪在将脂肪应用于谷物上之前熔解。
在另一个实施例中,本发明的一种化合物或包含本发明的化合物的组合物是作为釉添加到该谷物组合物中。用于具体实施例中的上光剂的非限制性实例包括玉米糖浆、蜂蜜、糖浆和蜂蜜糖浆固体、枫树糖浆和枫树糖浆固体、蔗糖、异麦芽酮糖醇、聚葡萄糖、多元醇、氢化淀粉水解物、其水溶液、以及其混合物。在另一个此类实施例中,本发明的一种化合物或包含本发明的化合物的组合物是作为釉通过与一种上釉剂和一种食用级油或脂肪组合并且将该混合物应用于谷物中来添加的。在另一个实施例中,一种树胶系统,例如像,阿拉伯树胶、羧甲基纤维素、或藻酸,可以被添加到该釉中以提供结构支撑。另外,该釉还可以包含一种着色剂,并且还可以包含一种香料。
在另一个实施例中,本发明的一种化合物或包含本发明的化合物的组合物是作为霜添加到该谷物组合物中。在一个此类实施例中,本发明的一种化合物或包含本发明的化合物的组合物与水和一种霜剂组合并且然后应用于谷物中。用于具体实施例中的毛面酸蚀剂的非限制性实例包括麦芽糖糊精、蔗糖、淀粉、多元醇、以及其混合物。霜状物还可以包含一种食用级油、食用级脂肪、着色剂、和/或香料。
通常,在谷物组合物中本发明的一种化合物的量的广泛范围取决于谷物组合物的具体类型和其所希望的甜度。本领域普通技术人员可以容易确定加入到谷物组合物中的甜味剂的适当量。在一个具体的实施例中,本发明的一种化合物是以谷物组合物的约0.02重量%至约1.5重量%的范围的量存在于该谷物组合物中,并且该至少一种添加剂是以该谷物组合物的约1重量%至约5重量%的范围的量存在于谷物组合物中。
viii.烘焙食品
在一个实施例中,一种烘焙食品包含本发明的一种化合物。在另一个实施例中,一种烘焙食品包含一种含本发明的化合物的组合物。如在此所用的,烘焙食品包括在供应之前需要制备的可即食和所有可即时烘烤产品、面粉和混合物。烘焙食品的非限制性实例包括蛋糕、薄脆饼干、饼干、巧克力饼、松饼、面包卷、百吉饼、甜甜圈、果馅卷、糕点、羊角面包、小点心、面包、面包产品、以及小圆面包。
根据本发明的实施例优选的烘焙食品可以被分类成三组:面包型生面团(例如,白面包、风味面包(variety bread)、软面包、硬面包卷、百吉饼、比萨面团、以及墨西哥薄饼)、甜面团(例如、丹麦酥皮饼、羊角面包、饼干、千层饼、馅饼酥皮、小点心、以及饼干)和糊状物(例如,蛋糕,如海绵蛋糕、磅饼、魔鬼蛋糕、奶酪蛋糕、以及夹心蛋糕、甜甜圈或其他酵母发酵蛋糕、巧克力饼、以及松饼)。生面团的特征通常是基于面粉的,而糊状物是更基于水的。
根据本发明的具体实施例的烘焙食品通常包含甜味剂、水和脂肪的组合。根据本发明的很多实施例制备的烘焙食品还含有面粉,以便制备一个生面团或糊状物。如在此所用的术语“生面团”是一种面粉和其他成分的混合物,其硬度足以揉捏或碾压。如在此所用的术语“糊状物”由面粉、液体如奶或水、以及其他成分组成并且是稀薄到足以从匙上倾泻或滴落。理想地,根据本发明的具体实施例,该面粉是以在干重基础上的约15%至约60%、更理想地是在干重基础上的约23%至约48%的范围的量存在于烘焙食品中的。
面粉的类型可以是基于所希望的产品来选择的。通常,面粉包含通常用于烘焙食品中的可食用无毒面粉。根据具体实施例,面粉可以是一种漂白烘烤面粉、通用面粉、或未漂白面粉。在其他具体实施例中,还可以使用以其他方式处理的面粉。例如,在具体实施例中,面粉可以富含附加维生素、矿物质或蛋白质。适用于本发明的具体实施例的面粉的非限制性实例包括小麦粉、玉米粉、全谷类、全谷类的各部分(小麦、麸皮和麦片)、以及其组合。在具体实施例中,淀粉或含淀粉材料也可以用作面粉。常见食物淀粉通常是源于马铃薯、玉米、小麦、大麦、燕麦、木薯、竹芋、以及西米。在本发明的具体实施例中,可以使用改性淀粉和预胶凝淀粉。
在本发明的具体实施例中使用的脂肪或油的类型可以包括适用于烘焙的任何可食用脂肪、油或其组合。适用于本发明的具体实施例中的脂肪的非限制性实例包括植物油、牛脂、猪油、海洋动物油、以及其组合。根据具体实施例,这些脂肪可以是分馏的、部分氢化的和/或强化的。在另一个具体实施例中,该脂肪理想地包括还原的、低热量的、或不可消化的脂肪、脂肪替代品或合成脂肪。在另一个具体实施例中,还可以使用起酥油、脂肪或硬脂肪和软脂肪的混合物。在具体实施例中,起酥油可以是大部分源于甘油三酯,该甘油三酯源于植物来源(例如,棉籽油、大豆油、花生油、亚麻籽油、芝麻油、棕榈油、棕榈仁油、菜籽油、红花油、椰子油、玉米油、葵花籽油、以及其混合物)。在具体实施例中,还可以使用具有从8至24个碳原子的链长度的脂肪酸的合成甘油三酯或天然甘油三酯。理想地,根据本发明的具体实施例,该脂肪是以按干重计约2%至约35%、更理想地是按干重计约3%至约29%的范围的量存在于烘焙食品中的。
根据本发明的具体实施例的烘焙食品还包含足以提供所希望的稠度的量的水,从而能够在烹煮之前或之后适当成形、制造并切割烘焙食品。烘焙食品的总水份含量包括直接添加到烘焙食品中的任何水以及存在于单独添加的成分中的水(例如,面粉,它通常包含按重量计约12%至约14%的水分)。理想地,根据本发明的具体实施例,水是以按烘焙食品重量计最高达约25%的量存在于该烘焙食品中。
根据本发明的具体实施例的烘焙食品还可以包含多种附加的常见成分,如膨松剂、风味调料、颜料、奶、奶副产品、蛋、蛋副产品、可可、香草或其他调味剂、以及内含物,如坚果类、葡萄干、樱桃、苹果、杏、桃、其他水果、柑桔皮、防腐剂、椰子、风味薄片(如巧克力薄片、奶油糖果薄片和焦糖薄片)以及其组合。在具体实施例中,烘焙食品还可以包含乳化剂,如卵磷脂和甘油单酯。
根据本发明的具体实施例,膨松剂可以包括化学膨松剂或酵母膨松剂。适用于本发明的具体实施例的化学膨松剂的非限制性实例包括小苏打(例如,碳酸氢钠、碳酸氢钾、或碳酸氢铝)、发酵酸(例如,磷酸钠铝、磷酸一钙、或磷酸二钙)、以及其组合。
根据本发明的另一个具体实施例,可可可以包含天然巧克力或“碱处理”巧克力,它们的大部分脂肪或可可脂通过溶剂提取、挤压或其他方式表示或取出。在一个具体实施例,可能需要减少一种包含巧克力的烘焙食品中的脂肪的量,因为在可可脂中存在附加脂肪。在具体实施例中,与可可相比可能需要添加更大量的巧克力,以便提供等效量的风味和颜色。
烘焙食品通常还包含有热量甜味剂,如蔗糖、高果糖玉米糖浆、赤藓糖醇、糖蜜、蜂蜜、或红糖。在此处提供的烘焙食品的示例性实施例中,有热量的甜味剂被本发明的一种化合物或包含本发明的化合物的组合物部分或全部替换。因此,在一个实施例中,一种烘焙食品包含本发明的一种化合物或包含本发明的化合物的组合物结合脂肪、水、以及任选地面粉。在具体实施例中,烘焙食品可以任选地包含其他天然和/或合成的高效甜味剂和/或填充型甜味剂。
ix.乳制品产品
在一个实施例中,一种乳制品产品包含本发明的一种化合物。在另一个实施例中,一种乳制品产品包含一种含本发明的化合物的组合物。适用于本发明的乳制品产品和用于制备乳制品的方法是本领域普通技术人员已熟知的。如在此所用的,乳制品产品包括奶或由奶生产的食品。适用于本发明的实施例的乳制品产品的非限制性实例包括奶、奶油、酸奶油、法式鲜奶油、酪乳、发酵酪乳、奶粉、炼乳、淡炼乳、黄油、干酪、白软干酪、奶油干酪、酸奶、冰淇淋、软香乳冻、冷冻酸奶、意大利冰淇淋(gelato)、奶黄酱(vla)、健康酸奶(piima)、酸奶
Figure GDA0003476432920001091
卡耶克(kajmak)、酸乳酒(kephir)、威利酒(viili)、马奶酒(kumiss)、艾日格酸奶(airag)、冰牛奶、干酪素、咸酸奶(ayran)、印度奶昔(lassi)、韩式浓缩奶(khoa)、或其组合。
奶是由雌性哺乳动物的乳腺分泌的用于养育它们幼崽的一种流体。产生奶的雌性能力是定义的哺乳动物特征之一并且在新生儿能够消化更多样化的食物之前为它们提供主要营养物来源。在本发明的具体实施例中,这些乳制品是源于牛、山羊、绵羊、马、驴、骆驼、水牛、牦牛、驯鹿、驼鹿、或人的生奶。
在本发明的具体实施例中,由生奶加工乳制品通常包括巴氏灭菌、乳油化和均质化的步骤。尽管生奶可以在没有巴氏灭菌的情况下消耗,但是它通常被巴氏灭菌以破坏有害微生物,如细菌、病毒、原生动物、霉菌、以及酵母。巴氏灭菌通常包括持续短时间段将该奶加热至高温,以基本上减少微生物数量,从而减小疾病风险。
乳油化在传统上是在巴氏灭菌步骤之后,并且涉及将奶分离成一个较高脂肪奶油层和一个较低脂肪奶层。奶将在放置十二至二十四小时之后分离成奶层和奶油层。奶油上升到奶层顶部并且可以被撇去并用作一种单独的乳制品。作为替代方案,可以使用离心作用来将奶油与奶分离。根据奶的脂肪含量对剩余奶进行分类,它的非限制性实例包括全脂奶、2%脂奶、1%脂奶、以及脱脂奶。
在通过乳油化从该奶中去除所希望的量的脂肪之后,奶常常是均质化的。均质化防止奶油与奶分离并且通常涉及在高压下将奶泵送通过小直径管,以便破坏奶中的脂肪球。奶的巴氏灭菌、乳油化和均质化是常见的,但并不是生产可消耗乳制品所必须的。因此,用于本发明的实施例中的适合乳制品可以不经过加工步骤、经过单一加工步骤、或经过在此所述的加工步骤的组合。用于本发明的实施例中的适合乳制品可以经过除在此所述的加工步骤之外的加工步骤。
本发明的具体实施例包括通过附加加工步骤由奶生产的乳制品。如以上所述的,奶油可以是使用机器离心器来从奶顶部撇去或者与奶分离的。在一个具体实施例中,乳制品包括酸奶油,它是使用一种细菌培养发酵奶油来获得的富含脂肪的一种乳制品。细菌在发酵过程中产生乳酸,该发酵使奶油变酸并变稠。在另一个具体实施例中,乳制品包括法式鲜奶油,它是以与酸奶油类似的方式用细菌培养稍微酸化的一种多脂奶油。法式鲜奶油通常与酸奶油并不一样稠或一样酸。在另一个具体实施例中,乳制品包括发酵酪乳。发酵酪乳是通过向奶中添加细菌来获得的。其中细菌培养将乳糖转化为乳酸的所得发酵产生了酸味的发酵酪乳。尽管以一种不同方式产生它,但是发酵酪乳通常与传统酪乳类似,该传统酪乳是黄油制造的一种副产物。
根据本发明的其他具体实施例,乳制品包括奶粉、炼乳、淡炼乳或其组合。奶粉、炼乳和淡炼乳通常是通过从奶中去除水来产生的。在一个具体实施例中,该乳制品包含含有干奶粉固体的一种奶粉,该干奶粉固体具有低水份含量。在另一个具体实施例中,乳制品包括炼乳。炼乳通常包含具有降低的水份含量的奶和添加的甜味剂,从而产生具有长贮藏寿命的一种稠的甜味产品。在另一个具体实施例中,乳制品包括淡炼乳。淡炼乳通常包括已从中去除约60%的水的新鲜、均质奶,它已冷却,用添加剂如维生素和稳定剂强化,包装,并且最终灭菌。根据本发明的另一个具体的实施例,该乳制品包含一种干奶精和本发明的一种化合物或含本发明的化合物的组合物。
在另一个具体实施例中,在此提供的乳制品包括黄油。黄油通常是通过搅拌新鲜或发酵的奶油或奶来制备的。黄油通常在包含大部分水和乳蛋白的小液滴周围包含乳脂。搅拌过程损害了乳脂微小球周围的膜,从而允许乳脂连结并与奶油的其他部分分离。在另一个具体实施例中,乳制品包括酪乳,它是在通过搅拌过程由全脂奶产生黄油之后保留的酸味液体。
在另一个具体实施例中,乳制品包括干酪,它是使用凝乳酶或凝乳酶替代物与酸化的组合使乳凝结来产生的一种固体食品。凝乳酶是在消化奶的哺乳动物胃内产生的一种天然的酶络合物,它在干酪制备中用于使奶凝结,从而使得它分离成被称为凝乳的固体和被称为乳清的液体。一般而言,凝乳酶是从年轻的反刍动物(诸如小牛)的胃得到;但是,凝乳酶的替代性源包括一些植物,微生物有机体,以及遗传修饰的细菌、真菌、或酵母。此外,奶可以是通过添加酸如柠檬酸来凝结的。通常,凝乳酶和/或酸化的组合是用于使奶凝结。在将奶分离成凝乳和乳清之后,一些干酪是通过简单排水、成盐以及包装这些凝乳来制成的。然而,对于大部分干酪,需要更多加工。可以使用很多不同的方法来产生数以百计可用的干酪种类。加工方法包括加热该干酪、将其切割成小块以排水(drain)、成盐、伸展、形成切达干酪、洗涤、使其发霉、熟化、以及成熟。一些干酪如蓝干酪具有在熟化之前或过程中引入它们的附加细菌或霉菌,从而向最终产品赋予风味和芳香。白软干酪是具有适宜风味的一种干酪凝乳产品,它被排出但并未被挤压,以使得保留一些乳清。通常洗涤凝乳以去除酸度。奶油干酪是具有高脂肪含量的一种软的、味道适中的白干酪,它是通过向奶中添加奶油并且然后使其凝结以形成一种丰富的凝乳来产生的。或者,奶油干酪可以是由脱脂乳制成的,其中奶油被添加到凝乳中。应理解,如在此所用的干酪包括通过使奶凝结生产的所有固体食品。
在本发明的另一个具体实施例中,乳制品包括酸乳。酸乳通常是通过细菌发酵奶来产生的。乳糖的发酵产生乳酸,这作用于奶中的蛋白质,以产生一种凝胶样质地和酸味。在特别希望的实施例中,酸乳可以是用一种甜味剂甜味化的和/或调味的。调味剂的非限制性实例包括但不限于,水果(例如,桃、草莓、香蕉)、香草、以及巧克力。如在此所用的,酸乳还包括具有不同稠度和粘度的酸乳品种,如达希酸奶(dahi)、达希凝乳(dadih)或达缇凝乳(dadiah)、浓缩型酸奶(labneh)或地中海式酸奶(labaneh)、保加利亚酸奶(bulgarian)、克非尔(kefir)、以及里海优酪乳(matsoni)。在另一个具体实施例中,乳制品包括一种基于酸乳的饮料,它也称为可饮用酸乳或一种酸奶思慕斯(yogurt smoothie)。在特别希望的实施例中,基于酸乳的饮料可以包含甜味剂、调味剂、其他成分或其组合。
在本发明的具体实施例中,可以使用除在此所述的那些之外的其他乳制品。此类乳制品是本领域普通技术人员已熟知的,它们的非限制性实例包括奶、牛奶和果汁、咖啡、茶、奶黄酱(vla)、健康酸奶、酸奶(filmjolk)、卡耶克(kajmak)、酸乳酒(kephir)、威利酒(viili)、马奶酒(kumiss)、艾日格酸奶(airag)、冰牛奶、干酪素、咸酸奶(ayran)、印度奶昔(lassi)、以及韩式浓缩奶(khoa)。
根据本发明的具体实施例,乳制品组合物还可以包含其他添加剂。适合的添加剂的非限制性实例包括甜味剂和调味剂,如巧克力、草莓和香蕉。在此提供的乳制品组合物的具体实施例还可以包含附加营养物补充剂如维生素(例如,维生素D)和矿物质(例如,钙),以改进奶的营养物组成。
在一个特别令人希望的实施例中,该乳制品组合物包含本发明的一种化合物或包含本发明的化合物的组合物与一种乳制品组合。在一个具体的实施例中,本发明的一种化合物是以乳制品组合物的约200至约20,000重量百分比的范围的量存在于该乳制品组合物中。
本发明的一种化合物或包含本发明的化合物的组合物还适合于在加工的农产品、畜产品或海产品中使用;加工的肉产品如香肠等;甑煮食品、腌渍品、在酱油中煮沸的果酱、佳肴、配菜;汤;小吃,如薯片、饼干等;切碎的填料、叶、杆、茎、均质化的烤叶以及动物饲料。
x.桌面甜味剂组合物
在此还考虑了含有本发明的一种化合物的桌面甜味剂组合物。该桌面组合物可以进一步包含至少一种膨胀剂、添加剂、抗结块剂、功能性成分或其组合。
适合的“膨胀剂”包括但不限于,麦芽糖糊精(10DE、18DE、或5DE)、玉米糖浆固体(20DE或36DE)、蔗糖、果糖、葡萄糖、转化糖、山梨糖醇、木糖、核酮糖、甘露糖、木糖醇、甘露糖醇、半乳糖醇、赤藻糖醇、麦芽糖醇、乳糖醇、异麦芽酮糖醇、麦芽糖、塔格糖、乳糖、菊糖、甘油、丙二醇、多元醇、聚葡萄糖、低聚果糖、纤维素和纤维素衍生物等、以及其混合物。另外,还根据本发明的其他实施例,砂糖(蔗糖)或其他有热量甜味剂如结晶果糖、其他碳水化合物或糖醇由于其提供良好的含量均匀度而没有添加大量热量而可以用作一种膨胀剂。
如在此所用的,短语“抗结块剂”和“助流剂”是指有助于含量均匀度和均匀溶解的任何组合物。根据具体实施例,抗结块剂的非限制性实例包括酒石、硅酸钙、二氧化硅、微晶纤维素(宾夕法尼亚州费城FMC生物聚合物更少的Avicel(Avicel,FMC BioPolymer,Philadelphia,Pennsylvania))、以及磷酸三钙。在一个实施例中,抗结块剂以按桌面甜味剂组合物重量计从约0.001%至约3%的量存在于该桌面甜味剂组合物中。
这些桌面甜味剂组合物可以是以本领域已知的任何形式包装。非限制性形式包括但不限于,粉末形式、颗粒形式、小包、片剂、囊剂、小球、立方体、固体、以及液体。
在一个实施例中,桌面甜味剂组合物是含有一种干燥共混物的一次性(份量控制)包装。干燥共混物制剂通常可以包括粉末或颗粒。尽管桌面甜味剂组合物可以是处于任何大小的一个包装中,常规份量控制桌面甜味剂包装的非限制性实施例是大约2.5×1.5英寸并且保持具有等效于2茶勺砂糖(约8g)的甜度的大约1克甜味剂组合物。在一种干燥共混物的桌面甜味剂制剂中的具有式(1)的化合物的量可以改变。在一个具体的实施例中,一种干燥共混物的桌面甜味剂制剂可以含有以该桌面甜味剂组合物的从约1%(w/w)至约10%(w/w)的量的本发明的化合物。
固体桌面甜味剂实施例包括立方体和片剂。常规的立方体的一个非限制性实例大小等同于砂糖的标准物立方体,该标准物立方体是大约2.2×2.2×2.2cm3并且重大约8g。在一个实施例中,一种固体桌面甜味剂是处于片剂形式中或本领域技术人员已知的任何其他形式中。
桌面甜味剂组合物也可具体化为呈液体形式,其中本发明的化合物是与一种液体载体组合。液体桌面甜味剂的载体剂的适合的非限制性例包括水、醇、多元醇、溶解于水中的甘油基或柠檬酸基、以及其混合物。可以改变在此所述的或本领域中已知的任何形式的桌面甜味剂组合物的甜度当量以获得所希望的甜度特征曲线(profile)。例如,该桌面甜味剂组合物可以包含与相当量的标准糖可比较的甜度。在另一个实施例中,该桌面甜味剂组合物可以包含最高达相当量的糖的100倍的甜度。在另一个实施例中,该桌面甜味剂组合物可以包含最高达相当量的糖的90倍、80倍、70倍、60倍、50倍、40倍、30倍、20倍、10倍、9倍、8倍、7倍、6倍、5倍、4倍、3倍、以及2倍的甜度。
在一些实施例中,这些组合物,例如甜味剂组合物和风味增强组合物,含有一种或多种附加的甜味剂。附加的甜味剂可以是任何类型的甜味剂,例如,一种天然或合成甜味剂。
例如,该至少一种附加甜味剂可以是一种碳水化合物甜味剂。适合的碳水化合物甜味剂的非限制性实例包括蔗糖、果糖、葡萄糖、赤藓糖醇、麦芽糖醇、乳糖醇、山梨糖醇、甘露醇、木糖醇、塔格糖、海藻糖、半乳糖、鼠李糖、环糊精(例如,α-环糊精、β-环糊精、以及γ-环糊精)、核酮糖、苏阿糖、阿拉伯糖、木糖、来苏糖、阿洛糖、阿卓糖、甘露糖、艾杜糖、乳糖、麦芽糖、转化糖、异海藻糖、新海藻糖、帕拉金糖或异麦芽酮糖、赤藓糖、脱氧核糖、古洛糖、艾杜糖、塔罗糖、赤藓酮糖、木酮糖、阿洛酮糖、松二糖、纤维二糖、葡糖胺、甘露糖胺、岩藻糖、墨角藻糖、葡糖醛酸、葡糖酸、葡糖酸内酯、阿比可糖、半乳糖胺、低聚木糖(木三糖、木二糖等)、低聚龙胆糖(龙胆二糖、龙胆三糖、龙胆四糖等)、低聚半乳糖、山梨糖、酮丙糖(二羟基丙酮)、丙醛糖(甘油醛)、低聚黑曲糖、低聚果糖(蔗果三糖、蔗果四糖以及诸如此类)、麦芽四糖、麦芽三醇(maltotriol)、四糖、低聚甘露糖、低聚麦芽糖(麦芽三糖、麦芽四糖、麦芽五糖、硫酸麦芽六糖、麦芽七糖等)、糊精、乳果糖、蜜二糖、棉子糖、鼠李糖、核糖、异构化液体糖如高果糖玉米/淀粉糖浆(HFCS/HFSS)(例如,HFCS55、HFCS42或HFCS90)、偶联糖、大豆低聚糖、葡萄糖糖浆以及其组合。当适当时可以使用D-构型或L-构型。
在另一个实施例中,该附加的甜味剂是一种碳水化合物甜味剂,选自但不限于下组,该组由以下各项组成:甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、以及唾液糖。
在又其他实施例中,该至少一种附加甜味剂是一种合成的甜味剂。如在此所用,短语“合成甜味剂”是指在自然界中未天然地发现并且特征地具有大于蔗糖、果糖、或葡萄糖的甜度效力,也具有较小热量的任何组合物。适用于本披露的实施例的合成的高效甜味剂的非限制性实例包括三氯蔗糖、丁磺氨钾、乙酰舒泛酸及其盐、阿斯巴甜、阿力甜、糖精及其盐、新橙皮苷二氢查尔酮、环己基氨基磺酸盐、环拉酸及其盐、纽甜、糖精(advantame)、糖基化甜菊醇糖苷(GSG)以及其组合。当存在于一种消费品(例如像,饮料)中时,该合成甜味剂是以有效提供从约0.3ppm至约3,500ppm的浓度的量存在于该组合物中。
在还其他实施例中,附加甜味剂可以是一种天然高效甜味剂。适合的天然高效甜味剂包括但不限于,莱鲍迪苷A、莱鲍迪苷B、莱鲍迪苷C、莱鲍迪苷D、莱鲍迪苷E、莱鲍迪苷F、莱鲍迪苷I、莱鲍迪苷H、莱鲍迪苷L、莱鲍迪苷K、莱鲍迪苷J、莱鲍迪苷N、莱鲍迪苷O、杜克苷A、杜克苷B、甜茶苷、甜菊糖、甜菊苷、罗汉果苷IV、罗汉果苷V、罗汉果(Luo han guo)、翅子罗汉果、莫那甜(monatin)及其盐(莫那甜SS、RR、RS、SR)、仙茅甜蛋白(curculin)、甘草酸及其盐、索马甜、莫内林(monellin)、马宾灵(mabinlin)、布拉齐因(brazzein)、荷南度辛、叶甘素、根皮酚苷、根皮苷、三叶苷、白云参苷、欧亚水龙骨甜素(osladin)、多足蕨苷(polypodoside)A、枫杨皂苷(pterocaryoside)A、枫杨皂苷B、无患子倍半萜苷(mukurozioside)、假秦艽苷(phlomisoside)I、巴西甘草甜素(periandrin)I、相思子三萜苷(abrusoside)A、甜菊双糖苷以及青钱柳苷I。天然高效甜味剂可以作为一种纯化合物或者可替代地作为一种提取物的一部分来提供。例如,莱鲍迪甙A可以是作为一种单独的化合物或者作为一种甜叶菊提取物的部分来提供。当存在于一种消费品(例如像,饮料)中时,该天然高效甜味剂是以有效提供从约0.1ppm至约3,000ppm的浓度的量存在于该组合物中。
在还其他实施例中,该附加甜味剂可以是化学地或酶促地改性的天然高效的甜味剂。改性的天然高效甜味剂包括糖基化的天然高效甜味剂如包含1-50个糖苷残基的葡糖基衍生物、半乳糖基衍生物、果糖基衍生物。糖基化的天然高效甜味剂可以通过由具有转糖基活性的不同酶催化的酶促转糖基反应制备。
可以定制该组合物以提供所希望的热量含量。例如,这些组合物可以是“富含热量”的,使得它们在添加到一种消费品(例如像,饮料)中时赋予所希望的甜度并且具有每8盎司份约120卡路里。可替代地,这些组合物可以是“中值热量”的,使得它们在添加到一种消费品(例如像,饮料)中时赋予所希望的甜度并且具有每8盎司份小于约60卡路里。在其他实施例中,这些组合物可以是“低热量”的,使得它们在添加到一种消费品(例如像,饮料)中时赋予所希望的甜度并且具有每8盎司份小于40卡路里。在还其他实施例中,这些组合物可以是“零热量”的,使得它们在添加到一种消费品(例如像,饮料)中时赋予所希望的甜度并且具有每8盎司份小于5卡路里。
d.添加剂
本发明的组合物可以任选地包含在此以下详述的附加的添加剂。在一些实施例中,这些含有添加剂,这些添加剂包括但不限于,碳水化合物、多元醇、氨基酸及其相应盐、聚氨基酸及其相应盐、糖酸及其相应盐、核苷酸、有机酸、无机酸、有机盐(包括有机酸盐和有机碱盐)、无机盐、苦味化合物、调味剂和调味成分、涩味化合物、蛋白质或蛋白质水解物、乳化剂、增重剂、树胶、着色剂、类黄酮、醇、聚合物、香精油、抗真菌剂以及其组合。在一些实施例中,这些添加剂用于改进一种或多种甜味剂的时间和风味特征以提供与蔗糖类似的味道。
适合的氨基酸添加剂包括但不限于,天冬氨酸、精氨酸、甘氨酸、谷氨酸、脯氨酸、苏氨酸、茶氨酸、半胱氨酸、胱氨酸、丙氨酸、缬氨酸、酪氨酸、亮氨酸、阿拉伯糖、反式-4-羟基脯氨酸、异亮氨酸、天冬酰胺、丝氨酸、赖氨酸、组氨酸、鸟氨酸、甲硫氨酸、肉毒碱、氨基丁酸(α-、β-、和/或δ-异构体)、谷氨酰胺、羟基脯氨酸、牛磺酸、正缬氨酸、肌氨酸、以及其盐形式例如钠盐或钾盐或酸盐。这些氨基酸添加剂还可以是处于D-构型或L-构型中并且是处于相同或不同氨基酸的一元-、二元-或三元-形式。另外,如果适当的话,这些氨基酸可以是α-、β-、γ-和/或δ-异构体。在一些实施例中,以上氨基酸及其相应盐(例如,其钠盐、钾盐、钙盐、镁盐或其他碱金属盐或碱土金属盐,或酸盐)的组合也是适合的添加剂。这些氨基酸可以是天然或合成的。这些氨基酸还可以是改性的。改性的氨基酸是指其中至少一个原子已经被添加、去除、取代或其组合的任何氨基酸(例如,N-烷基氨基酸、N-酰基氨基酸或N-甲基氨基酸)。改性的氨基酸的非限制性实例包括氨基酸衍生物,如三甲基甘氨酸、N-甲基-甘氨酸、以及N-甲基-丙氨酸。如在此所用的,改性的氨基酸涵盖了改性的氨基酸和未改性的氨基酸二者。如在此所用,氨基酸还涵盖了肽和多肽二者(例如,二肽、三肽、四肽、以及五肽),如谷胱甘肽和L-丙氨酰-L-谷氨酰胺。适合的聚氨基酸添加剂包括聚-L-天冬氨酸、聚-L-赖氨酸(例如,聚-L-α-赖氨酸或聚-L-ε-赖氨酸)、聚-L-鸟氨酸(例如,聚-L-α-鸟氨酸或聚-L-ε-鸟氨酸)、聚-L-精氨酸、其他聚合物形式的氨基酸、以及其盐形式(例如钙盐、钾盐、钠盐或镁盐,例如L-谷氨酸单钠盐)。聚氨基酸添加剂也可以处于D-构型或L-构型。另外,如果适当的话,聚氨基酸可以是α-、β-、γ-、δ-、以及ε-异构体。在一些实施例中,以上聚氨基酸及其相应盐(例如,其钠盐、钾盐、钙盐、镁盐或其他碱金属盐或碱土金属盐或酸盐)的组合也是适合的添加剂。在此所述的聚氨基酸还可以包括不同氨基酸的共聚物。这些聚氨基酸可以是天然或合成的。聚氨基酸也可以是修饰的,以使得至少一个原子被添加、去除、取代或其组合(例如,N-烷基聚氨基酸或N-酰基聚氨基酸)。如在此所用的,聚氨基酸涵盖了改性的聚氨基酸和未改性的聚氨基酸二者。例如,修饰的聚氨基酸包括但不限于,具有不同分子量(MW)的聚氨基酸,如具有1,500的MW、6,000的MW、25,200的MW、63,000的MW、83,000的MW或者300,000的MW的聚-L-α-赖氨酸。
在具体的实施例中,当存在于一种消费品(例如像,饮料)中时,该氨基酸是以有效提供从约10ppm至约50,000ppm的浓度的量存在。在另一个实施例中,当存在于一种消费品中时,该氨基酸是以有效提供从约1,000ppm至约10,000ppm的浓度的量存在例如像,从约2,500ppm至约5,000ppm或从约250ppm至约7,500ppm。
适合的糖酸添加剂包括但不限于,醛糖酸、糖醛酸、醛糖二酸、海藻酸、葡糖酸、葡糖醛酸、葡糖二酸、半乳糖二酸、半乳糖醛酸、及其盐(例如,钠盐、钾盐、钙盐、镁盐或其他生理上可接受的盐)、以及其组合。
适合的核苷酸添加剂包括但不限于,单磷酸肌苷(“IMP”)、单磷酸鸟苷(“GMP”)、单磷酸腺苷(“AMP”)、单磷酸胞嘧啶(CMP)、单磷酸尿嘧啶(UMP)、二磷酸肌苷、二磷酸鸟苷、二磷酸腺苷、二磷酸胞嘧啶、二磷酸尿嘧啶、三磷酸肌苷、三磷酸鸟苷、三磷酸腺苷、三磷酸胞嘧啶、三磷酸尿嘧啶、其碱金属盐或碱土金属盐、以及其组合。在此所述的核苷酸还可以包含核苷酸相关的添加剂,如核苷或核酸碱(例如,鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶、尿嘧啶)。
当存在于消费品(例如像,饮料)中时,该核苷酸是以有效提供从约5ppm至约1,000ppm的浓度的量存在。
适合的有机酸添加剂包括包含一个-COOH部分的任何化合物,例如像C2-C30羧酸、取代的羟基C2-C30羧酸、丁酸(乙酯)、取代的丁酸(乙酯)、苯甲酸、取代的苯甲酸(例如,2,4-二羟基苯甲酸、3-羟基苯甲酸、3,4,5-三羟基苯甲酸)、取代的肉桂酸、羟基酸、取代的羟基苯甲酸、茴香酸取代的环己基羧酸、鞣酸、乌头酸、乳酸、酒石酸、柠檬酸、异柠檬酸、葡糖酸、葡庚糖酸、己二酸、羟基柠檬酸、苹果酸、水果酒石酸(fruitaric acid)(苹果酸、富马酸和酒石酸的一种共混物)、富马酸、马来酸、琥珀酸、绿原酸、水杨酸、肌酸、咖啡酸、胆汁酸、乙酸、抗坏血酸、藻酸、异抗坏血酸、聚谷氨酸、葡糖酸δ内酯、及其碱金属盐或碱土金属盐衍生物。另外,有机酸添加剂也可以处于D-构型或L-构型中。
适合的有机酸添加剂盐包括但不限于,所有有机酸的钠盐、钙盐、钾盐、以及镁盐,如柠檬酸盐、苹果酸盐、酒石酸盐、富马酸盐、乳酸盐(例如,乳酸钠)、海藻酸盐(例如,藻酸钠)、抗坏血酸盐(例如,抗坏血酸钠)、苯甲酸盐(例如,苯甲酸钠或苯甲酸钾)、山梨酸盐以及己二酸盐。所描述的有机酸添加剂的实例任选地可以是被选自以下的至少一个基团取代:氢、烷基、烯基、炔基、卤素、卤代烷基、羧基、酰基、酰氧基、氨基、酰氨基、羧基衍生物、烷氨基、二烷基氨基、芳基氨基、烷氧基、芳氧基、硝基、氰基、磺基、硫醇、亚胺、磺酰基、烃硫基、亚磺酰基、氨磺酰基、羧烷氧基、碳酰胺基(carboxamido)、膦酰基、氧膦基、磷酰基、膦基、硫酯、硫醚、酸酐、肟基、肼基、氨甲酰基、磷或膦酸酯基。在具体的实施例中,当存在于一种消费品(例如像,一种饮料)中时,该有机酸添加剂是以从约10ppm至约5,000ppm的量存在。
适合的无机酸添加剂包括但不限于,磷酸、亚磷酸、聚磷酸、盐酸、硫酸、碳酸、磷酸二氢钠、及其碱金属或碱土金属盐(例如,肌醇六磷酸Mg/Ca)。
当存在于一种消费品(例如像,饮料)中时,该无机酸添加剂是以有效提供从约25ppm至约25,000ppm的浓度的量存在。
适合的苦味化合物添加剂包括但不限于,咖啡因、奎宁、尿素、苦橘油、柚皮苷、苦木、及其盐。
存在当存在于一种消费品(例如像,饮料)中时,该苦味化合物是以有效提供从约25ppm至约25,000ppm的浓度的量。
适合的调味剂和调味成分添加剂包括但不限于,香草醛、香草提取物、芒果提取物、肉桂、柑橘、椰子、姜、白千层醇、杏仁、薄荷醇(包括不含薄荷的薄荷醇)、葡萄皮提取物、以及葡萄籽提取物。“调味剂”和“调味成分”是同义词并且可以包括天然物质或合成物质或其组合。调味剂还包括赋予风味的任何其他物质并且可以包括在以一个通常接受的范围使用时对于人或动物是安全的天然物质或非天然(合成)物质。专用调味剂的非限制性实例包括
Figure GDA0003476432920001201
天然调味甜味增强剂K14323(
Figure GDA0003476432920001202
德国达姆施塔特(Darmstadt,Germany))、甜味剂161453和164126的SymriseTM天然调味遮掩物(SymriseTM,德国霍尔茨明登(Holzminden,Germany))、Natural AdvantageTM苦味阻滞剂1、2、9和10((NaturalAdvantageTM,美国新泽西州弗里霍尔德(Freehold,New Jersey,U.S.A.))、以及SucramaskTM(创造性科研管理(Creative Research Management),美国加利福尼亚州斯托克顿市(Stockton,California,U.S.A.))。
当存在于一种消费品(例如像,饮料)中时,该调味剂是以有效提供从约0.1ppm至约5,000ppm的浓度的量存在。
适合的聚合物添加剂包括但不限于,壳多糖、果胶、果胶、果胶质酸、聚糖醛酸、聚半乳糖醛酸、淀粉、食品水解胶体或其粗提取物(例如,塞内加尔阿拉伯树胶(阿拉伯胶树(FibergumTM)、塞伊阿拉伯树胶、鹿角菜胶)、聚-L-赖氨酸(例如,聚-L-α-赖氨酸或聚-L-ε-赖氨酸)、聚-L-鸟氨酸(例如,聚-L-α-鸟氨酸或聚-L-ε-鸟氨酸)、聚丙二醇、聚乙二醇、聚(乙二醇甲基醚)、聚精氨酸、聚天冬氨酸、聚谷氨酸、聚乙烯亚胺、海藻酸、海藻酸钠、海藻酸丙二醇酯、以及聚乙二醇海藻酸钠、六偏磷酸钠及其盐、以及其他阳离子聚合物和阴离子聚合物。
当存在于一种消费品(例如像,饮料)中时,该聚合物是以有效提供从约30ppm至约2,000ppm的浓度的量存在。
适合的蛋白质或蛋白质水解物添加剂包括但不限于,牛血清白蛋白(BSA)、乳清蛋白(包括其部分或浓缩物,例如90%即时乳清蛋白分离物、34%乳清蛋白、50%水解乳清蛋白、以及80%乳清蛋白浓缩物)、可溶性大米蛋白、大豆蛋白、蛋白质分离物、蛋白质水解物、蛋白质水解物的反应产物、糖蛋白和/或含有氨基酸(例如,甘氨酸、丙氨酸、丝氨酸、苏氨酸、天冬酰胺、谷氨酰胺、精氨酸、缬氨酸、异亮氨酸、亮氨酸、正缬氨酸、甲硫氨酸、脯氨酸、酪氨酸、羟脯氨酸等)的蛋白聚糖、胶原蛋白(例如,明胶)、部分水解的胶原蛋白(例如,水解的鱼胶原蛋白)、以及胶原蛋白水解产物(例如,猪胶原蛋白水解产物)。
当存在于一种消费品(例如像,饮料)中时,该蛋白质水解物是以有效提供从约200ppm至约50,000ppm的浓度的量存在。
适合的类黄酮添加剂被分为黄酮醇、黄酮、黄烷酮、黄烷-3-醇、异黄酮或花色素。类黄酮添加剂的非限制性实例包括但不限于,儿茶素(例如,绿茶提取物,如PolyphenonTM60、PolyphenonTM 30和PolyphenonTM 25(日本三川农林株式会社(Mitsui Norin Co.,Ltd.,Japan))、多酚、芦丁(例如,酶修饰的芦丁SanmelinTM AO(日本大阪三荣源公株式会社(San-fi Gen F.F.I.,Inc.,Osaka,Japan))、新桔皮苷、柚皮苷、新橙皮苷二氢查尔酮等。
当存在于消费品(例如像,饮料)中时,该类黄酮添加剂是以有效提供从约0.1ppm至约1,000ppm的浓度的量存在。
合适的着色剂包括,但不局限于,焦糖色素、天然色素如胭脂树红、胭脂虫红、甜菜红、姜黄、辣椒红、藏红色、番茄红素、接骨木汁(elderberry juice)、香兰(pandan)、黄色6号、黄色5号、红色40号、绿色3号以及蓝色1号。
适合的醇添加剂包括但不限于乙醇。在具体的实施例中,当存在于一种消费品(例如像,饮料)中时,该醇添加剂是以有效提供从约625ppm至约10,000ppm的浓度的量存在。
适合的涩味化合物添加剂包括但不限于,鞣酸、氯化铕(EuCl3)、氯化钆(GdCl3)、氯化铽(TbCl3)、明矾、鞣酸以及多酚(例如,茶多酚)。当存在于一种消费品(例如像,饮料)中时,该涩味添加剂是以有效提供从约10ppm至约5,000ppm的浓度的量存在。
合适的精油包括,但不限于,芥子油、苦橙和甜橙、辣薄荷(menthe arvensis)、薄荷、杉木、柠檬、蓝桉、山苍树、丁香以及留兰香。
合适的抗真菌剂包括,但不限于,那他霉素、两性霉素、阿尼芬净、卡泊芬净、氟康唑、伊曲康唑、米卡芬净、泊沙康唑、伏立康唑、以及氟胞嘧啶。
其他添加剂包括典型的饮料添加剂,即木松香甘油酯、椰子油、溴化植物油、角豆胶、蔗糖乙酸异丁酸盐、改性食品淀粉、葡萄糖酸锌以及维生素A棕榈酸酯。
g.功能性成分
在此提供的组合物还可以含有一种或多种功能性成分,这些功能性成分为该组合物提供了实际的或感知的健康益处。功能性成分包括但不限于,皂苷、抗氧化剂、膳食纤维源、脂肪酸、维生素、葡糖胺、矿物质、防腐剂、水合剂、益生菌、益生元、体重管理剂(weightmanagement agent)、骨质疏松症管理剂(osteoporosis management agent)、植物雌激素、长链伯脂肪族饱和醇、植物甾醇以及其组合。
i.皂苷
在某些实施例中,功能性成分是至少一种皂苷。如在此所用,该至少一种皂苷可以包括作为在此所提供的组合物的一种功能性成分的一种单一皂苷或多种皂苷。通常,根据本发明的具体实施例,该至少一种皂苷是以足以促进健康和保健的量存在于该组合物中。
皂苷是包含一个糖苷配基环结构和一个或多个糖部分的糖苷天然植物产物。非极性糖苷配基和水溶性糖部分的组合给予了皂苷表面活性剂特性,这些表面活性剂特性允许它们在水溶液中振摇时形成泡沫。
这些皂苷基于若干种常见特性而分组在一起。具体地说,皂苷是展现溶血活性并且与胆固醇形成络合物的表面活性剂。尽管皂苷共有这些特性,它们在结构上是不同的。在皂苷中形成环结构的糖苷配基环结构的类型可以显著改变。在用于本发明的具体实施例中的皂苷中的这些糖苷配基环结构类型的非限制性实例包括甾体、三萜和甾类生物碱。用于本发明的具体实施例中的特定糖苷配基环结构的非限制性实例包括大豆皂醇A、大豆皂醇B和大豆皂醇E。附接到糖苷配基环结构的糖部分的数目和类型也可以显著改变。用于本发明的具体实施例中的糖部分的非限制性实例包括葡萄糖、半乳糖、葡糖醛酸、木糖、鼠李糖、以及甲基戊糖部分。用于本发明的具体实施例中的特定皂苷的非限制性实例包括A组乙酰皂苷、B组乙酰皂苷、以及E组乙酰皂苷。
皂苷可以见于各种各样的植物和植物产物中,并且在植物皮和树皮中特别普遍的,其中它们形成一个蜡状保护性涂层。皂苷的若干种常见来源包括具有按干重计大约5%皂苷含量的大豆、肥皂草植物(肥皂草属(Saponaria),它的根在历史上用作肥皂)、以及苜蓿、芦荟、芦笋、葡萄、鹰嘴豆、丝兰、以及各种其他豆类和野草。皂苷可以是通过使用本领域普通技术人员已熟知的提取技术从这些来源中获得的。常见提取技术的描述可见于美国专利申请号2005/0123662中,该专利申请的披露内容通过引用明确结合。
ii.抗氧化剂
在某些实施例中,功能性成分是至少一种抗氧化剂。如在此所用,该至少一种抗氧化剂可以包括作为在此所提供的组合物的一种功能性成分的一种单一抗氧化剂或多种抗氧化剂。通常,根据本发明的具体实施例,该至少一种抗氧化剂是以足以促进健康和保健的量存在于该组合物中。
如在此所用的“抗氧化剂”是指禁止、抑制或减少对细胞和生物分子的氧化损害的任何物质。在不受理论约束的情况下,据信抗氧化剂通过稳定自由基(在它们可以引起有害反应之前)来阻止、抑制或减少对细胞或生物分子的氧化损害。这样,抗氧化剂可以防止或延迟一些变性疾病的发生。
用于本发明的实施例的适合抗氧化剂的实例包括但不限于,维生素、维生素辅因子、矿物质、激素、类胡萝卜素、类胡萝卜素萜类、非类胡萝卜素萜类、类黄酮、类黄酮多酚(如生物类黄酮)、黄酮醇类、黄酮类、酚类、多酚、酚酯、多酚酯、非类黄酮酚类、异硫氰酸酯类、以及其组合。在一些实施例中,该抗氧化剂是维生素A、维生素C、维生素E、泛醌、矿物质硒、锰、褪黑激素、α-胡萝卜素、β-胡萝卜素、番茄红素、叶黄素、玉蜀黍黄素(zeanthin)、隐黄素(crypoxanthin)、白藜芦醇(reservatol)、丁子香酚、槲皮素、儿茶素、棉酚、橙皮素、姜黄素、阿魏酸、百里酚、羟基酪醇、姜黄、百里香、橄榄油、硫辛酸、谷胱甘肽(glutathinone)、谷氨酰胺、草酸、生育酚衍生化合物、丁基化羟基苯甲醚(BHA)、丁基化羟基甲苯(BHT)、乙二胺四乙酸(EDTA)、叔丁基对苯二酚、乙酸、果胶、生育三烯酚、生育酚、辅酶Q10、玉米黄素、虾青素、斑蝥黄(canthaxantin)、皂苷、柠檬苦素、山柰酚(kaempfedrol)、杨梅酮、异鼠李素、原花色素、槲皮素、芦丁、木犀草素、芹菜素、红橘黄酮(tangeritin)、橙皮素、柚皮素、圣草酚(erodictyol)、黄烷-3-醇(例如,花青素)、没食子儿茶素、表儿茶素及其没食子酸酯形式、表没食子儿茶素及其没食子酸酯形式(ECGC)、茶黄素及其没食子酸酯形式、茶玉红精、异黄酮植物雌激素、染料木黄酮、大豆黄素、黄豆黄素、花色素苷(anythocyanin)、氰化物(cyaniding)、飞燕草色素、锦葵色素、天竺葵色素、甲基花青素、矮牵牛素、鞣花酸、没食子酸、水杨酸、迷迭香酸、肉桂酸及其衍生物(例如,阿魏酸)、绿原酸、菊苣酸、五倍子鞣质、鞣花丹宁、花黄素、β-花青苷和其他植物颜料、水飞蓟素、柠檬酸、木酚素、抗营养素、胆红素、尿酸、R-α-硫辛酸,N-乙酰半胱氨酸、油柑宁(emblicanin)、苹果提取物、苹果皮提取物(苹果多酚)、红路易波士提取物(rooibos extract red)、绿路易波士提取物(rooibosextract,green)、山楂果提取物、覆盆子提取物、生咖啡抗氧化剂(GCA)、野樱梅提取物20%、葡萄籽提取物(VinOseed)、可可豆提取物、啤酒花提取物、山竹果提取物、山竹果壳提取物、蔓越莓提取物、石榴提取物、石榴皮提取物、石榴籽提取物、山楂浆果提取物、波梅拉(pomella)石榴提取物、肉桂皮提取物、葡萄皮提取物、越桔提取物、松树皮提取物、碧萝芷、接骨木提取物、桑树根提取物、枸杞(gogi)提取物、黑莓提取物、蓝莓提取物、蓝莓叶提取物、树莓提取物、姜黄提取物、柑橘属生物类黄酮、黑醋栗、姜、巴西莓粉、生咖啡豆提取物、绿茶提取物、以及植酸、或其组合。在替代性实施例中,该抗氧化剂是一种合成的抗氧化剂,例如像,丁基化羟基甲苯或丁基化羟基苯甲醚。用于本发明的实施例的适合抗氧化剂的其他来源包括但不限于,水果、蔬菜、茶、可可、巧克力、香辛料、药草、大米、来自家畜的器官肉类、酵母、全谷类(whole grain)、或谷粒(cereal grain)。
具体的抗氧化剂属于称为多元酚(也称为“多酚”)的植物营养素类,它是在植物中可见的一组化学物质,其特征在于每个分子存在超过一个酚基团。多种健康益处可以源于多酚,例如包括预防癌症、心脏病、以及慢性炎性疾病以及提高的脑力和体力。用于本发明的实施例的适合的多酚包括儿茶素、原花色素、原花青素、花青素、槲皮素、芦丁、白藜芦醇、异黄酮、姜黄素、安石榴苷、鞣花单宁、橙皮苷、柚皮苷、柑橘类黄酮、绿原酸、其他类似材料、以及其组合。
在具体实施例中,该抗氧化剂是一种儿茶素,例如像表没食子儿茶素没食子酸酯(EGCG)。用于本发明的实施例的儿茶素的适合来源包括但不限于,绿茶、白茶、红茶、乌龙茶、巧克力、可可、红葡萄酒、葡萄籽、红葡萄皮、紫色葡萄皮、红葡萄汁、紫葡萄汁、浆果、碧萝芷以及红苹果皮。
在一些实施例中,抗氧化剂是选自原花色素、原花青素或其组合。用于本发明的实施例的原花色素和原花青素的适合来源包括但不限于,红葡萄、紫色葡萄、可可、巧克力、葡萄籽、红葡萄酒、可可豆、蔓越莓、苹果皮、李子、蓝莓、黑醋栗、花楸果(choke berry)、绿茶、高粱、肉桂、大麦、红芸豆、黑白斑豆、啤酒花、杏仁、榛子、山核桃、阿月浑子果实、碧萝芷、以及彩莓。
在具体实施例中,该抗氧化剂是一种花青素。用于本发明的实施例的花青素的适合来源包括但不限于,红莓、蓝莓、越桔、蔓越莓、覆盆子、樱桃、石榴、草莓、接骨木、花楸果、红葡萄皮、紫葡萄皮、葡萄籽、红酒、黑醋栗、红醋栗、可可、李子、苹果皮、桃、红梨、红球甘蓝、红洋葱、红橙、以及黑莓。
在一些实施例中,抗氧化剂是选自槲皮素、芦丁或其组合。用于本发明的实施例的槲皮素和芦丁的适合来源包括但不限于,红苹果、洋葱、羽衣甘蓝、笃斯越桔、越橘、花楸果、蔓越莓、黑莓、蓝莓、草莓、覆盆子、黑醋栗、绿茶、红茶、李子、杏、欧芹、韭、西兰花、红辣椒、浆果酒、以及银杏。
在一些实施例中,该抗氧化剂是白藜芦醇。用于本发明的实施例的白藜芦醇的适合来源包括但不限于,红葡萄、花生、蔓越莓、蓝莓、越桔、桑葚、日本板取茶(JapaneseItadori tea)、以及红酒。
在具体实施例中,该抗氧化剂是异黄酮。用于本发明的实施例的异黄酮的适合来源包括但不限于,大豆、大豆产物、豆科植物、苜蓿芽(alfalfa spout)、鹰嘴豆、花生、以及红三叶草。
在一些实施例中,该抗氧化剂是姜黄素。用于本发明的实施例的姜黄素的适合来源包括但不限于,姜黄和芥末。
在具体实施例中,抗氧化剂是选自槲皮素、鞣花单宁或其组合。用于本发明的实施例的槲皮素和鞣花单宁的适合来源包括但不限于,石榴、覆盆子、草莓、胡桃、以及年代悠久的红葡萄酒。
在一些实施例中,该抗氧化剂是一种柑橘类黄酮,如橙皮苷或柚皮苷。用于本发明的实施例的柑橘类黄酮如橙皮苷或柚皮苷的适合来源包括但不限于,橙、葡萄柚、以及柑橘果汁。
在具体实施例中,该抗氧化剂是绿原酸。用于本发明的实施例的绿原酸的适合来源包括但不限于,生咖啡、巴拉圭茶、红葡萄酒、葡萄籽、红葡萄皮、紫葡萄皮、红葡萄汁、紫葡萄汁、苹果汁、蔓越莓、石榴、蓝莓、草莓、向日葵、紫锥花、碧萝芷、以及苹果皮。
iii.膳食纤维
在某些实施例中,功能性成分是至少一种膳食纤维源。如在此所用,该至少一种膳食纤维来源可以包括作为在此所提供的组合物的一种功能性成分的一种单一膳食纤维来源或多种膳食纤维来源。通常,根据本发明的具体实施例,该至少一种膳食纤维来源是以足以促进健康和保健的量存在于该组合物中。
在组成和连接二者中具有显著不同的结构的多种聚合物碳水化合物属于膳食纤维的定义内。此类化合物是本领域技术人员所熟知的,它们的非限制性实例包括非淀粉多醣、木质素、纤维素、甲基纤维素,半纤维素、β-葡聚糖、果胶、树胶、粘质、蜡、菊糖、寡糖、低聚果糖、环糊精、壳质以及其组合。
多糖是由通过糖苷键连接的单糖构成的复合碳水化合物。非淀粉多糖与β键结合,人们由于缺乏一种破坏β键的酶而不能消化它们。相反地,可消化淀粉多糖通常包含α-(1-4)键。
木质素是基于氧化苯丙烷单元的一种大的、高度支化且交联的聚合物。纤维素是通过β-(1-4)键连接的葡萄糖分子的一种线性聚合物,哺乳动物淀粉酶不能使它水解。甲基纤维素是通常在食品中用作一种增稠剂和乳化剂的一种纤维素甲酯。它是可商购获得的(例如,葛兰素史克公司(GlaxoSmithKline)销售的Citrucel、塞拉制药公司(ShirePharmaceuticals)销售的Celevac)。半纤维素是主要由葡糖醛酸-和4-O-甲基葡糖木聚糖组成的高度支化的聚合物。β葡聚糖是主要在谷类如燕麦和大麦中可见的混合键(1-3)、(1-4)β-D-葡萄糖聚合物。果胶如β果胶是一组主要由D-半乳糖醛酸组成的多糖,该D-半乳糖醛酸被甲氧基化至可变程度。
树胶和粘质代表广泛的一系列不同支化的结构。源于瓜尔豆种子的磨细胚乳的瓜尔豆胶是一种半乳甘露聚糖。瓜尔豆胶是可商购获得的(例如,通过诺华公司(NovartisAG)销售的Benefiber)。其他树胶如阿拉伯树胶和果胶还具有不同的结构。其他树胶还包括黄原胶、结冷胶、塔拉胶、车前子籽壳树胶、以及槐豆胶。
蜡是乙二醇和两种脂肪酸的酯,通常作为不溶于水的一种疏水性液体出现。
菊糖包括属于被称为果聚糖的一类碳水化合物的天然存在的寡糖。它们通常是由通过具有一个末端葡萄糖单元的β-(2-1)糖苷键连接的果糖单元组成。寡糖是典型地含有三个至六个组分糖的糖聚合物。它们通常被发现O-连接或N-连接到蛋白质中的相容性氨基酸侧链或脂质分子。低聚果糖是由短链果糖分子组成的寡糖。
膳食纤维的食物来源包括但不限于,谷物、豆类、水果、以及蔬菜。提供膳食纤维的谷物包括但不限于,燕麦、黑麦、大麦、小麦。提供纤维的豆类包括但不限于,豌豆和菜豆如大豆。提供纤维来源的水果和蔬菜包括但不限于,苹果、橙、梨、香蕉、浆果、西红柿、青豆、西兰花、花椰菜、胡萝卜、马铃薯、芹菜。植物性食物如麸、坚果和种子(如亚麻籽)也是膳食纤维来源。提供膳食纤维的植物部分包括但不限于,茎、根、叶、种子、果肉、以及皮。
尽管膳食纤维通常源于植物源,但是难消化动物产物如壳质也被分类为膳食纤维。壳质是由通过与纤维素键类似的β-(1-4)键连接的乙酰基葡萄糖胺单元组成的一种多糖。
膳食纤维来源通常基于其在水中的溶解度而被分成可溶性纤维类和不可溶性纤维类。可溶性纤维和不可溶性纤维二者根据植物特征而在不同程度上可见于植物性食物中。尽管不可溶于水中,不溶性纤维具有有助于增加粪便固体的量、使粪便软化并缩短粪便固体通过胃肠道的渡越时间的被动亲水性特征。
与不可溶性纤维不同,可溶性纤维容易溶解于水中。可溶性纤维通过在结肠内发酵而经受主动代谢过程,从而增加结肠菌群并且从而增加粪便固体的质量。通过结肠细菌发酵纤维还产生具有显著健康益处的终产物。例如,食物质量的发酵产生气体和短链脂肪酸。在发酵过程中产生的酸包括具有不同的有利特征的丁酸、乙酸、丙酸、以及戊酸,这些特征如通过作用于胰腺胰岛素释放来稳定血糖水平以及通过糖原降解提供肝对照。另外,纤维发酵可以通过降低肝脏的胆固醇合成并且减小血液LDL和甘油三酯水平来减少动脉粥样硬化。在发酵过程中产生的酸降低了结肠pH,从而放置结肠粘膜形成癌症息肉。降低的结肠pH还增加了矿物质吸收,提高结肠粘膜层的阻隔特性,并且抑制了炎症和粘附刺激。纤维的发酵还可以通过刺激产生T辅助型细胞、抗体、白细胞、脾细胞、细胞分裂素以及淋巴细胞来有利于免疫系统。
iv.脂肪酸
在某些实施例中,功能性成分是至少一种脂肪酸。如在此使用,该至少一种脂肪酸可以是作为在此所提供的组合物的一种功能性成分的单一脂肪酸或多种脂肪酸。通常,根据本发明的具体实施例,该至少一种脂肪酸是以足以促进健康和保健的量存在于该组合物中。
如在此所用的,“脂肪酸”是指任何直链单羧酸并且包括饱和脂肪酸、不饱和脂肪酸、长链脂肪酸、中链脂肪酸、短链脂肪酸、脂肪酸前体(包括ω-9脂肪酸前体)、以及酯化脂肪酸。如在此所用的,“长链多元不饱和脂肪酸”是指具有一个长脂肪族尾部的任何多元不饱和羧酸或有机酸。如在此所用的,“ω-3脂肪酸”是指具有作为在从其碳链的末端甲基端开始的第三个碳碳键的一个第一双键的任何多元不饱和脂肪酸。在具体的实施例中,ω-3脂肪酸可以包括一种长链ω-3脂肪酸。如在此所用的,“ω-6脂肪酸”是指具有作为在从其碳链的末端甲基端开始的第六个碳碳键的一个第一双键的任何多元不饱和脂肪酸。
用于本发明的实施例中的适合的ω-3脂肪酸可以是源于例如藻类、鱼、动物、植物、或其组合。适合的ω-3脂肪酸的实例包括但不限于,亚麻酸、α-亚麻酸、二十碳五烯酸、二十二碳六烯酸、十八碳四烯酸、二十碳四烯酸及其组合。在一些实施例,适合的ω-3脂肪酸可以被提供在鱼油(例如鲱鱼油、金枪鱼油、鲑鱼油、鲣鱼油、以及鳕鱼油)、微藻类ω-3油或其组合中。在具体实施例,适合的ω-3脂肪酸可以是源于可商购获得的ω-3脂肪酸油,如微藻DHA油(来自马里兰州哥伦比亚马泰克公司(Martek,Columbia,MD)、OmegaPure(来自德克萨斯州德克萨斯州ω-蛋白公司(Omega Protein,Houston,TX))、屈大麻酚C-38(MarinolC-38)(来自伊利诺州Channahon市脂类营养公司(Lipid Nutrition,Channahon,IL))、鲣鱼油和MEG-3(Bonito oil and MEG-3)(来自NS达特茅斯海洋营养公司(Ocean Nutrition,Dartmouth,NS))、Evogel(来自德国霍尔茨明登德之馨公司(Symrise,Holzminden,Germany))、来自金枪鱼或鲑鱼的海洋油(来自CT阿里斯塔威尔顿公司(Arista Wilton,CT)、OmegaSource2000、来自鲱鱼的海洋油和来自鳕鱼的海洋油(来自OmegaSource,RTP,NC)。
适合的ω-6脂肪酸包括但不限于,亚油酸、γ-亚麻酸、二高-γ-亚麻酸、花生四烯酸、二十碳二烯酸、二十二碳二烯酸、肾上腺酸、二十二碳五烯酸及其组合。
用于本发明的实施例的适合的酯化脂肪酸可以包括但不限于,含有ω-3和/或ω-6脂肪酸的单酰基甘油、含有ω-3和/或ω-6脂肪酸的二酰基甘油或者含有ω-3和/或ω-6脂肪酸的三酰基甘油以及其组合。
v.维生素
在某些实施例中,功能性成分是至少一种维生素。
如在此所用,该至少一种维生素可以是作为在此所提供的组合物的一种功能性成分的单一维生素或多种维生素。通常,根据本发明的具体实施例,该至少一种维生素是以足以促进健康和保健的量存在于该组合物中。
维生素是人体需要少量来正常运行的有机化合物。身体使用维生素而不会破坏它们,与其他营养物如碳水化合物和蛋白质不同。迄今为止,已认识十三种维生素,并且一种或多种可以用于在此的组合物中。适合的维生素包括维生素A、维生素D、维生素E、维生素K、维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12以及维生素C。很多维生素也具有替代性化学名,以下提供了它们的非限制性实例。
Figure GDA0003476432920001311
不同其他化合物已被一些官方分类为维生素。这些化合物可以被称为假维生素,并且包括但不限于,诸如泛醌(辅酶Q10)、潘氨酸、二甲基甘氨酸、taestrile、苦杏仁甙、类黄酮、对-氨基苯甲酸、腺嘌呤、腺苷酸、以及s-甲基甲硫氨酸的化合物。如在此所用的,术语维生素包括假维生素。
在一些实施例,该维生素是选自维生素A、维生素D、维生素E、维生素K以及其组合的脂溶性维生素。
在其他实施例中,该维生素是选自以下的一种水溶性维生素:维生素B1、维生素B2、维生素B3、维生素B6、维生素B12、叶酸、生物素、泛酸、维生素C以及其组合。
vi.葡萄糖胺
在某些实施例中,功能性成分是至少一种葡萄糖胺。
通常,根据本发明的具体实施例,葡萄糖胺是以足以促进健康和保健的量存在于这些组合物中。
葡萄糖胺(也称为壳糖胺)是被视为在糖基化蛋白质和脂质的生物化学合成中的一种重要前体的一种氨基糖。D-葡萄糖胺以葡萄糖胺-6-磷酸酯形式天然地存在于软骨中,它是由果糖-6-磷酸酯和谷氨酰胺合成的。然而,葡萄糖胺还可以其他形式使用的,它的非限制性实例包括盐酸葡萄糖胺、硫酸葡萄糖胺、N-乙酰基-葡萄糖胺或任何其他盐形式或其组合。葡萄糖胺可以是使用本领域普通技术人员已熟知的方法通过酸水解龙虾、蟹、小虾或对虾的壳来获得。在一个具体实施例中,葡萄糖胺可以是源于含有壳质的真菌生物质,如美国专利公开号2006/0172392所述的。
这些组合物可以进一步包含硫酸软骨素。
vii.矿物质
在某些实施例中,功能性成分是至少一种矿物质。
如在此所用,该至少一种矿物质可以是作为在此所提供的组合物的一种功能性成分的单一矿物质或多种矿物质。通常,根据本发明的具体实施例,该至少一种矿物质是以足以促进健康和保健的量存在于该组合物中。
根据本发明的传授内容,矿物质包括生物体所需要的无机化学元素。矿物质是由一个广泛范围的组合物(例如,元素、简单的盐以及复合硅酸盐)组成的并且结晶结构也广泛不同。它们可以天然地出现于食物和饮料中,可以作为一种补充剂添加,或者可以与食物或饮料分开地消耗或给予。
矿物质可以被分类为相对大量需要的主体矿物质(bulk mineral)或相对小量需要的微量矿物质。主体矿物质通常每天需要大于或等于约100mg的量并且微量矿物质是每天需要小于约100mg的量的那些矿物质。
在本发明的具体实施例中,该矿物质是选自主体矿物质、微量矿物质或其组合。主体矿物质的非限制性实例包括钙、氯、镁、磷、钾、钠、以及硫。微量矿物质的非限制性实例包括铬、钴、铜、氟、铁、锰、钼、硒、锌、以及碘。尽管碘通常被分类为一种微量矿物质,它需要比其他微量矿物质更大的量并且常常被分类为一种主体矿物质。
在本发明的其他具体实施例中,该矿物质是被认为对于人类营养所必需的一种微量矿物质,它的非限制性实例包括铋、硼、锂、镍、铷、硅、锶、碲、锡、钛、钨、以及钒。
在此呈现的矿物质可以是处于本领域普通技术人员已知的任何形式中。例如,在一个具体实施例中,这些矿物质可以是处于其具有一个正电荷或负电荷的离子形式中。在另一个具体实施例中,这些矿物质可以是处于其分子形式中。例如,硫和磷通常天然地出现为硫酸盐、硫化物和磷酸盐。
viii.防腐剂
在某些实施例中,功能性成分是至少一种防腐剂。
如在此所用,该至少一种防腐剂可以是作为在此所提供的组合物的一种功能性成分的单一防腐剂或多种防腐剂。通常,根据本发明的具体实施例,该至少一种防腐剂是以足以促进健康和保健的量存在于该组合物中。
在本发明的具体实施例中,该防腐剂是选自抗微生物剂、抗氧化剂、抗酵素剂或其组合。抗微生物剂的非限制性实例包括亚硫酸盐、丙酸盐、苯甲酸盐、山梨酸盐、硝酸盐、亚硝酸盐、细菌素、盐、糖、乙酸、二碳酸二甲酯(DMDC)、乙醇、以及臭氧。
根据一个具体实施例,该防腐剂是一种亚硫酸盐。亚硫酸盐包括但不限于,二氧化硫、亚硫酸氢钠和亚硫酸氢钾。
根据另一个具体实施例,该防腐剂是一种丙酸盐。
丙酸盐包括但不限于,丙酸、丙酸钙和丙酸钠。
根据又一个具体实施例,该防腐剂是一种苯甲酸盐。苯甲酸盐包括但不限于,苯甲酸钠和苯甲酸。
在另一个具体实施例,该防腐剂是一种山梨酸盐。山梨酸盐包括但不限于,山梨酸钾、山梨酸钠、山梨酸钙、以及山梨酸。
在又一个具体实施例中,该防腐剂是一种硝酸盐和/或一种亚硝酸盐。硝酸盐和亚硝酸盐包括但不限于,硝酸钠和亚硝酸钠。
在又一个具体实施例中,该至少一种防腐剂是一种细菌素,例如像尼生素。
在另一个具体实施例,该防腐剂是乙醇。
在另一个具体实施例,该防腐剂是臭氧。
适用作本发明的具体实施例中的防腐剂的抗酵素剂的非限制性实例包括抗坏血酸、柠檬酸和金属螯合剂如乙二胺四乙酸(EDTA)。
ix.水合剂
在某些实施例中,功能性成分是至少一种水合剂。
如在此所用,该至少一种水合剂可以是作为在此所提供的组合物的一种功能性成分的单一水合剂或多种水合剂。通常,根据本发明的具体实施例,该至少一种水合剂是以足以促进健康和保健的量存在于该组合物中。
水合产物有助于身体替换通过排泄损失的体液。例如,体液作为汗液损失以便调节体温,作为尿液损失以便排泄废物,并且作为水蒸气损失以便交换肺内的气体。体液损失还可以由于一个广泛范围的外部原因而出现,这些外部原因的非限制性实例包括身体活动、暴露于干燥空气、腹泻、呕吐、高热、休克、失血、以及血压过低。引起体液损失的疾病包括糖尿病、霍乱、胃肠炎、志贺菌病、以及黄热病。引起体液损失的营养失调形式包括过量消耗酒精、电解质不平衡、禁食、以及快速体重减轻。
在一个具体实施例中,水合产物是帮助身体替换在排泄过程中损失的体液的一种组合物。因此,在一个具体实施例中,该水合产物是一种电解质,它的非限制性实例包括钠、钾、钙、镁、氯化物、磷酸盐、碳酸氢盐、以及其组合。在美国专利号5,681,569中还描述了用于本发明的具体实施例中的适合电解质,该专利的披露内容通过引用明确结合在此。在具体实施例中,这些电解质是从其相应水溶性盐中获得的。用于具体实施例中的盐的非限制性实例包括氯化物、碳酸盐、硫酸盐、乙酸盐、碳酸氢盐、柠檬酸盐、磷酸盐、磷酸氢盐、酒石酸盐、山梨酸酯、柠檬酸盐、苯甲酸盐或其组合。在其他实施例,这些电解质是通过果汁、果实提取物、蔬菜提取物、茶或茶提取物来提供的。
在本发明的具体实施例中,水合产物是补充肌肉所燃烧的能量存储的一种碳水化合物。在美国专利号4,312,856、4,853,237、5,681,569、以及6,989,171中还描述了用于本发明的具体实施例中的适合碳水化合物,这些专利的披露内容通过引用明确结合在此。适合碳水化合物的非限制性实例包括单糖、二糖、寡糖、复合多糖或其组合。用于具体实施例中的适合类型的单糖的非限制性实例包括丙糖、丁糖、戊糖、己糖、庚糖、辛糖、以及壬糖。特定类型的适合单糖的非限制性实例包括甘油醛、二羟基丙酮、赤藓糖、苏阿糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔洛糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖(sedoheltulose)、辛酮糖、以及唾液糖(sialose)。适合二糖的非限制性实例包括蔗糖、乳糖和麦芽糖。适合寡糖的非限制性实例包括蔗糖、麦芽三糖和麦芽糖糊精。在其他具体实施例中,碳水化合物是通过玉米糖浆、甜菜糖、甘蔗糖、果汁或茶提供的。
在另一个具体实施例中,该水合是提供细胞再水合的一种黄烷醇。黄烷醇是存在于植物中的一类天然物质,并且通常包括附接到一个或多个化学部分的2-苯基苯并吡喃酮分子骨架。用于本发明的具体实施例中的适合黄烷醇的非限制性实例包括儿茶素、表儿茶素、没食子儿茶素、表没食子儿茶素、表儿茶素没食子酸酯、表没食子儿茶素3-没食子酸酯、茶黄素、茶黄素3-没食子酸酯、茶黄素3’-没食子酸酯、茶黄素3,3’-没食子酸酯、茶红素或其组合。黄烷醇的若干种常见来源包括茶树、果实、蔬菜、以及花。在优选的实施例中,黄烷醇是从绿茶中提取的。
在一个具体实施例中,该水合产物是增强运动耐力的一种甘油溶液。一种含有甘油的溶液的摄取已显示提供多种有利的生理作用,如扩大的血容量、降低的心率、以及降低的直肠温度。
x.益生菌/益生元
在某些实施例中,该功能性成分是选自至少一种益生菌、益生元以及其组合。
如在此所用,该至少一种益生菌或益生元可以是作为在此所提供的组合物的一种功能性成分的单一益生菌或益生元或者多种益生菌或益生元。通常,根据本发明的具体实施例,该至少一种益生菌、益生元或其组合是以足以促进健康和保健的量存在于该组合物中。
根据本发明的传授内容,益生菌包括在以有效量消耗时有利于健康的微生物。理想地,益生菌有利地影响人体天然存在的胃肠道微生物区系并且赋予除营养之外的健康益处。益生菌可以包括而不限于细菌、酵母和真菌。
根据本发明的传授内容,益生元是促进有利细菌在肠内的生长的组合物。益生元物质可以是通过一种相关益生菌消耗,或者另外有助于保持相关益生菌存活或者刺激其生长。当以有效量消耗时,益生菌还有利地影响人体的天然存在的胃肠微生物区系病因此赋予除仅营养之外的健康益处。益生元食物进入结肠并且用作内生菌的底物,从而间接提供能量、代谢底物和必需微量营养素给宿主。身体的益生元食物的消化和吸收是取决于细菌代谢活性,这从在小肠内逃离消化和吸收的营养物中拯救了宿主的能量。
根据具体实施例,益生菌是有利地影响人体天然存在的胃肠道微生物区系并赋予除营养之外的健康益处的一种有利的微生物。益生菌的实例包括但不限于,给予对人的有益作用的乳酸杆菌属、双歧杆菌属、链球菌属或其组合的细菌。
在本发明的具体实施例中,该至少一种益生菌是选自乳酸杆菌属。乳酸杆菌(即,乳酸杆菌属细菌,在此之后是“L.”)已持续几百年用作一种食物防腐剂并且用于促进人体健康。人肠道中发现的乳酸杆菌种类的非限制性实例包括嗜酸乳酸杆菌(L.acidophilus)、干酪乳酸杆菌(L.casei)、发酵乳酸杆菌(L.fermentum)、唾液乳酸杆菌(L.saliva roes)、短乳酸杆菌(L.brevis)、赖氏乳酸杆菌(L.leichmannii)、植物乳酸杆菌(L.plantarum)、纤维二糖乳酸杆菌(L.cellobiosus)、罗伊氏乳酸杆菌(L.reuteri)、鼠李糖乳酸杆菌(L.rhamnosus)、GG乳酸杆菌(L.GG)、保加利亚乳酸杆菌(L.bulgaricus)、以及嗜热乳酸杆菌(L.thermophilus)。
根据本发明的其他具体实施例,该益生菌是选自双歧杆菌属。也已知双歧杆菌通过碳水化合物代谢产生短链脂肪酸(例如,乙酸、丙酸和丁酸)、乳酸和甲酸来发挥对于人健康的一种有利影响。在人胃肠道中可见的双歧杆菌的非限制性种类包括婴儿双歧杆菌(B.angulatum)、动物双歧杆菌(B.animalis)、海星纲双歧杆菌(B.asteroides)、双叉双歧杆菌(B.bifidum)、布姆双歧杆菌(B.boum)、短双歧杆菌(B.breve)、链状双歧杆菌(B.catenulatum)、小猪双歧杆菌(B.choerinum)、棒状双岐杆菌(B.coryneforme)、串孔双歧杆菌(B.cuniculi)、齿双歧杆菌(B.dentium)、高卢氏双歧杆菌(B.gallicum)、鸡胚双歧杆菌(B.gallinarum)、野菊双歧杆菌(B indicum)、长双歧杆菌(B.longum)、玛格南双歧杆菌(B.magnum)、瘤胃双歧杆菌(B.merycicum)、最小双歧杆菌(B.minimum)、伪链状双歧杆菌(B.pseudocatenulatum)、伪长双歧杆菌(B.pseudolongum)、B.psychraerophilum、雏双歧杆菌(B.pullorum)、反刍兽双歧杆菌(B.ruminantium)、波伦亚双歧杆菌(B.saeculare)、B.scardovii、猿双歧杆菌(B.simiae)、微秒双歧杆菌(B.subtile)、B.thermacidophilum、嗜热双歧杆菌(B.thermophilum)、尿路双歧杆菌(B.urinalis)、以及双歧杆菌某种。
根据本发明的其他具体实施例,该益生菌是选自链球菌属。嗜热链球菌是一种格兰阳性兼性厌氧菌。它被分类为一种乳酸细菌并且通常可见于奶和奶制品中,并且用于生产酸乳。此细菌的其他非限制性益生菌种类包括唾液链球菌(Streptococcus salivarus)和乳脂链球菌(Streptococcus cremoris)。
可以根据本发明使用的益生菌是本领域技术人员已熟知的。包含益生菌的食品的非限制性实例包括酸乳、德国泡菜、克非尔(kefir)、韩国泡菜、发酵的蔬菜、以及含有通过改善肠内微平衡来有利地影响宿主动物的一种微生物元素的其他食品。
根据本发明的实施例,益生元包括而不限于,黏多醣、寡醣、多醣、氨基酸、维生素、营养物前体、蛋白质以及其组合。
根据本发明的一个具体实施例,该益生元是选自膳食纤维,包括而不限于,多糖和寡糖。这些化合物具有增加益生元数量的能力,这产生由这些益生元给予的益处。根据本发明的具体实施例而被分类为益生元的寡糖的非限制性实例包括低聚果糖、菊糖、低聚异麦芽糖、乳糖醇、低聚乳果糖、乳果糖、焦糊精、大豆寡糖、低聚反式半乳糖、以及低聚木糖。
根据本发明的其他具体实施例,该益生菌是一种氨基酸。尽管多种已知益生元分解来提供用于益生菌的碳水化合物,但是一些益生菌也需要氨基酸来提供养分。
益生元天然地可见于多种食物中,包括而不限于,香蕉、浆果、芦笋、大蒜、小麦、燕麦、大麦(以及其他全谷粒)、亚麻籽、番茄、洋姜、洋葱和菊苣、菜叶(例如,蒲公英嫩叶、菠菜、羽衣甘蓝叶、甜菜、无头甘蓝、芥菜叶、芜菁叶)、以及豆类(例如,小扁豆、云豆、鹰嘴豆、海军豆、白绿豆、黑豆)。
xi.体重管理剂
在某些实施例中,功能性成分是至少一种体重管理剂。
如在此所用,该至少一种体重管理剂可以是作为在此所提供的组合物的一种功能性成分的单一体重管理剂或多种体重管理剂。通常,根据本发明的具体实施例,该至少一种体重管理剂是以足以促进健康和保健的量存在于该组合物中。
如在此所用的,“体重管理剂”包括一种食欲抑制剂和/或生热作用剂。如在此所用的,短语“食欲抑制剂”、“食欲饱腹组合物”、“饱腹剂”、以及“饱腹成分”是同义词。短语“食欲抑制剂”描述了当以有效量递送时抑制、禁止、减少或以其他方式缩短人的食欲的大量营养素、草本植物提取物、外源性激素、减食欲药、食欲不振药、药物以及其组合。短语“生热作用剂”描述了当以有效量递送时刺激或以其他方式增强人的生热作用或代谢的大量营养素、草本植物提取物、外源性激素、减食欲药、食欲不振药、药物以及其组合。
适合的体重管理剂包括选自下组的大量营养素,该组由以下各项组成:蛋白质、碳水化合物、膳食脂肪、以及其组合。蛋白质、碳水化合物、以及膳食脂肪的消耗刺激了具有食欲抑制作用的肽的释放。例如,蛋白质和膳食脂肪的消耗刺激了胃肠激素胆囊收缩素(CCK)的释放,而碳水化合物和膳食脂肪的消耗刺激了胰高血糖素样肽1(GLP-1)的释放。
适合的大量营养素体重管理剂还包括碳水化合物。碳水化合物通常包括身体转化成用于能量的葡萄糖的糖、淀粉、纤维素和树胶。碳水化合物通常被分成两类,可消化碳水化合物(例如,单糖、二糖和淀粉)和不可消化碳水化合物(例如,膳食纤维)。研究已显示在小肠内不可消化的碳水化合物和具有减小的吸收和消化性的复合聚合物碳水化合物刺激了抑制食物摄取的生理反应。因此,在此呈现的碳水化合物理想地包括不可消化的碳水化合物或具有减小的消化性的碳水化合物。此类碳水化合物的非限制性实例包括聚葡萄糖;菊糖;单糖来源的多元醇,如赤藓糖醇、甘露糖醇、木糖醇、以及山梨糖醇;二糖来源的醇,如异麦芽酮糖醇、乳糖醇和麦芽糖醇;以及氢化淀粉水解物。在此以下更详细描述了碳水化合物。
在另一个具体实施例中,体重管理剂是一种膳食脂肪。膳食脂肪是包含饱和脂肪酸和不饱和脂肪酸的组合的脂质。多元不饱和脂肪酸已显示具有比单元不饱和脂肪酸更大的饱腹能力。因此,在此呈现的膳食脂肪理想地包括多元不饱和脂肪酸,它的非限制性实例包括三酰甘油。
在一个具体实施例中,体重管理剂是一种本草植物提取物。来自多种类型的植物的提取物已被认定为具有食欲抑制特性。提取物具有食欲抑制剂特性的植物的非限制性实例包括火地亚(Hoodia)属、亚罗汉(Trichocaulon)属、水牛掌(Caralluma)属、豹皮花(Stapelia)属、奥贝亚(Orbea)属、马利筋(Asclepias)属、以及山茶花(Camelia)属的植物。其他实施例包括源于匙羹藤、可乐果、酸橙、巴拉圭茶、加纳谷物、瓜拉那、没药、香胶树脂质、以及黑醋栗籽油的提取物。
草本植物提取物可以是由任何类型的植物材料或植物生物质制备的。植物材料和生物质的非限制性实例包括茎、根、叶、从植物材料中获得的干燥粉料、以及树液或干燥树液。草本植物提取物通常是通过从该植物中提取树液并且然后喷雾干燥该树液来制备的。或者,可以使用溶剂提取程序。在初始提取之后,可能希望进一步分馏该初始提取物(例如,通过柱色谱法),以便获得具有增强的活性的一种草本植物提取物。此类技术是本领域普通技术人员已熟知的。
在一个具体的实施例中,草本提取物是源于火地亚属的植物,火地亚属的种类包括H.alstonii、H.currorii、H.dregei、火地亚黄花(H.flava)、火地亚仙人掌(H.gordonii)、H.jutatae、H.mossamedensis、火地亚地榆(H.officinalis)、H.parviflorai、火地亚同瓣草(H.pedicellata)、H.pilifera、H.ruschii、以及H.triebneri。火地亚属植物是原产自南非的肉茎植物。称为P57的一种火地亚属的甾醇糖苷被认为是火地亚种类的食欲抑制剂作用的原因。
在另一个具体实施例中,草本提取物是源于一种水牛掌属植物,水牛掌属的种类包括印度仙人掌(C.indica)、C.fimbriata、C.attenuate、构叶仙人掌(C.tuberculata)、鸡蛋果仙人掌(C.edulis)、小叶仙人掌(C.adscendens)、C.stalagmifera、伞状花仙人掌(C.umbellate)、C.penicillata、C.russeliana、C.retrospicens、C.Arabica、以及C.lasiantha。水牛掌植物属于与萝摩科火地亚属相同的子族。水牛掌是原产自印度的具有医学特性如食欲抑制的矮小直立的肉质植物,这些医学特性通常是归因于属于糖苷孕甾烷组的糖苷,这些糖苷的非限制性实例包括瘤水牛掌糖苷(caratuberside)A、瘤水牛掌糖苷B、布塞洛糖苷(bouceroside)I、布塞洛糖苷II、布塞洛糖苷III、布塞洛糖苷IV、布塞洛糖苷V、布塞洛糖苷VI、布塞洛糖苷VII、布塞洛糖苷VIII、布塞洛糖苷IX、以及布塞洛糖苷X。
在另一个具体的实施例中,该至少一种草本提取物是衍生自一种亚罗汉属植物。亚罗汉属植物是通常原产自南非的肉质植物,与火地亚属类似,并且包括物种T.piliferum和T.officinale。
在另一个具体的实施例中,该草本提取物是衍生自一种豹皮花属或奥贝亚属植物,分别包括长须地毯海葵(S.gigantean)和杂色豹皮花(O.variegate)的种类。豹皮花属和奥贝亚属植物二者属于与萝摩科火地亚属相同的子族。在不希望受任何理论约束的情况下,认为表现出食欲抑制活性的这些化合物是皂苷,如孕甾烷糖苷,它们包括杂色豹皮花苷(stavaroside)A、B、C、D、E、F、G、H、I、J、以及K。
在另一个具体实施例中,该草本提取物是源于一种马利筋属植物。马利筋属植物也属于萝摩科族植物。马利筋属植物的非限制性实例包括沼泽乳草(A.incarnate)、黄冠马利筋(A.curassayica)、叙利亚马利筋(A.syriaca)、以及柳叶马利筋(A.tuberose)。在不希望受任何理论约束的情况下,认为这些提取物包含具有食欲抑制作用的甾族化合物,如孕烷糖苷和孕烷糖苷配基。
在一个具体实施例中,体重管理剂是具有体重管理作用的一种外源性激素。此类激素的非限制性实例包括CCK、肽YY、胃饥饿素、铃蟾肽和胃泌素释放肽(GRP)、肠抑素、载脂蛋白A-IV、GLP-1、淀粉不溶素、生长抑素、以及瘦素。
在另一个实施例中,体重管理剂是一种药物。非限制性实例包括苯丁胺、二乙胺苯酮、苯甲曲秦、西布曲明、利莫那班、胃泌酸调节素、盐酸氟西汀、麻黄碱、苯乙胺、或其他刺激物。
xii.骨质疏松症管理剂
在某些实施例中,功能性成分是至少一种骨质疏松症管理剂物。
如在此所用的,该至少一种骨质疏松症管理剂可以是作为在此所提供的组合物的一种功能性成分的单一骨质疏松症管理剂或多种骨质疏松症管理剂。通常,根据本发明的具体实施例,该至少一种骨质疏松症管理剂是以足以促进健康和保健的量存在于该组合物中。
骨质疏松症是损害的骨强度的一种骨骼病症,这引起增加的骨破裂风险。通常,骨质疏松症的特征在于减小骨质密度(BMD)、破坏骨结构、以及改变骨内非胶原蛋白的量和种类。
在某些实施例中,骨质疏松症管理剂是至少一种钙源。根据一个具体实施例,该钙源是含有钙的任何化合物,包括钙的盐络合物、溶解物质、以及其他形式。钙源的非限制性实例包括氨基酸螯合钙、碳酸钙、氧化钙、氢氧化钙、硫酸钙、氯化钙、磷酸钙、磷酸氢钙、磷酸二氢钙、柠檬酸钙、苹果酸钙、柠檬酸苹果酸钙、葡萄糖酸钙、酒石酸钙、乳酸钙、其溶解物质、以及其组合。
根据一个具体实施例,该骨质疏松症管理剂是一种镁源。该镁源是含有镁的任何化合物,包括镁的盐络合物、溶解物质、以及其他形式。镁源的非限制性实例包括氯化镁、柠檬酸镁、葡庚糖酸镁、葡糖酸镁、乳酸镁、氢氧化镁、吡啶甲酸镁(magnesium picolate)、硫酸镁、其溶解物质、以及其混合物。在另一个具体实施例中,该镁源包括一种氨基酸螯合镁或肌酸螯合镁。
在其他实施例中,骨质疏松症剂是选自维生素D、C、K、其前体和/或β-胡萝卜素以及其组合。
多种植物和植物提取物也已被认定为对于防止和治疗骨质疏松症是有效的。在不受任何理论约束的情况下,认为这些植物和植物提取物刺激了成骨蛋白和/或抑制了骨再吸收,从而促进骨再生和强度。作为骨质疏松症管理剂的适合植物和植物提取物的非限制性实例包括如美国专利公开号2005/0106215中所披露的蒲公英属(Taraxacum)和唐棣属(Amelanchier)种类、以及如美国专利公开号2005/0079232所披露的以下属的种类:山胡椒属(Lindera)、艾属(Artemisia)、菖蒲属(Acorus)、红花属(Carthamus)、葛缕子属(Carum)、蛇床属(Cnidium)、姜黄属(Curcuma)、莎草属(Cyperus)、刺柏属(Juniperus)、李属(Prunus)、鸢尾花属(Iris)、菊苣属(Cichorium)、坡柳属(Dodonaea)、淫羊藿属(Epimedium)、绒毛属(Erigonoum)、大豆属(Soya)、薄荷属(Mentha)、罗勒属(Ocimum)、百里香属(thymus)、菊蒿属(Tanacetum)、车前属(Plantago)、留兰香属(Spearmint)、红木属(Bixa)、葡萄属(Vitis)、迷迭香属(Rosemarinus)、漆树属(Rhus)、以及莳萝属(Anethum)。
xiii.植物雌激素
在某些实施例中,功能性成分是至少一种植物雌激素。
如在此所用的,该至少一种植物雌激素可以是作为在此所提供的组合物的一种功能性成分的单一植物雌激素或多种植物雌激素。通常,根据本发明的具体实施例,该至少一种植物雌激素是以足以促进健康和保健的量存在于该组合物中。
植物雌激素是在植物中发现的化合物,它们典型地可以通过摄取具有这些植物雌激素的植物或植物部分来递送到人体中。如在此所用的,“植物雌激素”指的是当引入到身体内时引起任何程度的雌激素样作用的任何物质。例如,一种植物雌激素可以结合身体内的雌激素受体并且具有小的雌激素样作用。
用于本发明的实施例的适合植物雌激素的实例包括但不限于,异黄酮、芪类、木酚素、雷琐酸内酯(resorcyclic acid lactone)、香豆素、香豆雌醇(coumestan)、香豆雌酚(coumestrol)、雌马酚、以及其组合。适合的植物雌激素的来源包括但不限于,全谷类、谷物、纤维、水果、蔬菜、黑升麻、龙舌兰根、黑醋栗、樱叶荚卓、圣洁莓、痉挛树皮、当归根、魔鬼爪(devil's club)根、假独角兽根(false unicorn root)、人参根、地梁草、甘草汁、活根草、益母草、牡丹根、覆盆子叶、蔷薇科植物、鼠尾草叶、洋菝契根、塞润榈籽、野生山药根、开花蓍草、豆科植物、大豆、大豆产品(例如,味噌、大豆粉、豆奶、大豆坚果、大豆蛋白质分离物、tempen、或豆腐)、鹰嘴豆、坚果、小扁豆、种子、三叶草、红三叶草、蒲公英叶、蒲公英根、胡芦巴籽、绿茶、啤酒花、红葡萄酒、亚麻仁、大蒜、洋葱、亚麻籽、琉璃苣、块根马利筋(butterfly weed)、葛缕子、女贞子树(chaste tree)、牡荆、大枣、莳萝、茴香籽、雷公根、水飞蓟、唇萼薄荷、石榴、青蒿、豆粉、艾菊、葛藤根(葛根)等、以及其组合。
异黄酮属于称为多元酚的植物营养素组。通常,多元酚(也称为“多酚类”)是在植物中可见的一组化学物质,其特征在于每个分子存在超过一个酚基团。
根据本发明的实施例的适合植物雌激素异黄酮包括染料木黄酮、黄豆苷元、黄豆黄素、鹰嘴豆素A、芒柄花黄素、其各自天然存在的糖苷和糖苷缀合物、马台树脂醇、开环异落叶松脂素、肠内二酯、肠二醇、植物组织蛋白以及其组合。
用于本发明的实施例的异黄酮的适合来源包括但不限于,大豆、大豆产物、豆科植物、苜蓿芽、鹰嘴豆、花生、以及红三叶草。
xiv.长链脂肪族饱和伯醇
在某些实施例中,功能性成分是至少一种长链脂肪族饱和伯醇。
如在此所用的,该至少一种长链脂肪族饱和伯醇可以是作为在此提供的组合物的一种功能性成分的单一长链脂肪族饱和伯醇或多种长链脂肪族饱和伯醇。通常,根据本发明的具体实施例,该至少一种长链脂肪族饱和伯醇是以足以促进健康和保健的量存在于该组合物中。
长链脂肪族饱和伯醇是不同组的有机化合物。术语“醇”是指以下事实:这些化合物的特性是结合一个碳原子的一个羟基(-OH)。术语伯是指以下事实:在这些化合物中,羟基所结合的碳原子仅结合一个另外的碳原子。术语饱和是指以下事实:这些化合物的特性是没有碳碳pi键。术语脂肪族是指以下事实:在这些化合物中的碳原子一起连接在直链或支链中而不是环中。术语长链是指以下事实:在这些化合物中的碳原子数目是至少8个碳。
用于在本发明的具体实施例中的具体长链脂肪族饱和伯醇的非限制性实例包括8碳原子1-辛醇、9碳1-壬醇、10碳原子1-癸醇、12碳原子1-十二烷醇、14碳原子1-十四烷醇、16碳原子1-十六烷醇、18碳原子1-十八烷醇、20碳原子1-二十烷醇、22碳1-二十二烷醇、24碳1-二十四烷醇、26碳1-二十六烷醇、27碳1-二十七烷醇、28碳1-二十八烷醇(octanosol)、29碳1-二十九烷醇、30碳1-三十烷醇、32碳1-三十二烷醇、以及34碳1-三十四烷醇。
在本发明的一个特别令人希望的实施例中,该长链伯脂肪族饱和醇是普利醇。普利醇是关于主要由以下组成的长链脂肪族饱和伯醇的混合物的术语:28碳1-二十八烷醇和30碳1-三十烷醇、以及较低浓度的其他醇如22碳1-二十二烷醇、24碳1-二十四烷醇、26碳1-二十六烷醇、27碳1-二十七烷醇、29碳1-二十九烷醇、32碳1-三十二烷醇和和34碳1-三十四烷醇。
长链伯脂肪族饱和醇是源于天然脂肪和油。它们可以是通过使用本领域普通技术人员已熟知的提取技术从这些来源中获得的。普利醇可以是从多种植物和材料中分离的,包括甘蔗(秀贵甘蔗(Saccharum officinarium))、山药(例如,怀山药(Dioscoreaopposite))、大米麸(例如,亚洲栽培稻(Oryza sativa))、以及蜂蜡。普利醇可以是通过使用本领域普通技术人员已熟知的提取技术从这些来源中获得的。此类提取技术的描述可见于美国专利申请号2005/0220868中,该专利申请的披露内容通过引用特别结合。
xv.植物甾醇
在某些实施例中,该功能性成分是选自至少一种植物甾醇、植物甾烷醇或其组合。
通常,根据本发明的具体实施例,该至少一种植物甾醇、植物甾烷醇或其组合是以足以促进健康和保健的量存在于该组合物中。
如在此所用的,短语“甾烷醇”、“植物的甾烷醇”和“植物甾烷醇”是同义词。
植物甾醇和甾烷醇少量天然地存在于很多水果、蔬菜、坚果、种子、谷物、豆类、植物油、树皮以及其他植物来源中。尽管人们每天正常消耗植物甾醇和甾烷醇,但是所消耗的量不足以具有显著的降胆固醇作用或其他健康益处。因此,希望补充具有植物甾醇和甾烷醇的食物和饮料。
甾醇是在C-3处具有羟基的一个甾族化合物的子组。通常,植物甾醇在甾核内具有一个双键,如胆固醇;然而,植物甾醇还可以在C-24处包含一个取代的侧链(R),如乙基或甲基,或一个另外的双键。植物甾醇的结构是本领域技术人员已熟知的。
已发现至少44种天然存在的植物甾醇,并且它们通常是源于植物,如玉米、大豆、小麦以及桐油;然而,它们还可以合成地产生以形成与天然的那些相同的组合物或者具有与天然存在的植物甾醇特性相似的特性的组合物。根据本发明的具体实施例,本领域普通技术人员已熟知的植物甾醇的非限制性实例包括4-去甲基甾醇(例如,β-谷甾醇、菜油甾醇、豆甾醇、菜籽甾醇、22-脱氢菜籽甾醇、以及Δ5-燕麦甾醇)、4-单甲基甾醇和4,4-二甲基甾醇(三萜烯醇)(例如,环阿屯醇、24-亚甲基环木菠萝烷醇和环甾烷醇(cyclobranol))。
如在此所用的,短语“甾烷醇”、“植物的甾烷醇”和“植物甾烷醇”是同义词。植物甾烷醇是仅微量存在于自然界中的饱和甾醇并且还可以是例如通过对植物甾醇进行加氢来合成地产生的。根据本发明的具体实施例,植物甾烷醇的非限制性实例包括β-谷甾烷醇、菜油甾烷醇、环木菠萝烷醇、以及其他三萜醇类的饱和形式。
如在此所用的植物甾醇和植物甾烷醇包括多种异构体如α和β异构体(例如,α-谷甾醇和β-谷甾醇,它们分别包括用于降低哺乳动物中的血清胆固醇的最有效的植物甾醇和植物甾烷醇之一)。
本发明的植物甾醇和植物甾烷醇还可以是处于其酯形式。用于得到植物甾醇和植物甾烷醇的酯的适合方法是本领域普通技术人员已熟知的,并且在美国专利号6,589,588、6,635,774、6,800,317、以及美国专利公开号2003/0045473中披露,这些专利的披露内容通过引用以其全部内容结合在此。适合的植物甾醇和植物甾烷醇的酯的非限制性实例包括乙酸谷甾醇酯、油酸谷甾醇酯、油酸豆甾醇酯、以及其相应植物甾烷醇酯。本发明的植物甾醇和植物甾烷醇还可以包括其衍生物。
通常,在组合物中的功能性成分的量根据具体组合物和所希望的功能性成分而广泛地改变。本领域普通技术人员将容易确定用于每种组合物的功能性成分的适当量。
在一个实施例中,一种用于制备组合物的方法包括将一种具有式(1)的化合物和至少一种甜味剂和/或添加剂和/或功能性成分组合。
III.使用方法
本发明的化合物和组合物可以用来赋予甜味或增强组合物(例如消费品)的风味或甜度。
在一个实施例中,本发明是一种用于赋予消费品甜味的方法,该方法包括提供一种可甜味化的消费品并且将本发明的化合物添加到该可甜味化的消费品中,以提供一种甜味化的消费品。
在一个实施例中,该可甜味化的消费品是一种液体或饮料基质。
在一个实施例中,该化合物是以高于、处于或低于其甜度或风味识别阈值浓度的浓度添加。
在一个实施例中,本发明是一种用于增强消费品的甜度的方法,该方法包括(i)提供包含至少一种甜成分的一种消费品并且(i)将本发明的一种化合物添加到该消费品中以提供一种具有增强的甜度的消费品。
在另一个实施例中,本发明是一种用于增强饮料的甜度的方法,该方法包括(i)提供包含至少一种甜成分的一种饮料并且(ii)将本发明的一种化合物添加到该饮料中以提供一种具有增强的甜度的饮料。根据这个实施例,该化合物是以处于或低于其甜度识别阈值浓度的浓度添加。
该化合物可以原样添加,或以一种包含该化合物的组合物的形式添加。
在另一个实施例中,本发明是一种用于增强消费品的风味的方法,该方法包括(i)提供包含至少一种调味成分的一种消费品并且(ii)添加一种风味增强剂(具有式(1)的化合物)以提供一种风味增强的消费品,其中该具有式(1)的化合物是以低于该化合物的风味识别阈值浓度的量存在于该风味增强的消费品中。在一个具体的实施例中,该消费品是一种饮料。
在还另一个实施例中,一种用于增强饮料的风味的方法包括(i)提供包含至少一种调味成分的一种饮料并且(ii)将一种具有式(1)的化合物添加到该饮料中以提供一种风味增强的饮料,其中该具有式(1)的化合物是以低于该化合物的风味识别阈值浓度的浓度存在于该风味增强的饮料中。
本发明还包括通过将这些具有式(1)的化合物或包含这些具有式(1)的化合物的组合物添加到消费品中用于制备消费品和风味增强的组合物的方法。
在另一个实施例中,一种用于制备甜味化的消费品的方法包括(i)提供包含至少一种甜成分的一种化合物并且(ii)添加一种具有式(1)的化合物以提供一种甜味化的消费品,其中该具有式(1)的化合物具有甜度识别阈值浓度并且该具有式(1)的化合物是以处于或低于甜度识别阈值浓度的量存在。在这个实施例中,该具有式(1)的化合物是一种甜度增强剂。在一个具体的实施例中,该消费品是一种饮料。
在另一个实施例中,一种用于制备甜味化的消费品的方法包括提供包含至少一种甜味剂的一种消费品并且添加一种具有式(2)的化合物,其中该具有式(2)的化合物具有甜度识别阈值浓度并且该具有式(2)的化合物是以处于或低于甜度识别阈值浓度的量存在。在这个实施例中,该具有式(2)的化合物是一种甜度增强剂。在一个具体的实施例中,该消费品是一种饮料。
在另一个实施例中,一种用于制备甜味化的消费品的方法包括提供包含至少一种甜味剂的一种消费品并且添加一种具有式(2f)或(2g)的化合物,其中化合物(2f)或(2g)是以处于或低于甜度识别阈值浓度的量存在。在一个具体的实施例中,该消费品是一种饮料。
在一个实施例中,本发明提供了一种用于增强消费品的甜度的方法,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法通过添加以处于或低于其甜度识别阈值的浓度的一种具有式(1)的化合物。如前所述,一种具有式(1)的化合物使该消费品的甜度增强了一定量,该量是大于含有相同浓度的该具有式(1)的化合物的一种溶液的可检测甜度和/或使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如像从约2.0%(w/v)至约3.0%(w/v)。在一个具体的实施例中,该消费品是一种饮料。
在一个实施例中,本发明提供了一种用于增强消费品的甜度的方法,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法通过添加以处于或低于其甜度识别阈值的浓度的一种具有式(2)的化合物。如前所述,一种具有式(2)的化合物使该消费品的甜度增强了一定量,该量是大于含有相同浓度的该具有式(2)的化合物的一种溶液的可检测甜度和/或使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如像从约2.0%(w/v)至约3.0%(w/v)。在一个具体的实施例中,该消费品是一种饮料。
在一个更具体的实施例中,一种用于增强消费品的甜度的方法,该消费品包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法通过添加以处于或低于其甜度识别阈值的浓度的化合物(2f)或(2g)。如前所述,化合物(2f)或(2g)使该消费品的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液的可检测甜度和/或使该消费品的甜度增强了至少约2.0%(w/v)蔗糖等效值,例如像增强了至少约2.5%(w/v)蔗糖等效值或从约2.0%(w/v)至约3.0%(w/v)。在一个具体的实施例中,该消费品是一种饮料。
在一个具体的实施例中,一种用于增强饮料的甜度的方法,该饮料包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法包括将一种具有式(1)的化合物以处于或低于其甜度识别阈值的量添加到所述饮料中,其中该具有式(1)的化合物使该饮料的甜度增强了一定量,该量是大于含有相同浓度的该具有式(1)的化合物的一种溶液的可检测甜度和/或使该饮料的甜度增强了至少2.0%蔗糖等效值,例如像增强了至少2.5%蔗糖等效值或从约2.0%至约3.0%。
在一个具体的实施例中,一种用于增强饮料的甜度的方法,该饮料包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法包括将一种具有式(2)的化合物以处于或低于其甜度识别阈值的量添加到所述饮料中,其中该具有式(2)的化合物使该饮料的甜度增强了一定量,该量是大于含有相同浓度的该具有式(2)的化合物的一种溶液的可检测甜度和/或使该饮料的甜度增强了至少2.0%蔗糖等效值,例如像增强了至少2.5%蔗糖等效值或从约2.0%至约3.0%。
在一个更具体的实施例中,一种用于增强饮料的甜度的方法,该饮料包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法包括将化合物(2f)或(2g)以处于或低于其甜度识别阈值的量添加到所述饮料中,其中化合物(2f)或(2g)使该饮料的甜度增强了一定量,该量是大于含有相同浓度的化合物(2f)或(2g)的一种溶液的可检测甜度和/或使该饮料的甜度增强了至少2.0%(w/v)蔗糖等效值,例如像增强了至少约2.5%(w/v)蔗糖等效值或从约2.0%(w/v)至约3.0%(w/v)。
在另一个实施例中,该甜味剂是选自下组,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。
在还另一个实施例中,本发明的一种化合物是以一定量添加以提供在该饮料中约30ppm的最终浓度。
在另一个实施例中,本发明提供了一种用于增强饮料的甜度的方法,该饮料包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法通过添加本发明的浓缩物组合物,即包含具有纯度大于约95%的具有式(1)的化合物的一种浓缩物组合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。
在另一个实施例中,本发明提供了一种用于增强饮料的甜度的方法,该饮料包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法通过添加本发明的浓缩物组合物,即包含具有纯度大于约95%的具有式(2)的化合物的一种浓缩物组合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。
在另一个实施例中,本发明提供了一种用于增强饮料的甜度的方法,该饮料包含以高于其甜度识别阈值的浓度的至少一种甜味剂,该方法通过添加本发明的一种浓缩物组合物,即包含具有纯度大于约95%的化合物(2f)或(2g)的一种浓缩物组合物和至少一种选自下组的甜味剂,该组由以下各项组成:蔗糖、果糖、葡萄糖、高果糖玉米糖浆、高果糖淀粉糖浆、D-阿洛酮糖、D-阿洛糖、D-松二糖、D-塔格糖、D-海藻糖、D-白菌二糖、稀有糖糖浆或它们的组合。
在另一个实施例中,这些甜味剂是选自,但不限于下组,该组由以下各项组成:蔗糖、甘油醛、二羟基丙酮、赤藓糖、苏糖、赤藓酮糖、阿拉伯糖、来苏糖、核糖、木糖、核酮糖、木酮糖、阿洛糖、阿卓糖、半乳糖、葡萄糖、古洛糖、艾杜糖、甘露糖、塔罗糖、果糖、阿洛酮糖、山梨糖、塔格糖、甘露庚酮糖、景天庚酮糖、辛酮糖、岩藻糖、鼠李糖、阿拉伯糖、松二糖、唾液糖、莱苞迪苷A、莱苞迪苷B、莱苞迪苷C、莱苞迪苷D、莱苞迪苷E、莱苞迪苷F、莱苞迪苷I、莱苞迪苷H、莱苞迪苷L、莱苞迪苷K、莱苞迪苷J、莱苞迪苷N、莱苞迪苷O、杜克苷A、杜克苷B、甜茶苷、甜叶菊、甜菊苷、罗汉果苷IV、罗汉果苷V、罗汉果、赛门苷、莫那甜及其盐(莫那甜SS、RR、RS、SR)、仙茅甜蛋白(curculin)、甘草酸及其盐、索马甜、莫内林(monellin)、马宾灵(mabinlin)、布拉齐因(brazzein)、荷南度辛、叶甘素、根皮酚苷、根皮苷、三叶苷、白元参苷(baiyunoside)、欧亚水龙骨甜素(osladin)、聚波朵苷(polypodoside)A、蝶卡苷(pterocaryoside)A、蝶卡苷B、慕库若苷(mukurozioside)、弗米索苷(phlomisoside)I、巴西甘草甜素(periandrin)I、相思子三萜苷(abrusoside)A、甜菊双糖苷以及青钱柳苷I、糖醇类如赤藓糖醇、三氯蔗糖、乙酰舒泛钾、安赛蜜酸及其盐、阿司帕坦、阿力甜、糖精及其盐、新橙皮苷二氢查尔酮、环己基氨基磺酸盐、环己氨磺酸及其盐、纽甜、糖精(advantame)、糖基化的甜菊醇糖苷(GSG)以及它们的组合。
在一个实施例中,该甜味剂是一种有热量的甜味剂或有热量的甜味剂的混合物。在另一个实施例中,该有热量的甜味剂是选自蔗糖、果糖、葡萄糖、高果糖玉米/淀粉糖浆、甜菜糖、蔗糖、以及它们的组合。
在另一个实施例中,该甜味剂是一种稀有糖,选自D-阿洛酮糖、D-阿洛糖、L-核糖、D-塔格糖、L-葡萄糖、L-海藻糖、L-阿拉伯糖、松二糖以及它们的组合。
在又另一个实施例中,该甜味剂是一种无热量的甜味剂或无热量的甜味剂的混合物。在一个实例中,该无热量的甜味剂是一种天然高效甜味剂。如在此所用,短语“天然高效甜味剂”是指在自然界中未天然地发现并且特征地具有大于蔗糖、果糖、或葡萄糖的甜度效力,又具有较小热量的任何组合物。天然高效甜味剂可以作为一种纯化合物或者可替代地作为一种提取物的一部分来提供。
在又另一个实例中,该没有热量的甜味剂是一种合成高效甜味剂。
IV.制备方法
本发明的化合物是来源于对莱苞迪苷X进行的一种降解过程,其中莱苞迪苷X是:
Figure GDA0003476432920001531
莱苞迪苷X可以通过纯化从包含甜菊醇糖苷的组合物获得,包括但不限于甜菊醇糖苷的混合物、甜叶菊提取物、其他甜菊醇糖苷的分离和纯化过程的副产物、可商购的甜叶菊提取物或它们的任何组合。在实例15中提供了一种用于纯化和鉴定莱苞迪苷X的示例性方法。莱苞迪苷X也是从ChromaDex公司可商购的(在名称“莱苞迪苷M”下)。
在一个实施例中,一种制备具有式(1)的化合物的方法包括(i)使一种包含莱苞迪苷X的溶液与一种无机酸接触,(ii)加热该溶液持续足够的时间以提供一种具有式(1)的化合物并且(iii)从该溶液中回收该具有式(1)的化合物。
在另一个实施例中,一种制备具有式(2)的化合物的方法包括(i)使一种包含莱苞迪苷X的溶液与一种无机酸接触,(ii)加热该溶液持续足够的时间以提供一种具有式(2)的化合物并且(iii)从该溶液中回收该具有式(2)的化合物。
在具体实施例中,在此所提供的方法可以被用来分离化合物(2a)、(2b)、(2c)、(2d)、(2e)、(2f)以及(2g)。
在一些实施例中,该无机酸包括磷酸、亚磷酸、聚磷酸、盐酸、硫酸、硝酸、碳酸、磷酸二氢钠或它们的组合。
在一个具体的实施例中,该无机酸是磷酸。
在一个实施例中,该pH是使用一种缓冲液调节。在另一个实施例中,该pH是使用氢氧化铵调节。在一个具体的实施例中,该pH是在约1与约6之间。在一个具体的实施例中,该pH是在约1与约3之间。在另一个实施例中,该pH是约2。
在一个实施例中,该溶液是在约25℃与约100℃之间加热。在另一个实施例中,该溶液是在约50℃与约90℃之间加热。在一个实施例中,该溶液是在约75℃与约85℃之间加热。在又另一个实施例中,该溶液被加热至约80℃。
在另一个实施例中,足以获得本发明的一种化合物的时间是在约0.5至约48小时的范围内。在另一个实施例中,足以获得本发明的一种化合物的时间是在约2至约40小时的范围内。在又另一个实施例中,足以获得本发明的一种化合物的时间是在约15至约30小时的范围内。在一个实施例中,足以获得本发明的一种化合物的时间是约24小时。
在另一个实施例中,该降解混合物是通过LCMS进行分析。
在一个实施例中,该无机酸被一种无机碱替代。在另一个实施例中,该无机碱是选自但不限于下组,该组由以下各项组成:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸镁、碳酸钙以及它们的组合。
在一个实施例中,回收本发明的化合物的步骤包括从上清液、沉淀物、或它们的组合分离莱苞迪苷X衍生产品。本发明的化合物可以使用任何适合的固-液分离技术回收。例如,上清液和沉淀物的衍生产品可以通过从该沉淀物倾析上清液彼此分离。其他分离技术可以利用离心力,其非限制性实例包括立式和卧式多孔篮式离心机、无孔转鼓式(solidbowl)离心机、沉降式离心机、刮刀式离心机、推送式离心机、翻袋式(Heinkel type)离心机、圆盘堆叠式离心机和旋流分离。此外,在该上清液和沉淀物中本发明的化合物的分离可以通过任何压力、真空和重力过滤方法增强,包括,但不限于,使用带式过滤器、鼓式过滤器、纳特什(nutsche)类型过滤器、叶片过滤器、盘式过滤器、罗森孟德(Rosenmund)类型、斯巴克(Sparkler)类型过滤器、以及袋式过滤器和压滤机。
在其他具体实施例中,该方法进一步包括纯化本发明的化合物(下面对于HPLC进一步详细描述)。例如,一种或多种化合物可以通过正相和/或反相柱色谱法从上清液或沉淀物纯化。合适的用于纯化的柱可以由本领域的普通技术人员确定无需过多的实验。在具体实施例中,所产生的部分可以进行再处理(例如,使用柱色谱法或其他纯化方法)来进一步纯化产品。在还其他实施例中,所产生的部分可以使用本领域普通技术人员已知的任何适合的浓缩方法(例如,高效液相色谱法)浓缩。
V.纯化方法
如在此所用,术语“制备型HPLC”是指能够产生高(500或更多)微克、毫克、或克大小的产物部分的HPLC系统。术语“制备型”包括制备柱和半制备柱两者,但不旨在包括分析柱,其提供纳克至低微克范围的部分。
如在此所用,一种“HPLC相容的检测器”是适合于在HPLC系统中使用的一种检测器,其能够在洗脱出化合物峰后提供一种可检测的信号。例如,当从该化合物洗脱出一种化合物时能够生成一种信号的检测器是HPLC相容的检测器。当组分的吸收度广泛变化时,可能有必要使用多于一个检测器。由于其不能检测不希望的峰,能够检测出所希望组分的检测器不是“不相容”的检测器。
置换色谱(其一个实例是HPLC)是基于样品中固定相(SP)与流动相(MP)之间平衡被改变SP的方向的原理。样品的单个组分像火车一样互相替换并且与SP具有更大亲合力的替换剂将该推动火车分部分地离开柱。气相色谱、液相色谱和HPLC色谱是置换色谱中最熟知的实例。
一种HPLC装置典型包括至少下列部分:填充有适合的固定相,流动相的柱,在压力下迫使流动相通过该柱的泵,以及用于检测从该柱中洗脱出的化合物的存在的检测器。这些装置可以任选地包括用于提供梯度洗脱的一种装置,尽管使用在此描述的方法这不是必要的。用于进行HPLC分离的常规方法和装置是本领域中熟知的。
合适的固定相是其中洗脱出感兴趣的化合物的那些。优选的柱可以是,并且不限于,正相柱(中性、酸性或碱性)、反相柱(具有任何长度的烷基链),合成交联聚合物柱(例如,苯乙烯和二乙烯基苯)、尺寸排阻柱、离子交换柱、生物亲和性柱、以及它们的任何组合。固定相的颗粒大小是在从几μm到几百μm的范围内。
合适的检测装置包括,但不限于,质谱仪、UV检测器、IR检测器以及光散射检测器。在此描述的方法使用这些检测器的任何组合。最优选的实施例使用质谱仪和UV检测器。
a.HPLC纯化
在一个实施例中,使用一种制备型或半制备型HPLC方案来纯化或部分地纯化甜菊醇糖苷的一种混合物或甜叶菊提取物。在另一个实施例中,使用一种制备型或半制备型HPLC方案来纯化或部分地纯化如以上说明制备的本发明的化合物。
在一个实施例中,一种代表性分析HPLC方案是与用于纯化化合物的制备型或半制备型HPLC方案相关。
在另一个实施例中,通过对于给定的分析HPLC柱、溶剂系统和流速路线寻找一种代表性样品可以制定出用于纯化本发明的化合物的适当条件。在又另一个实施例中,一种相关的制备型或半制备型HPLC方法可以应用于纯化本发明的一种化合物其中改变纯化参数或不必改变纯化参数。
在一个实施例中,一种用于纯化具有式(1)的化合物的方法包括:
(a)使用一种洗脱液使包含甜菊醇糖苷的溶液通过制备型HPLC;并且
(b)洗脱出该包含具有式(1)的化合物的部分。
在一些实施例中,该洗脱液(流动相)是选自下组,该组由以下各项组成:水、乙腈、甲醇、2-丙醇、乙酸乙酯、二甲基甲酰胺、二甲基硫醚、吡啶、三乙胺、甲酸、三氟乙酸、乙酸、含有乙酸铵的水溶液、七氟丁酸、以及它们的任何组合。在另一个实施例中,纯化是梯度进行。
在一个实施例中,杂质是在洗脱含有甜菊醇糖苷的部分之前从HPLC柱中洗脱出。在另一个实施例中,杂质是在洗脱含有一种具有式(1)的化合物的部分之前从HPLC柱中洗脱出。
该方法可以进一步包括从该洗脱溶液中去除溶剂。去除溶剂可以通过本领域技术人员已知的任何手段进行,包括蒸发、蒸馏、真空干燥和喷雾干燥。
在一个实施例中,被纯化的混合物是选自下组的甜菊醇糖苷来源,该组由以下各项组成:甜叶菊提取物、其他甜菊醇糖苷的分离和纯化过程的副产物、可商购的甜叶菊提取物以及它们的组合。在一个实施例中,被纯化的混合物是从先前的HPLC纯化收集的部分。
在一个实施例中,使从一种制备型或半制备型HPLC方案分离的甜菊醇糖苷经受进一步的HPLC方案2、3、4或更多次。在一个实施例中,使从一种制备型或半制备型HPLC方案分离的具有式(1)的化合物经受进一步的HPLC方案2、3、4或更多次。
在一个实施例中,该方法提供了基于干重纯度大于按重量计约80%的具有式(1)的化合物,例如像,大于约85%、90%、95%和97%。在一个具体的实施例中,该方法提供了基于干重纯度大于按重量计约99%的具有式(1)的化合物。
实例
仪器设备:
Sciex API150 EX单四极杆和Sciex API2000三重四极杆质谱仪
在具有以负离子模式运行的TurbolonSpray电离源的Sciex API150 EX单四极杆或Sciex API2000三重四极杆质谱仪上进行质谱分析。使用在50℃和3.5巴下操作的SedereSedex 75ELS检测器。使用以下方法进行样品的分析:柱:Phenomenex Synergi Hydro RP,4.6×250mm,4μm(p/n00G-4375-E0);柱温:55℃;流动相A:H2O(0.0284%NH4OAc,0.0116%HOAc);流动相B:乙腈;流速:1.0mL/min;进样体积:100μL。检测是通过UV(210nm)、ELSD、以及MSD(-ESI m/z 200-1450或120-2000)。
梯度:
时间(min) %A %B
0.0 75 25
8.5 75 25
10.0 71 29
16.5 70 30
18.5 66 34
24.5 66 34
26.5 48 52
29.0 48 52
31.0 30 70
37.0 30 70
37.1 75 25
45.0 75 25
沃特世(Waters)Premier QTof质谱仪
MS和MS/MS数据是用配备有电喷雾电离源的沃特世Premier QTof质谱仪产生的。样品是用含有0.1%甲酸的H2O:乙腈(1:1)稀释并且使用板载注射泵经由注入引入。调节稀释以产生良好的s/n,这发生在约0.01mg/mL的浓度下。
Bruker Avance 500MHz NMR
样品是在吡啶-d5或吡啶-d5和氧化氘的混合物(10:1)中制备。在具有5mm反相检测探针的一台Bruker Avance 500MHz仪器上获取NMR数据,该光谱参照残留溶剂信号(对于吡啶-d5,δH 8.71,δC 149.9)。
安捷伦(Agilent)1100 HPLC或沃特世600 HPLC
半制备型HPLC是使用一个沃特世600E泵进行的,该泵连接至沃特世996二极管阵列检测器并通过沃特世Empower软件控制。制备规模HPLC是使用由ChemStation软件控制的一种安捷伦1100制备型HPLC系统进行的。
方法1:
柱:具有Phenomenex保护柱的Phenomenex Prodigy ODS(3),250×21.2mm,5μm(p/n 00G-4097-P0);UV检测:210nm;流动相A:H2O;流动相B:乙腈;流速:20mL/min;进样体积:150μL以在水-乙腈(75:25)中制备的40mg/ml。初始溶液是有点浑浊的并且在水浴中在40℃下加热直到澄清。流动相梯度提供在表1中。
表1:方法1的流动相梯度。
时间(min) %A %B
0.0 75 25
20.0 69 31
20.5 50 50
25.0 50 50
方法2:
柱:Phenomenex Gemini C18,具有保护柱,250×10mm,5μm(p/n00G-4435-N0);柱温:25℃;UV检测:210nm;流动相A:H2O;流动相B:乙腈;流速:5.0mL/min;进样体积:15μL在H2O中制备。流动相梯度提供在表2中。
表2:方法2的流动相梯度。
Figure GDA0003476432920001591
Figure GDA0003476432920001601
方法3:
柱:Phenomenex Gemini C18,具有保护柱,250×10mm,5μm(p/n00G-4435-N0);柱温:25℃;UV检测:210nm;流动相A:H2O;流动相B:乙腈;流速:5.0mL/min;进样体积:300μL以在水-乙腈(75:25)中制备的10mg/ml。流动相梯度提供在表3中。
表3:方法3的流动相梯度。
时间(min) %A %B
0.0 75 25
20.0 69 31
20.5 50 50
25.0 40 60
25.1 75 25
30.0 75 25
方法4:
柱:Phenomenex Gemini NX C18,250×10mm,5μm(p/n 00G-4097-P0)具有Phenomenex保护柱;UV检测:210nm;流动相A:H2O;流动相B:乙腈;流速:20mL/min。进样体积:1500μL以在水-乙腈(75:25)中制备的40mg/ml。流动相梯度提供在表4中。
表4:方法4的流动相梯度。
Figure GDA0003476432920001602
Figure GDA0003476432920001611
方法5:
柱:ZIC-HILIC,250×10mm,5μm(p/n HX 129616)具有Phenomenex保护柱;UV检测:210nm;流动相A:H2O;流动相B:乙腈;流速:5mL/min。流动相梯度提供在表5和6中。
表5:方法5A的流动相梯度。
时间(min) %A %B
0.0 5 95
20.0 17 83
30.0 30 70
31.0 95 5
36.0 95 5
37.0 5 95
42.0 5 95
表6:方法5B的流动相梯度。
Figure GDA0003476432920001612
Figure GDA0003476432920001621
实例1:莱苞迪苷X的降解
使用浓氢氧化铵将0.1M磷酸溶液调整至pH 2.0。将10mg的莱苞迪苷X(批号VSPC-2973-6B,从马来西亚谱赛科公司(Pure Circle Malaysia)获得)添加到10mL的磷酸溶液中。将该溶液放置在一个加热块上在80℃下持续24小时。
实例2:(2a)的分离和纯化
将来自实例1的材料使用以上LC-MS方法通过LC-MS进行分析。在UV(210nm)色谱图中在11.57min观察到莱苞迪苷X。对于降解混合物峰的质谱图在m/z 1289.7处提供了预期的[M-H]-离子。在UV色谱图中观察到该(2a)峰在13.19min时洗脱出并且在m/z 1289.7处显示出了[M-H]-离子。这表明(2a)是该莱苞迪苷X降解混合物的组分。使用HPLC方法1进行初步一轮的HPLC纯化并且收集作为该莱苞迪苷X降解混合物峰之后的肩在14.4min时洗脱出的材料并且通过旋转蒸发在减压下干燥作为粗杂质部分)。然后使用HPLC方法2通过注射粗杂质部分经过若干次注射进行最终分馏。观察到残余莱苞迪苷X降解混合物峰刚好在12min之前洗脱出并且观察到(2a)峰是在13.3min时洗脱出并且从多次注射收集、合并、并且通过旋转蒸发在减压下干燥以提供用于表征的样品(2a)。
实例3:(2a)的结构说明
质谱法
孤峰的LC-MS分析的结果确认它对应于(2a)(图1)。在TIC、UV和ELS色谱图中观察到一个单峰。(2a)的分离物的质谱图在m/z 1290.2处显示出[M-H]-离子,表明1290道尔顿的标称质量。
通过注入样品(2a)获得的ESI+TOF质谱图分别在m/z 1291.5439和1313.5254处显示出[M+H]+和[M+Na]-离子。[M+H]+离子的质量与(2a)的分子式C56H90O33(计算为C56H91O33:1291.5443,误差:-0.3ppm)良好一致。ESI-质谱分别在m/z 1289.5304和1335.5366处提供了[M-H]-和[M+HCOOH-H]离子。如上述,[M-H]-离子的质量与(2a)的分子式C56H90O33(计算为C56H89O33:1289.5286,误差:1.4ppm)良好一致。+ESI和-ESI数据表明(2a)具有1290道尔顿的标称质量与分子式C56H90O33。这确认(2a)是莱苞迪苷X的一种异构体。
(2a)的+ESI TOF MS/MS谱粉碎了在m/z 1291处的[M+H]+离子并在m/z1129.4908、967.4387、805.3853、以及643.3348处提供了对应于顺序失去葡萄糖残基的碎片离子。还在m/z 973.3253处观察到对应于六个葡萄糖残基的碎片离子。此离子经历顺序失去葡萄糖以产生在m/z 811.2714、649.2180、487.1656、以及325.1151处的碎片离子。这与观察到的莱苞迪苷X的碎裂模式相同。
(2a)的+ESI TOF MS/MS谱,粉碎了在m/z 1289处的[M-H]-离子,显示了最大量并且容易形成的离子存在于m/z 803.3706处并且对应于失去三个葡萄糖残基。由于此碎裂很可能在C-19处得到,它表明在C-19处的糖苷是由如在莱苞迪苷X中发现的三个葡萄糖残基组成的。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图2)、1H-1H COSY、HSQC、HMBC以允许(2a)的指认。
Figure GDA0003476432920001641
从在δH 1.35ppm处的甲基质子与在δC 176.7处的羰基的HMBC相关性允许叔甲基基团(C-18)之一以及C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。从甲基质子(H-18)与在δC 38.0、44.0、以及56.9处的碳的附加的HMBC相关性允许C3至C5与莱苞迪苷X的数据对比的指认。使用HSQC数据指认C-3(δH 1.03和2.33)和C-5(δH 1.05)的1H化学位移。在H-3质子(δH 1.03)之一与在δH 1.36处的质子之间的COSY相关性允许H-2质子之一的指认,这进而显示了与被指认为C-1的在δH 0.77处的质子的相关性。然后基于附加的COSY和HSQC相关性指认C-1和C-2的剩余的1H和13C化学位移并且总结在表7中。
表7.(2a)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001642
Figure GDA0003476432920001651
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
在δH 1.33观察到的一个第二叔甲基单峰显示了与C-1和C-5的HMBC相关性并且被指认为C-20。这些甲基质子显示了与分别被指认为C-10和C-9的季碳(δC 39.6)和次甲基(δH0.83,δC 47.0)的附加的HMBC相关性。H-5(δH 1.05)与在δH 2.21和2.31处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH 1.49和1.89处的质子的相关性。然后从HSQC数据确定对于C-6(δC 21.8)和C-7(δC 40.0)的13C化学位移。
H-9(δH 0.83)与在δH 1.56和1.67处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认H-12质子的在δH 1.84和2.36处的质子的COSY相关性。然后将HSQC数据用于指认C-11(δC 20.9)和C-12(δC 29.9)。
在(2a)的1H NMR谱中在δH 1.89处观察到一个第三叔甲基基团,其对于莱苞迪苷X没有观察到并且显示出对于这种杂质的糖苷配基的变化。此甲基基团显示了与在δC 89.6、134.3、以及144.4处的碳的HMBC相关性。还观察到在C-12(δH 1.84和2.36)处的亚甲基质子与在δC 89.6和144.4处的碳之间的HMBC相关性,允许它们分别被指认为C-13和C-16。观察到作为在δH 5.03处的单峰的烯属质子显示了被指认为C-15的在δC134.3处的碳与被指认为C-17的在δC 12.7处的甲基碳的HSQC相关性。还观察到H-9与在δC 144.4处的碳之间的HMBC相关性,其确认了C-15的指认。H-9与分离的亚甲基基团(δH 2.17和2.69,δC 47.1)之间的附加的HMBC相关性允许C-14的指认。H-14质子与C-13、C-15、以及C-16之间的HMBC相关性确认在C-14处的亚甲基基团的指认。
NMR数据的分析表明(2a)具有糖苷配基的重排,产生了从C-16至C-15的不饱和度的偏移。对于糖苷配基的1H和13C化学位移的汇总可见于表7中。
对于(2a)的HSQC数据的分析确认了6个异头(anomeric)位置的存在。在1H NMR谱中在δH 6.33(δC 94.5)、5.81(δC 103.8)、以及5.33(δC103.9)处很好地分辨了三个异头质子。在δH 5.47(δC 95.7)、5.45(δC 104.5)、以及5.44(δC 103.9)处观察到剩余的三个异头质子并且在1H谱中重叠。在δH 6.33处观察到的异头质子显示了与C-19的HMBC相关性,这指示它对应于GlcI的异头质子。类似地,在δH 5.47处观察到的异头质子显示出了与C-13的HMBC相关性,允许它被指认为GlcII的异头质子。
GlcI异头质子(δH 6.33)显示与被指认为GlcI H-2的在δH 4.51处的质子的COSY相关性并且进而显示了与在δH 4.99(GlcI H-3)处的质子的COSY相关性这显示了与在δH 4.19(GlcI H-4)处的质子的相关性。使用HSQC数据进行对于GlcI C-2(δC 76.6)、C-3(δC 88.3)、以及C-4(δC 69.6)的13C化学位移的指认。H-1与在δC 78.1处的碳之间的HMBC相关性允许C-5的指认,与对于莱苞迪苷X的数据对比然后从HSQC数据指认H-5(δH 4.10)。使用1H和HSQC数据与对于莱苞迪苷X的数据对比进行GlcI C-6的指认。
以类似方式进行GlcII的指认。GlcII异头质子(δH 5.47)显示与被指认为GlcII H-2的在δH 4.13处的质子的COSY相关性并且进而显示了与在δH 4.89(GlcII H-3)处的质子的COSY相关性,这显示了与在δH 4.04(GlcII H-4)处的质子的附加的相关性,这显示了与在δH3.90(GlcII H-5)处的质子的相关性。
然后使用HSQC数据完成对于GlcII C-2(δC 81.1)、C-3(δC 87.6)、C-4(δC 70.0)以及C-5(δC 77.4)的13C化学位移的指认。使用1H、COSY以及HSQC数据与对于莱苞迪苷X的数据对比进行GlcII C-6的指认。
基于HMBC相关性,两个剩余的未指认的葡萄糖部分被指认为在GlcI的C-2和C-3处的取代基。在δH 5.81处观察到的异头质子显示了与GlcI C-2的HMBC相关性并且被指认为GlcV的异头质子。在δH 5.33处观察到的异头质子显示了与GlcI C-3的HMBC相关性并且被指认为GlcVI的异头质子。还观察到了GlcI H-2与GlcV的异头碳之间以及GlcI H-3与GlcVI的异头碳之间的相反(reciprocal)HMBC相关性。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcV和GlcVI的C-2至C-6的指认。
对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表8中。
表8.(2a)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001671
Figure GDA0003476432920001681
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
基于HMBC相关性,两个剩余的未指认的糖部分被指认为在GlcII的C-2和C-3处的取代基。在δH 5.45处观察到的异头质子显示了与GlcII C-2的HMBC相关性并且被指认为GlcIII的异头质子。在δH 5.44处观察到的异头质子显示了与GlcII C-3的HMBC相关性并且被指认为GlcIV的异头质子。观察到了GlcII H-2与GlcIII的异头碳之间的相反HMBC相关性,就像GlcII H-3与GlcIV的异头碳之间的HMBC相关性。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcIII和GlcIV的C-2至C-6的指认。
数据分析表明在(2a)中发现的C-13糖苷与在莱苞迪苷X中发现的C-13糖苷相同。对于在C-13处的糖苷的1H和13C化学位移的汇总可见于表9中。
表9.(2a)C-13糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001682
Figure GDA0003476432920001691
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
实例4:(2b)的分离和纯化
使用LCMS方法通过LC-MS分析实例1中的材料并且结果是在图3中给出。在UV(210nm)色谱图中在11.57min观察到莱苞迪苷X。对于莱苞迪苷X峰的质谱图在m/z 1289.7处提供了预期的[M-H]-离子。在UV色谱图中观察到该(2b)峰在14.67min时洗脱出并且显示出在m/z1259.7的[M-H]-离子。相对于莱苞迪苷X,这显示了30道尔顿的净损失。使用HPLC方法1进行HPLC纯化并且经过若干次注射收集在17.18min时洗脱出的峰并且通过旋转蒸发在减压下干燥。
实例5:(2b)的结构说明
质谱法
孤峰的LC-MS分析的结果确认它对应于(2b)(图3)。在TIC、UV和ELS色谱图中观察到一个单峰。(2b)的分离物的质谱图显示出在m/z1259.6处的[M-H]-离子,表明1260道尔顿的标称质量。
通过注入样品(2b)获得的ESI+TOF质谱图分别显示出在m/z1261.5353和1283.5179处的[M+H]+和[M+Na]+离子。[M+H]+离子的质量与(2b)的分子式C55H88O32(计算为C55H89O32:1261.5337,误差:1.3ppm)良好一致。ESI-质谱分别提供了在m/z 1259.5203和1305.5271处的[M-H]-和[M+HCOOH-H]-离子。如上述,[M-H]-离子的质量与(2b)的分子式C55H88O32(计算为C55H87O32:1259.5180,误差:1.8ppm)良好一致。+ESI和-ESI数据表明(2b)具有1260道尔顿的标称质量与分子式C55H88O32。(2b)的分子式与莱苞迪苷X的分子式的不同在于CH2O的净损失,表明戊糖代替葡萄糖残基之一的取代。
(2b)的+ESI TOF MS/MS谱,粉碎了在m/z 1261处的[M+H]+离子,提供了对应于失去戊糖部分(m/z 1129.4924)亦或葡萄糖部分(m/z1099.4807)的碎片离子。还观察到在m/z943.3131处对应于五个葡萄糖和一个戊糖残基的碎片离子。此离子经历顺序失去戊糖亦或葡萄糖以产生在m/z 811.2704、781.2599、649.2180、619.2078、487.1655、457.1554、325.1136、以及295.1038处的碎片离子。
(2b)的+ESI TOF MS/MS谱,粉碎了在m/z 1259处的[M-H]-离子,显示了最大量并且容易形成的离子存在于m/z 803.3705处并且对应于失去两个葡萄糖残基和一个戊糖部分。由于此碎裂很可能在C-19处得到,它表明在C-19处的糖苷很可能是由于戊糖代替葡萄糖残基之一的取代。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图4)、1H-1H COSY、HSQC、HMBC以允许(2b)的指认。
Figure GDA0003476432920001711
从在δH 1.29ppm处的甲基质子与在δC 176.7处的羰基的HMBC相关性允许叔甲基基团(C-18)之一以及C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。从甲基质子(H-18)与在δC 38.0、43.9、以及57.0处的碳的附加的HMBC相关性允许C3至C5与莱苞迪苷X的数据对比的指认。使用HSQC数据指认C-3(δH 1.01和2.29)和C-5(δH 1.02)的1H化学位移。在H-3质子(δH 1.01)之一与在δH 1.35处的质子之间的COSY相关性允许H-2质子之一的指认,这进而显示了与被指认为C-1的在δH 0.75处的质子的相关性。然后基于附加的COSY和HSQC相关性指认C-1和C-2的剩余的1H和13C化学位移并且总结在表10中。
表10.(2b)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001712
Figure GDA0003476432920001721
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
在δH 1.36观察到的其他叔甲基单峰显示了与C-1和C-5的HMBC相关性并且被指认为C-20。这些甲基质子显示了与分别被指认为C-10和C-9的季碳(δC 41.3)和次甲基(δH0.90,δC 54.0)的附加的HMBC相关性。H-5(δH 1.02)与在δH 2.07和2.42处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH 1.37和1.73处的质子的相关性。然后从HSQC数据确定对于C-6(δC 23.1)和C-7(δC42.2)的13C化学位移。
H-9(δH 0.90)与在δH 1.65和1.75处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认H-12质子的在δH 1.86和2.70处的质子的COSY相关性。然后将HSQC数据用于指认C-11(δC 19.9)和C-12(δC 38.2)。与莱苞迪苷X对比在δH 4.89和5.69处观察到的烯属质子被指认为C-17并且显示了与被指认为C-13的在δC 87.5处的碳的HMBC相关性。然后从HSQC数据确定对于C-17(δC 104.6)的13C化学位移。与莱苞迪苷X数据对比指认了在C-14(δH 2.01和2.72,δC 42.9)和C-15(δH 1.88和2.04,δC 46.3)处的这些分离的亚甲基基团。观察到H-11质子(δH 1.65)与C-15之间的HMBC相关性。
对于糖苷配基的1H和13C化学位移的汇总可见于表10中。
对于(2b)的HSQC数据的分析确认了6个异头位置的存在。在1H NMR谱中在δH 6.38(δC 94.4)、5.62(δC 104.7)、以及5.33(δC 103.9)处很好地分辨了三个异头质子。在δH5.48(δC 104.5)、5.46(δC 103.8)、以及5.45(δC 96.0)处观察到剩余的三个异头质子并且在1H谱中重叠。在δH 6.38处观察到的异头质子显示了与C-19的HMBC相关性,这表明它对应于GlcII的异头质子。类似地,在δH 5.45处观察到的异头质子显示出了与C-13的HMBC相关性允许它被指认为GlcII的异头质子。
GlcI异头质子(δH 6.38)显示与被指认为GlcI H-2的在δH 4.38处的质子的COSY相关性并且进而显示了与在δH 5.04(GlcI H-3)处的质子的COSY相关性,这显示了与在δH4.24(GlcI H-4)处的质子的相关性,这显示了与在δH 4.14(GlcI H-5)处的质子的相关性。
使用HSQC数据进行对于GlcI C-2(δC 77.1)、C-3(δC 88.2)、C-4(δC69.8)以及C-5(δC 78.3)的13C化学位移的指认。使用1H和HSQC数据与对于莱苞迪苷X的数据对比进行GlcIC-6的指认。以类似方式进行GlcII的指认。GlcII异头质子(δH 5.45)显示与被指认为GlcIIH-2的在δH 4.13处的质子的COSY相关性并且进而显示了与在δH 4.96(GlcII H-3)处的质子的COSY相关性这显示了与在δH 4.06(GlcII H-4)处的质子的相关性。然后使用HSQC数据完成对于GlcII C-2(δC 61.0)、C-3(δC 67.6)、以及C-4(δC 70.1)的13C化学位移的指认。使用1H、COSY以及HSQC数据与对于莱苞迪苷X的数据对比进行GlcII C-5和C-6的指认。
基于HMBC相关性,两个剩余的未指认的葡萄糖部分被指认为在GlcI的C-2和C-3处的取代基。在δH 5.62处观察到的异头质子显示了与GlcI C-2的HMBC相关性并且被指认为糖V的异头质子。在δH 5.33处观察到的异头质子显示了与GlcI C-3的HMBC相关性并且被指认为GlcVI的异头质子。还观察到了GlcI H-2与糖V的异头碳之间的相反HMBC相关性。
糖V的异头质子的化学位移(δH 5.62)与对于莱苞迪苷X观察到的显著地不同并且表明此残基在莱苞迪苷X中被修饰。异头质子显示与被指认为H-2的在δH 4.17处的质子的COSY相关性。然后使用HSQC数据指认糖III C-2(δC 75.2)。一系列选择异头质子的1-DTOCSY实验显示了与H-2和在δH 3.54、4.12、以及4.32处的质子的相关性。HSQC数据表明在δH3.54处的质子是一个亚甲基基团(δH 3.54和4.32,δC 66.6)的一部分。该异头质子与这些亚甲基质子之间的TOCSY相关性确认糖V是一种戊糖残基。虽然在δH 3.54处的亚甲基质子表现为三重峰(J=11.0Hz)指示两个大的耦合,此质子仅显示了与在δH 4.32处的多重峰的COSY相关性,表明另一个H-5质子和H-4二者一定是在δH 4.32处被重叠。HSQC数据的检查允许C-4(δC 71.3)的指认。在TOCSY谱中观察到的剩余的相关性(δH 4.12)被指认为H-3且进而从HSQC数据指认C-3(δC 76.3)。对于H-1至H-4的耦合常数是近似6.0至9.0Hz允许糖V被指认为木糖残基替代对于莱苞迪苷X在此位置发现的葡萄糖。
GlcVIH 5.33)的异头质子显示了与被指认为GlcVI H-2的在δH 3.97处的质子的COSY相关性并且显示了与被指认为GlcVI H-3的在δH 4.36处的质子的COSY相关性。然后使用HSQC数据指认GlcVI C-2(δC 75.2)和C-3(δC 77.5)。附加的COSY相关性然后允许用使用HSQC数据确定的对应的13C化学位移(δC 70.9、77.6、和61.6)指认GlcVI H-4(δH 4.11)、GlcVIH-5(δH 3.67)、以及GlcVI H-6质子(δH 4.10和4.31)。对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表11中。
表11.(2b)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001741
Figure GDA0003476432920001751
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
基于HMBC相关性,两个剩余的未指认的糖部分被指认为在GlcII的C-2和C-3处的取代基。在δH 5.48处观察到的异头质子显示了与GlcII C-2的HMBC相关性并且被指认为GlcIII的异头质子。在δH 5.46处观察到的异头质子显示了与GlcII C-3的HMBC相关性并且被指认为GlcIV的异头质子。还观察到了GlcII H-2与GlcIII的异头碳之间的相反HMBC相关性。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcIII和GlcIV的C-2至C-6的指认。
对于在C-13处的糖苷的1H和13C化学位移的汇总可见于表12中。
表12.(2b)C-13糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001752
Figure GDA0003476432920001761
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
实例6:(2c)的分离和纯化
将来自实例1的材料使用以上所述的LCMS方法通过LC-MS分析。在UV(210nm)色谱图中在11.57min观察到莱苞迪苷X。对于莱苞迪苷X峰的质谱图在m/z 1289.7处提供了预期的[M-H]-离子。在UV色谱图中观察到该(2c)峰在15.99min时洗脱出并且在m/z 1274.0处显示出了[M-H]-离子。相对于莱苞迪苷X,这显示了16道尔顿的净损失。使用HPLC方法1进行HPLC纯化并且经过若干次注射收集在18.29min时洗脱出的峰并且通过旋转蒸发在减压下干燥。
实例7:(2c)的结构说明
质谱法
孤峰的LC-MS分析的结果确认它对应于(2c)(图5)。在TIC、UV和ELS色谱图中观察到一个单峰。(2c)的分离物的质谱图显示出在m/z1273.7处的[M-H]-离子,表明1274道尔顿的标称质量。
通过注入样品(2c)获得的ESI+TOF质谱图显示出分别在m/z1275.5485和1297.5297处的[M+H]+和[M+Na]+离子。[M+H]+离子的质量与莱苞迪苷X的分子式C56H90O32(计算为C56H91O32:1275.5493,误差:-0.6ppm)良好一致。ESI-质谱提供了分别在m/z 1273.5349和1319.5414处的[M-H]-和[M+HCOOH-H]-离子。如上述,[M-H]-离子的质量与(2c)的分子式C56H90O33(计算为C56H89O32:1273.5337,误差:0.9ppm)良好一致。+ESI和-ESI数据表明(2c)具有1274道尔顿的标称质量与分子式C56H90O33。(2c)的分子式与莱苞迪苷X的分子式的不同在于一个氧原子的净损失。
(2c)的+ESI TOF MS/MS谱,粉碎了在m/z 1275处的[M+H]+离子,提供了对应于失去脱氧己糖部分(m/z 1129.4969)亦或葡萄糖部分(m/z1113.4985)的碎片离子。还观察到在m/z 957.3300处对应于五个葡萄糖和一个脱氧己糖残基的碎片离子。此离子经历顺序失去脱氧己糖亦或葡萄糖以产生在m/z 811.2729、795.2766、649.2191、633.2243、487.1664、471.1717、325.1144、以及309.1202处的碎片离子。
(2c)的+ESI TOf MS/MS谱,粉碎了在m/z 1273处的[M-H]-离子,显示了最大量并且容易形成的离子存在于m/z 787.3767处并且对应于失去三个葡萄糖残基。这表明在C-19处的糖苷很可能由三个葡萄糖残基组成并且通过推理表明脱氧葡萄糖是作为在C-13处的糖苷的一部分存在。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图6)、1H-1H COSY、HSQC、以及HMBC以允许(2c)的指认。
Figure GDA0003476432920001781
从在δH 1.32ppm处的甲基质子与在δC 177.0处的羰基的HMBC相关性允许叔甲基基团(C-18)之一以及C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。从甲基质子(H-18)与在δC 38.1、44.0、以及57.0处的碳的附加的HMBC相关性允许C3至C5与莱苞迪苷X的数据对比的指认。使用HSQC数据指认C-3(δH 1.02和2.29)和C-5(δH 1.06)的1H化学位移。在H-3质子(δH 1.02)之一与在δH 1.37处的质子之间的COSY相关性允许H-2质子之一的指认,这进而显示了与被指认为C-1的在δH 0.77处的质子的相关性。然后基于附加的COSY和HSQC相关性指认C-1和C-2的剩余的1H和13C化学位移并且总结在表13中。
表13.(2c)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001782
Figure GDA0003476432920001791
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
在δH 1.38观察到的其他叔甲基单峰显示了与C-1和C-5的HMBC相关性并且被指认为C-20。这些甲基质子显示了与分别被指认为C-10和C-9的季碳(δC 41.4)和次甲基(δH0.92,δC 54.0)的附加的HMBC相关性。H-5(δH 1.06)与在δH 2.24和2.41处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH 1.42和1.81处的质子的相关性。然后从HSQC数据确定对于C-6(δC 23.2)和C-7(δC42.3)的13C化学位移。
H-9(δH 0.92)与在δH 1.67和1.76处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认H-12质子的在δH 1.81和2.74处的质子的COSY相关性。然后将HSQC数据用于指认C-11(δC 19.8)和C-12(δC 38.1)。H-12质子与在δC 87.4处的碳之间的HMBC相关性允许C-13的指认。观察到在δH 4.89和5.72处的烯属质子显示了与C-13的HMBC相关性并且被指认为C-17(经由HSQC的δC 104.5)。与莱苞迪苷X数据对比指认了在C-14(δH2.01和2.75,δC 42.9)和C-15(δH 1.88和2.05,δC 46.1)处的这些分离的亚甲基基团。H-15质子之一(δH 1.88)与在δC 153.7处的碳之间的HMBC相关性允许C-16的指认。
对于糖苷配基的1H和13C化学位移的汇总可见于表13中。
对于(2c)的HSQC数据的分析确认了6个异头位置的存在。在1H NMR谱中在δH 6.41(δC 94.5)、5.81(δC 103.9)、5.39(δC 104.3)、以及5.30(δC 103.9)处很好地分辨了四个异头质子。在δH 5.49(δC 95.9)和5.48(δC 103.5)处观察到剩余的两个异头质子并且在1H谱中重叠。在δH 6.41处观察到的异头质子显示了与C-19的HMBC相关性,这表明它对应于GlcI的异头质子。类似地,在δH 5.49处观察到的异头质子显示出了与C-13的HMBC相关性,允许它被指认为GlcII的异头质子。
GlcI异头质子(δH 6.41)显示与被指认为GlcI H-2的在δH 4.52处的质子的COSY相关性并且进而显示了与在δH 5.14(GlcI H-3)处的质子的COSY相关性这显示了与在δH 4.20(GlcI H-4)处的质子的相关性。使用HSQC数据进行对于GlcI C-2(δC 76.5)、C-3(δC 88.2)、以及C-4(δC 69.7)的13C化学位移的指认。使用1H和HSQC数据与对于莱苞迪苷X的数据对比进行GlcI C-5和C-6的指认。
以类似方式进行GlcII的指认。GlcII异头质子(δH 5.49)显示与被指认为GlcII H-2的在δH 4.08处的质子的COSY相关性并且进而显示了与在δH 5.01(GlcII H-3)处的质子的COSY相关性,这显示了与在δH 4.09(GlcII H-4)处的质子的附加的相关性。然后使用HSQC数据完成对于GlcII C-2(δC 81.1)、C-3(δC 87.7)、以及C-4(δC 70.3)的13C化学位移的指认。使用1H、COSY以及HSQC数据与对于莱苞迪苷X的数据对比进行GlcII C-5和C-6的指认。
基于HMBC相关性,两个剩余的未指认的葡萄糖部分被指认为在GlcI的C-2和C-3处的取代基。在δH 5.81处观察到的异头质子显示了与GlcI C-2的HMBC相关性并且被指认为GlcV的异头质子。在δH 5.30处观察到的异头质子显示了与GlcI C-3的HMBC相关性并且被指认为GlcVI的异头质子。还观察到了GlcI H-2与GlcV的异头碳之间的相反HMBC相关性。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcV和GlcVI的C-2至C-6的指认。
对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表14中。
表14.(2c)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001811
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
基于HMBC相关性,两个剩余的未指认的糖部分被指认为在GlcII的C-2和C-3处的取代基。在δH 5.39处观察到的异头质子显示了与GlcII C-2的HMBC相关性并且被指认为糖III的异头质子其随后确定为是6-脱氧葡萄糖(参见下文)。在δH 5.48处观察到的异头质子显示了与GlcII C-3的HMBC相关性并且被指认为GlcIV的异头质子。还观察到了GlcII H-2与GlcIII的异头碳之间的相反HMBC相关性。
糖III(δH 5.39)的异头质子显示与被指认为H-2的在δH 4.14处的质子的COSY相关性。然后使用HSQC数据指认糖III C-2(δC 75.5)。一系列选择异头质子的1-D TOCSY实验显示了与H-2和在δH 1.63、3.47、3.69、以及4.04处的质子的相关性。异头质子与在δH 1.63处的甲基双峰之间的TOCSY相关性表明糖III是一种6-脱氧己糖。这些甲基质子(H-6,δH1.63)显示了与在δH 3.47处的质子的COSY相关性,这进而显示了与在δH 3.69处的质子的COSY相关性,这显示了与在δH 4.04处的质子的COSY相关性,允许分别指认H-5至H-3。随后从HSQC谱确定对于C-3(δC 78.1)、C-4(δC 76.7)、C-5(δC 72.4)、以及C-6(δC 18.3)的13C化学位移。对于H-1至H-5的所有耦合常数是近似8.0至9.0Hz,允许糖III被指认为6-脱氧葡萄糖(quinivose)。
GlcIVH 5.48)的异头质子显示了与被指认为GlcIV H-2的在δH 4.00处的质子的COSY相关性并且显示了与被指认为GlcIV H-3的在δH 4.55处的质子的COSY相关性。然后使用HSQC数据指认GlcIV C-2(δC 75.2)和C-3(δC 77.4)。附加的COSY相关性然后允许用使用HSQC数据确定的对应的13C化学位移(δC 71.0和77.6)指认GlcIV H-4(δH 4.18)和GlcIV H-5(δH 4.01)。与莱苞迪苷X对比指认剩余的氧亚甲基基团(δH 4.20和4.30,δC 61.7)。
对于在C-13处的糖苷的1H和13C化学位移的汇总可见于表15中。
表15.(2c)C-13糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001831
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
实例8:(2d)的分离和纯化
将来自实例1的材料使用以上所述的方法通过LC-MS分析。在UV(210nm)色谱图中在11.5min观察到莱苞迪苷X。对于莱苞迪苷X峰的质谱图在m/z 1290.3处提供了预期的[M-H]-离子。在UV色谱图中观察到该(2d)峰在7.1min时洗脱出并且显示出了在m/z 1308.0处的[M-H]-离子。相对于莱苞迪苷X,这显示了18道尔顿的净增加。使用HPLC方法3进行HPLC纯化并且经过若干次注射收集在7.86min时洗脱出的峰并且通过旋转蒸发在减压下干燥。
实例9:(2d)的结构说明
质谱法
孤峰的LC-MS分析的结果确认它对应于(2d)(图7)。在TIC、UV和ELS色谱图中观察到一个单峰。(2d)的分离物的质谱图显示出在m/z1308.0处的[M-H]-离子,表明1308道尔顿的标称质量。
通过注入样品(2d)获得的ESI+TOF质谱图显示出分别在m/z1309.5588和1331.5414处的[M+H]+和[M+Na]+离子。[M+H]+离子的质量与(2d)的分子式C56H92O3(计算为C56H93O34:1309.5548,误差:3.0ppm)良好一致。ESI-质谱提供了分别在m/z 1307.5353和1353.5399处的[M-H]-和[M+HCOOH-H]-离子。如上述,[M-H]-离子的质量与(2d)的分子式C56H92O34(计算为C56H91O34:1307.5392,误差:-2.8ppm)良好一致。+ESI和-ESI数据表明(2d)具有1308道尔顿的标称质量与分子式C56H92O34。(2d)的分子式与莱苞迪苷X的分子式的不同在于H2O的净增加。
(2d)的+ESI TOF MS/MS,粉碎了在m/z 1309处的[M+H]+离子,显示了在m/z1291.5469处的离子对应于H2O的损失。由于顺序失去4个葡萄糖部分观察到在m/z1147.5048、985.4510、823.3992、以及661.3459处的一系列碎片离子。由于从在m/z1291.5469处的离子顺序失去6个葡萄糖部分观察到在m/z 1129.4951、967.4416、805.3882、643.3328、481.2800、以及319.2282处的第二系列碎片离子。还观察到对应于6个葡萄糖部分的在m/z 911.1212处的碎片离子并且此离子经历顺序失去5个葡萄糖残基以产生在m/z 811.2730、649.2197、487.1658、325.1145、以及163.0630处的碎片离子。对于(2d)观察到的碎裂模式与对于莱苞迪苷X观察到的碎裂模式非常类似并且表明了6个葡萄糖残基的存在。
(2d)的+ESI TOf MS/MS谱,粉碎了在m/z 1307处的[M-H]-离子,显示了最大量并且容易形成的离子存在于m/z 821.3790处并且对应于失去三个葡萄糖残基。这表明在C-19处的糖苷很可能由三个葡萄糖残基组成并且通过推理表明在C-13处的糖苷还很可能由三个葡萄糖残基组成。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图8)、1H-1H COSY、HSQC、HMBC以允许(2d)的指认。NMR数据的初步检查表明不存在对于莱苞迪苷X所观察到的烯属质子。连同MS数据这表明在C-16不饱和度处添加H2O可能已经在降解过程中发生。
Figure GDA0003476432920001851
从在δH 1.28ppm处的甲基质子与在δC 176.9处的羰基的HMBC相关性允许叔甲基基团(C-18)之一以及C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。从甲基质子(H-18)与在δC 38.4、43.8、以及57.1处的碳的附加的HMBC相关性允许C3至C5与莱苞迪苷X的数据对比的指认。使用HSQC数据指认C-3(δH 1.00和2.32)和C-5(δH 1.04)的1H化学位移。在H-3质子(δH 1.00)之一与在δH 1.34处的质子之间的COSY相关性允许H-2质子之一的指认,这进而显示了与被指认为C-1的在δH 0.78处的质子的相关性。然后基于附加的COSY和HSQC相关性指认C-1和C-2的剩余的1H和13C化学位移并且总结在表16中。
表16.(2d)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001861
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
1H NMR谱中观察到两个附加的叔甲基单峰作为在δH 1.31处的单个重叠单峰但显示了与在δC 16.0和22.2处的分离的碳的HSQC相关性。与对于莱苞迪苷X的数据对比这些重叠的单峰(δH 1.31,δC 16.0)之一试验性地被指认为C-20并显示了与C-1和C-5的HMBC相关性。这些甲基质子显示了与被指认为C-9的次甲基(δH 0.84,δC 54.8)的附加的HMBC相关性。H-9和在δC 16.0处的碳之间的HMBC相关性然后确认C-20甲基基团的指认。H-5(δH 1.04)与在δH 2.11和2.43处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH1.37和1.88处的质子的相关性。然后从HSQC数据确定对于C-6(δC 23.1)和C-7(δC 42.8)的13C化学位移。
H-9(δH 0.84)与在δH 1.52和1.71处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认为H-12质子的在δH 1.85和2.67处的质子的COSY相关性。然后将HSQC数据用于指认C-11(δC 19.8)和C-12(δC 31.6)。H-11质子与在δC 87.6处的碳之间的HMBC相关性允许C-13的指认。没有观察到对于烯属H-17质子的如以上所指出的信号。剩余的甲基单峰(δH 1.31,δC 22.2)显示了与C-13的HMBC相关性并被指认为C-17。H-17质子与在δC 54.3和77.1处的碳之间的附加的HMBC相关性然后分别允许C-15和C-16的指认。对于C-16的13C化学位移表明被羟基基团在此位置上取代。从HSQC数据指认了H-15质子(δH 1.41和1.83)并显示了与C-9、C-16和被指认为C-14的在δC 40.3处的碳的HMBC相关性。从HSQC数据指认了对于H-14质子(δH 2.44和2.58)的1H化学位移。H-9与C-12、C-14、以及C-15之间的附加的HMBC相关性确认了它们的指认。
对于糖苷配基的NMR数据的分析,连同MS数据,表明H2O的添加已经发生在C-16处伴随有双键的失去。对于糖苷配基的1H和13C化学位移的汇总可见于表16中。
对于(2d)的HSQC数据的分析确认了6个异头位置的存在。在1H NMR谱中在δH 6.35(δC 94.5)、5.63(δC 103.8)、5.53(δC 103.8)、以及5.22(δC 104.0)处很好地分辨了四个异头质子。在δH 5.79(δC 96.0)和5.76(δC 104.0)处观察到剩余的两个异头质子并且在1HNMR谱中部分地重叠。在δH 6.35处观察到的异头质子显示了与C-19的HMBC相关性,这指示它对应于GlcI的异头质子。在δH 5.79处观察到的异头质子被指认为GlcII的异头质子。
GlcI异头质子(δH 6.35)显示与被指认为GlcI H-2的在δH 4.53处的质子的COSY相关性并且进而显示了与在δH 4.98(GlcI H-3)处的质子的COSY相关性,这显示了与在δH4.21(GlcI H-4)处的质子的相关性。使用HSQC数据进行对于GlcI C-2(δC 76.4)、C-3(δC88.5)、以及C-4(δC69.7)的13C化学位移的指认。使用1H和HSQC数据与对于莱苞迪苷X的数据对比进行GlcI C-5和C-6的指认。
以类似方式进行GlcII的指认。GlcII异头质子(δH 5.79)显示与被指认为GlcII H-2的在δH 4.14处的质子的COSY相关性并且进而显示了与在δH 5.09(GlcII H-3)处的质子的COSY相关性,这显示了与在δH 4.00(GlcII H-4)处的质子的附加的相关性。然后使用HSQC数据完成对于GlcII C-2(δC 80.4)、C-3(δC 87.9)、以及C-4(δC 69.9)的13C化学位移的指认。使用1H、COSY以及HSQC数据进行GlcII C-5和C-6的指认。
基于HMBC相关性,两个剩余的未指认的葡萄糖部分被指认为在GlcI的C-2和C-3处的取代基。在δH 5.76处观察到的异头质子显示了与GlcI C-2的HMBC相关性并且被指认为GlcV的异头质子。在δH 5.22处观察到的异头质子显示了与GlcI C-3的HMBC相关性并且被指认为GlcVI的异头质子。还观察到了GlcI H-2与GlcV的异头碳之间的相反HMBC相关性。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcV和GlcVI的C-2至C-6的指认。
对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表17中。
表17.(2d)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001881
Figure GDA0003476432920001891
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
基于HMBC相关性,两个剩余的未指认的糖部分被指认为在GlcII的C-2和C-3处的取代基。在δH 5.63处观察到的异头质子显示了与GlcII C-2的HMBC相关性并且被指认为GlcIII的异头质子。在δH 5.53处观察到的异头质子显示了与GlcII C-3的HMBC相关性并且被指认为GlcIV的异头质子。还观察到了GlcII H-2与GlcII的异头碳之间的相反HMBC相关性。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcIII和GlcIV的C-2至C-6的指认。
对于在C-13处的糖苷的1H和13C化学位移的汇总可见于表18中。对于糖苷区域的NMR数据显示它们相对于莱苞迪苷X是未改变的。
表18.(2d)C-13糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
Figure GDA0003476432920001892
Figure GDA0003476432920001901
实例10:(2e)的分离和纯化
将来自实例1的材料使用以上所述的LC-MS方法通过LC-MS分析。在UV(210nm)色谱图中在11.1min观察到莱苞迪苷X峰。对于莱苞迪苷X峰的质谱图在m/z 1290.5处提供了预期的[M-H]-离子。在UV色谱图中观察到该(2e)峰在24.1min时洗脱出并且在m/z 803.9处显示出了[M-H]-离子。相对于莱苞迪苷X,这显示了486道尔顿的净损失。使用HPLC方法3进行HPLC纯化并且经过若干次注射收集在23.98min时洗脱出的峰并且通过旋转蒸发在减压下干燥。
实例11:(2e)的结构说明
质谱法
LC-MS分析的结果确认它对应于(2e)(图9)。在TIC、UV和ELS色谱图中观察到一个单峰。(2e)的分离物的质谱图显示出在m/z 803.8处的[M-H]-离子,表明804道尔顿的标称质量。
通过注入样品(2e)获得的ESI+TOF质谱图显示出分别在m/z 805.3890和827.3707处的[M+H]+和[M+Na]+离子。[M+H]+离子的质量与(2e)的分子式C38H60O18(计算为C38H61O18:805.3858,误差:4.0ppm)良好一致。ESI-质谱提供了分别在m/z 803.3691和849.3774处的[M-H]-和[M+HCOOH-H]-离子。如上述,[M-H]-离子的质量与(2e)的分子式C38H60O18(计算为C38H59O18:803.3701,误差:-1.4ppm)良好一致。+ESI和-ESI数据表明(2e)具有804道尔顿的标称质量与分子式C38H60O18。(2e)的分子式与莱苞迪苷X的分子式的不同在于对应于三个单位的葡萄糖的C18H30O15的净损失。
(2e)的MS/MS谱,选择在m/z 805处的[M+H]+离子进行粉碎,表明在m/z 643.3341、481.2809、以及319.2302处顺序失去3个葡萄糖残基。还观察到对应于3个葡萄糖部分的在m/z 487.1670处的碎片离子并且此离子经历失去葡萄糖残基以产生在m/z 325.1151处的碎片离子。
(2e)的-ESI TOF MS/MS谱,粉碎了在m/z 803处的[M-H]-离子,显示了在m/z317.2130处的离子对应于失去三个葡萄糖残基。还观察到在m/z641.3160和479.2651处的碎片离子分别对应于失去一个或两个葡萄糖残基。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图10)、1H-1H COSY、HSQC、HMBC以允许(2e)的指认。NMR数据的初步检查表明不存在对于莱苞迪苷X所观察到的烯属质子。连同MS数据这表明糖苷配基的重排已经发生伴随失去三个糖残基。
Figure GDA0003476432920001921
从在δH 1.42ppm处的甲基质子与在δC 175.8处的羰基的HMBC相关性允许叔甲基基团(C-18)之一以及C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。
从甲基质子(H-18)与在δC 37.3、44.1、以及57.1处的碳的附加的HMBC相关性允许C3至C5与莱苞迪苷X的数据对比的指认。使用HSQC数据指认C-3(δH 1.07和2.77)和C-5(δH1.06)的1H化学位移。在H-3质子(δH 1.07)之一与在δH 2.02处的质子之间的COSY相关性允许H-2质子的指认,这进而显示了与被指认为C-1的在δH 0.77处的质子的相关性。然后基于附加的COSY和HSQC相关性指认C-1和C-2的剩余的1H和13C化学位移并且总结在表19中。
表19.(2e)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001922
Figure GDA0003476432920001931
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
两个附加的叔甲基单峰是在1H NMR谱中在δH 0.81和0.98处观察到并且显示了与分别在δC 13.8和19.9处的碳的HSQC相关性。这些重叠单峰(δH 0.81,δC 13.8)之一显示与C-1和C-5的HMBC相关性并且与对于莱苞迪苷X的数据对比被指认为C-20。这些甲基质子显示了与被指认为C-9的次甲基(δH 1.04,δC 54.4)的附加的HMBC相关性。H-5(δH 1.06)与在δH 1.38和2.04处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH 1.34和1.61处的质子的相关性。然后从HSQC数据确定对于C-6(δC 19.4)和C-7(δC 41.3)的13C化学位移。
H-9(δH 1.04)与在δH 1.04和1.46处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认为H-12质子的在δH 1.24和1.51处的质子的COSY相关性。然后将HSQC数据用于指认C-11(δC 20.1)和C-12(δC 37.1)。没有观察到对于烯属H-17质子的如以上所指出的信号,表明在此糖苷配基区域的变化。剩余的甲基单峰(δH 0.98,δC 19.9)显示了与C-12的HMBC相关性,指示它一定在C-13处附接。这些甲基基团显示了与在δC 48.4、54.2、以及220.7处的碳的附加的HMBC相关性。HSQC数据表明在δC 48.4处的碳是被指认为C-14的一个亚甲基基团(δH 1.83和2.62)。酮(δC 220.7)被指认为C-16,表明糖苷配基已经经历重排为异甜菊醇。在δC 54.2处的季碳被指认为C-13。HSQC数据表明被指认为C-15的一个附加的亚甲基基团(δH 1.27和1.36,δC 53.8)的存在。
对于糖苷配基的NMR数据的分析,连同MS数据,表明糖苷配基重排为异甜菊醇伴随失去在C-13处的糖苷。对于糖苷配基的1H和13C化学位移的汇总可见于表19中。
对于(2e)的HSQC数据的分析指示了三个异头位置的存在而不是在莱苞迪苷X中发现的六个。在1H NMR谱中在δH 6.19(δC 93.0)、5.79(δC103.4)、以及5.35(δC 104.5)处很好地分辨了所有三个异头质子。在δH 6.19处观察到的异头质子显示了与C-19的HMBC相关性,这表明它对应于GlcI的异头质子。这是与对于糖苷配基如上所描述的NMR数据一致,这表明在C-13处的糖苷不存在而在C-19处的糖苷保留在该降解物中。
GlcI异头质子(δH 6.19)显示与被指认为GlcI H-2的在δH 4.51处的质子的COSY相关性并且进而显示了与在δH 4.27(GlcI H-3)处的质子的COSY相关性,这显示了与在δH4.17(GlcI H-4)处的质子的相关性。使用HSQC数据进行对于GlcI C-2(δC 76.8)、C-3(δC88.4)、以及C-4(δC69.1)的13C化学位移的指认。使用1H和HSQC数据与对于莱苞迪苷X的数据对比进行GlcI C-5和C-6的指认。
与对于莱苞迪苷X的数据对比,两个剩余的未指认的葡萄糖部分被指认为在GlcI的C-2和C-3处的取代基。与对于莱苞迪苷X的数据对比,在δH 5.79处观察到的异头质子被指认为GlcV的异头质子。类似地,与莱苞迪苷X对比,在δH 5.35处观察到的异头质子被指认为GlcVI的异头质子。使用1H、COSY以及HSQC数据与莱苞迪苷X的指认对比进行GlcV和GlcVI的C-2至C-6的指认。
对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表20中。
表20.(2e)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920001951
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
实例12:莱苞迪苷N(2f)的分离和纯化
将来自实例1的材料通过以上所述的LC-MS方法分析。在这种方法下,(2f)在11.2min时洗脱出。这些ESI-质谱显示了在m/z 1213处的预期的[M-H]-离子。使用HPLC方法4进行第一轮的纯化。在这种方法下,(2f)在7.8和11min之间洗脱出。使用方法5A进行第二轮的HPLC纯化。在这种方法下,(2f)在29.1min时洗脱出。使用HPLC方法5A进行第三HPLC纯化并且经过若干次注射收集在29.1min时洗脱出的峰并且通过旋转蒸发在减压下干燥。
实例13:莱苞迪苷N(2f)的结构说明
质谱法
孤峰的LC-MS分析的结果确认它对应于(2f)(图11)。在TIC、UV和ELS色谱图中观察到一个单峰。(2f)的分离物的ESI-TOF质谱图显示了在m/z 1273.5345处的[M-H]-离子。[M-H]-离子的质量与对于(2f)的预期的分子式C56H92O34(计算为C56H90O32 1273.5337,误差:0.8毫道尔顿)良好一致。MS数据确认(2f)具有1274道尔顿的标称质量与分子式C56H90O32。(2f)的MS/MS谱,选择在m/z 1213处的[M-H]-离子进行粉碎,表明在m/z1111.4790、949.4274、803.3708、641.3181、479.2654、以及317.2145处顺序失去6个糖残基。在m/z 803.3708处的基峰强烈地表明3个糖与甜菊醇糖苷的C-19的连接。162质量单位的差异表明了葡萄糖部分的存在,甜菊醇糖苷的特征。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图12)、1H-1H COSY、HSQC、HMBC、以及HSQC-TOCSY以允许(2f)的指认。
Figure GDA0003476432920001971
从在δH 1.52ppm处的甲基质子与在δC 176.0处的羰基的HMBC相关性允许甲基单峰C-18以及羰基C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。从甲基质子(H-18)与在δC 37.5、44.2、以及58.2处的碳的附加的HMBC相关性分别允许C-3、C4、以及C-5的指认。这些指认被化学位移的对比和先前报道的对于莱苞迪苷X的类似相关性、以及观察到在HSQC光谱中在δC 44.2处的碳没有显示出相关性所支持。使用HSQC数据指认C-3(δH1.11和2.58)和C-5(δH 1.00)的1H和13C化学位移。在δH 2.58处的H-3质子与在δH 1.41和δH2.11处的质子之间的COSY相关性允许H-2质子的指认。这些质子显示与被指认为C-1的在δH0.72处的质子的随后的COSY相关性。然后使用HSQC数据指认对于C-1和C-2的1H和13C化学位移(表21)。
表21.(2f)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5/D20(10:1))的指认。a,b,c
Figure GDA0003476432920001972
Figure GDA0003476432920001981
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
在δH 1.17处观察到的一个第二甲基单峰显示了与C-1和C-5的HMBC相关性并且被指认为C-20。这些甲基质子显示了与分别被指认为C-10和C-9的季碳(δC 39.3)和次甲基(δH0.89,δC 53.8)的附加的MBC相关性。H-5(δH 1.00)与在δH 2.15和1.89处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH 1.28和1.38处的质子的相关性。然后从HSQC数据指认对于C-6(δC 22.1)和C-7(δC 41.7)的13C化学位移(表21)。
H-9(δH 0.89)与在δH 1.64处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认H-12质子的在δH 1.87和2.19处的质子的COSY相关性。然后将HSQC数据用于指认C-1(δC 20.5)和C-12(δC 37.6)。观察到的对于在δH 5.06和5.69处的质子的HSQC相关性表明它们在δC 105.0处连接至碳,这确认了如在莱苞迪苷X中的末端烯烃的存在,并且因此,被指认为C-17。在δH 5.69处的烯属质子具有可忽略不计的偶合常数,并且它与在δH2.03和2.13处的质子的COSY相关性表明烯丙基耦合的存在。因此,通过HSQC数据这些在δH2.03和2.13处的质子被指认为C-15(δC 47.8)。在δH 1.77和2.55处的质子是在(2f)的糖苷配基中仅剩余的那些并且基于与在莱苞迪苷X中的类似物质子相比可以被指认为C-14(δC44.6)。基于与在δH 5.69处的烯属质子的HMBC相关性的观察C-13在δC 87.9处共振。没有观察到C-8和C-16的相关性并且不能确定它们的化学位移;然而,据估算它们应当分别在约41和153ppm处共振,如在莱苞迪苷X中。
对于糖苷配基的1H和13C化学位移的汇总可见于表21中。
观察到一个第三甲基基团作为在δH 1.73处的双峰。它仅显示了与在δC 70.2和73.5处的碳的HMBC相关性,它们各自的质子(δH 4.45和4.32)通过HSQC数据被指认。在δC70.2处的碳是与在δH 6.20(δC 101.5)处的异头质子通过HMBC相关,表明在δH 4.45和1.73处的质子分别连接至糖部分的C-5和C-6。这使在δH 4.32(δC 73.5)处的质子被指认为C-4。在δH 6.20处的质子显示了与在δH 4.80处的质子的COSY相关性,其随后与在δH 4.49处的质子相关。在δH 6.20处的质子与在δC 72.0和76.3处的碳的附加的HMBC相关性,以及HSQC和HSQC-TOCSY数据分析允许C-2(δC 71.9,δH 4.80)和C-3(δC 72.0,δH 4.49)的指认。在δC76.3处的碳不属于这种糖,如通过HSQC-TOCSY数据分析证实的,但它确立了与邻近单元的连接性。这种糖的特性(identity)是基于我们的数据作为D-α-鼠李糖提出,我们的数据包括可忽略不计的H-1和H-2的偶合常数,以及以下事实,即这种糖是如在文献(应用糖科学杂志(J.Appl Glycoscience)2010,57,199-209)中所描述的其他甜菊醇糖苷的一部分。
对于(2f)的HSQC数据的分析确认了其他五个异头质子的存在。在1HNMR谱中在δH6.15(δC 93.5)和5.39(δC 104.4)处很好地分辩了它们中的两个。一个第三异头质子在δH5.60(δC 104.1)处与水信号重叠,而其余两个在δH 5.06(δC 97.6和104.2)处共振。
在δH 6.15处观察到的异头质子显示了与C-19的HMBC相关性,这指示它属于GlcI。此质子还显示了通过HSQC数据与被指认为GlcI H-2的在δH 4.31处的质子的COSY相关性。由于数据重叠,COSY谱没有允许在这种糖中的进一步指认。因此,使用GlcI异头质子的选择辐射与若干不同的混合时间进行一系列1-D TOCSY实验。除了确认对于GlcI H-2的指认之外,TOCSY数据显示了在δH 4.11、4.21、3.96、4.27/4.43处的质子分别被指认为GlcI H-3、H-4、H-5、以及H-6。对于GlcI C-2(δC 76.3)、C-3(δC 88.2)、C-4(δC 68.9)、C-5(δC 77.8)、以及C-6(δC 61.8)的13C化学位移的指认使用HSQC数据和HSQC-TOCSY数据是简单的。
在δH 5.06处观察到两个异头质子,它们中的一个显示了与C-13的HMBC相关性并且另一个显示了与在δC 88.2(GlcI C-3)处的碳的HMBC相关性。因此,第一δH 5.06质子被指认为GlcII H-1并且后者被指认为GlcV H-1。观察到δH 5.06质子与δH 4.02和4.38二者的COSY相关性。它们与在δC 74.8和80.3处的碳的HSQC相关性允许它们各自到GlcV C-2和GlcII C-2的指认。在δH 4.38处的质子的HSQC-TOCSY数据分析指示它通过HSQC与连接到在δH 3.69处的质子的在δC 77.2处的碳相关。选择在δH 3.69处的此质子的一系列1-D TOCSY实验连同HSQC和HSQC-TOCSY数据允许GlcII C-5(δH 3.69/δC 77.2)、C-4(δH 4.05/δC69.7)、以及C-3(δH 4.35/δC 87.2)的指认。由于重叠,13C化学位移GlcII C-6被试验性地指认为δC 61.9,其通过HSQC与在δH 4.14和4.29处的质子相关。
GlcV的指认是通过观察在δH 5.06处的质子的HSQC-TOCSY相关性实现的,在δH5.06处的质子显示了与GlcII和GlcV的碳二者的相关性。由于GlcII已经被指认,在δC 62.2、71.3、78.1、78.4、以及104.2处的GlcV13C化学位移应该对应于GlcV。HSQC相关性和与在莱苞迪苷X中的GlcV的化学位移的对比分别是H-5(δH 4.07)、H-3(δH 4.22)、以及H-1(δH5.06)。
在δH 5.39(δC 104.4)处的异头质子与GlcII C-3(δC 87.2)的HMBC相关性允许它为GlcIV H-1的指认。此异头质子显示了与δH 4.03的COSY相关性。选择此异头质子的一系列1-D TOCSY实验连同HSQC和HSQC-TOCSY数据允许GlcIV C-2(δH 4.03/δC 75.0)、C-3(δH 4.23/δC 78.0)、C-4(δH 4.07/δC 71.4)、以及C-5(δH 4.08/δC 78.4)的指认。由于重叠,C-6的13C化学位移被试验性地指认为δC 62.2,其通过HSQC与在δH 4.21和4.58处的质子相关。
在δH 5.60处的异头质子与GlcII C-2(δC 80.3)的HMBC相关性允许它为GlcIII H-1的指认。此异头质子显示了与被指认为GlcIII H-2的在δH4.11处的质子的COSY相关性。选择在δH 5.60处的异头质子的一系列1-DTOCSY实验连同HSQC和HSQC-TOCSY数据允许GlcIII C-3(δH 4.26/δC78.0)、C-4(δH 4.14/δC 71.9)、C-5(δH 3.95/δC 78.1)、以及C-6(δH 4.35,4.56/δC 62.9)的指认。
对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表22中。
表22.(2f)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5/D2O(10:1))的指认。a,b,c
Figure GDA0003476432920002011
Figure GDA0003476432920002021
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
对于在C-13处的糖苷的1H和13C化学位移的汇总可见于表23中。它是与对于莱苞迪苷N提出的结构相同(应用糖科学杂志2010,57,199-209)。
表23.(2f)C-13糖苷的1H和13C NMR(500和125MHz,吡啶-d5/D2O(10:1))的指认。a,b,c
Figure GDA0003476432920002022
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
实例14:莱苞迪苷O(2g)的分离和纯化
将实例1中的材料通过以上所述的LC-MS方法分析。在这种方法下,(2g)在9.5min时洗脱出。这些ESI-质光显示了预期的在m/z 1435处的[M-H]-离子。使用HPLC方法4进行第一轮的纯化。在这种方法下,(2g)在7.0和7.6min之间洗脱出。使用方法5B进行第二轮的HPLC纯化。在这种方法下,(2g)在15.4min时洗脱出。使用方法5B进行第三轮的HPLC纯化并且经过若干次注射收集在15.4min时洗脱出的峰并且通过旋转蒸发在减压下干燥。
实例15:莱苞迪苷O(2g)的结构说明
质谱法
孤峰的LC-MS分析的结果确认它对应于(2g)(图13)。在TIC、UV和ELS色谱图中观察到一个单峰。(2g)的ESI-TOF质谱图显示了在m/z1435.5853处的[M-H]-离子和在m/z1481.5912处的[M+HCOOH-H]-离子。[M-H]-离子的质量与对于(2g)预期的分子式C62H100O37(计算为C62H99O37:1435.5865,误差:1.2ppm)良好一致。MS数据确认(2g)具有1436道尔顿的标称质量与分子式C62H100O37
(2g)的MS/MS谱,选择在m/z 1435处的[M-H]-离子进行粉碎,表明在m/z1273.5350、1111.4779、949.4272、803.3721、641.3179、479.2661、以及317.2141处顺序失去7个糖残基。在m/z 803.3721处的基峰强烈地表明4个糖与甜菊醇糖苷的C-19的连接。162质量单位的差异表明了葡萄糖部分的存在,甜菊醇糖苷的特征。
NMR光谱法
进行了一系列NMR实验包括1H NMR(图14)、1H-1H COSY、HSQC、HMBC、以及HSQC-TOCSY以允许(2g)的指认。
Figure GDA0003476432920002041
从在δH 1.54ppm处的甲基质子与在δC 176.4处的羰基的HMBC相关性允许甲基单峰C-18以及羰基C-19的指认并且提供了用于指认糖苷配基的其余部分的起始点。从甲基质子(H-18)与在δC 37.4、44.7、以及58.2处的碳的附加的HMBC相关性允许C-3、C-4、以及C-5的指认。这些指认被化学位移的对比和先前报道的对于莱苞迪苷X和(2f)的类似相关性以及观察到在HSQC光谱中在δC 44.7处的碳没有显示出相关性所支持。使用HSQC数据指认C-3(δH1.10和2.55)和C-5(δH 1.00)的1H和13C化学位移。在δH 2.55处的H-3质子与在δH 1.41和δH2.09处的质子之间的COSY相关性允许H-2质子的指认。这些质子显示与被指认为C-1的在δH0.72处的质子的随后的COSY相关性。然后使用HSQC数据指认对于C-1和C-2的1H和13C化学位移(表24)。
表24.(2g)糖苷配基的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920002051
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
在δH 1.17观察到的一个第二甲基单峰显示了与C-1和C-5的HMBC相关性并且被指认为C-20。这些甲基质子显示了与通过HSQC分别被指认为C-10和C-9的季碳(δC 39.9)和次甲基(δH 0.89,δC 53.8)的附加的HMBC相关性。H-5(δH 1.00)与在δH 2.14和1.90处的质子之间的COSY相关性然后允许H-6质子的指认,这进而显示了与被指认为C-7的在δH 1.28和1.38处的质子的相关性。然后从HSQC数据指认对于C-6(δC 21.9)和C-7(δC 41.7)的13C化学位移(表24)。
H-9(δH 0.89)与在δH 1.63处的质子之间的COSY相关性允许H-11质子的指认,这进而显示了与被指认H-12质子的在δH 1.87和2.19处的质子的COSY相关性。然后将HSQC数据用于指认C-11(δC 20.4)和C-12(δC 37.4)。观察到的对于在δH 5.07和5.69处的质子的HSQC相关性表明它们在δC 105.0处连接至碳,这确认了如在莱苞迪苷X和(2f)中的末端烯烃的存在,并且因此,被指认为C-17。在δH 5.69处的烯属质子具有可忽略不计的偶合常数,并且它与在δH 2.04和2.12处的质子的COSY相关性表明烯丙基耦合的存在。因此,通过HSQC数据这些在δH2.04和2.12处的质子被指认为C-15(δC 47.7)。在δH 1.76和2.55处的质子是在(2g)的糖苷配基中仅剩余的那些并且基于与在莱苞迪苷X和(2f)中的类似物质子相比可以被指认为C-14(δC 44.6)。基于与在δH 5.69处的烯属质子的HMBC相关性的观察C-13在δC87.3处共振。没有观察到C-8和C-16的相关性并且不能确定它们的化学位移;然而,据估算它们应当分别在约41和153ppm处共振,如在莱苞迪苷X中。
对于糖苷配基的1H和13C化学位移的汇总可见于表24中。
观察到一个第三甲基基团作为在δH 1.68处的双峰。它仅显示了与在δC 69.7和72.3处的碳的HMBC相关性,它们各自的质子(δH 4.46和4.45)通过HSQC数据被指认。在δC69.7处的碳是与在δH 6.08(δC 101.4)处的异头质子通过HMBC相关,表明在δH 4.46和1.68处的质子分别连接至糖部分的C-5和C-6。这使在δH 4.45(δC 72.3)处的质子被指认为C-4。在δH 6.08处的质子显示了与在δH 5.07处的质子的COSY相关性,其随后与在δH 4.57处的质子相关。在δH 6.08处的质子与在δC 76.7和82.8处的碳的附加的HMBC相关性,以及HSQC和HSQC-TOCSY数据分析允许C-2(δC 70.9,δH 5.07)和C-3(δC 82.8,δH 4.57)的指认。在δC76.7处的碳不属于这种糖,如通过HSQC-TOCSY数据分析证实的,但它确立了与邻近单元的连接性。这种糖是与在(2f)中遇到的糖类似并且基于我们的数据可以被鉴定为D-α-鼠李糖。它具有可忽略不计的H-1和H-2的偶合常数,如在(2f)中,以及以下事实,即这种糖是如在文献(应用糖科学杂志2010,57,199-209)中所描述的其他甜菊醇糖苷的一部分。Rha H-2和C-3的化学位移与在(2f)中的那些相比似乎向低场移动,由于连接到Rha C-3的一种附加的糖(在(2f)中不存在)的存在。这种连接是由从在δH 5.43处的异头质子到Rha C-3所观察到的HMBC相关性支持。
对于(2g)的HSQC数据的分析确认了总计七个异头质子的存在。已经提及了它们中的两个,在δH 6.08(δC 101.4)和5.43(δC 105.7)处的质子。一个第三异头质子在δH 5.60(δC104.0)处与水信号重叠,而其余四个在δH 6.10(δC 93.4)、5.40(δC 104.4)、5.06(δC97.6)、以及5.04(δC 104.3)处共振。
在δH 6.10处观察到的异头质子显示了与C-19的HMBC相关性,这指示它属于GlcI。此质子还显示了通过HSQC数据与被指认为GlcI H-2(δC 76.7)的在δH 4.23处的质子的COSY相关性。由于数据重叠,COSY谱没有允许在这种糖中的进一步指认。因此,使用GlcI异头质子的选择辐射与若干不同的混合时间进行一系列1-D TOCSY实验。辐射部分地影响Rha H-1(δH 6.08),但HSQC、HSQC-TOCSY以及1-D TOCSY实验的仔细分析允许我们指认GlcI C-3(δH4.03/δC 88.1)、GlcI C-4(δH 4.17/δC69.0)、GlcI C-5(δH 3.89/δC 77.7)、以及C-6(δH4.26,4.42/δC 61.7)。
Rha H-1(δH 6.08)与GlcI C-2(δC 76.7)的HMBC相关性指示与在(2f)中观察到的相同的连接性。这一事实还允许在δH 5.43处的异头质子的指认,其被连接至Rha C-3,作为GlcVI H-1。此异头质子显示了通过HSQC与被指认为GlcVI H-2(δC 75.5)的在δH 4.15处的质子的COSY相关性。使用GlcV异头质子的选择辐射与若干不同的混合时间进行一系列1-DTOCSY实验。除了确认对于GlcI H-2的指认之外,TOCSY数据显示了在δH 4.30、4.08、4.14、以及4.22/4.49处的质子分别被指认为GlcI H-3、H-4、H-5、以及H-6。对于GlcI C-2(δC75.5)、C-3(δC 77.8)、C-4(δC 71.4)、C-5(δC 77.9)、以及C-6(δC 62.1)的13C化学位移的指认使用HSQC数据和HSQC-TOCSY数据是简单的。
在δH 5.04处的异头质子显示了与GlcI C-3的HMBC相关性,这允许它被指认为GlcVH-1,建立了与在(2f)中相同的连接性。这种异头质子的辐射还影响在1-D TOCSY实验中在δH 5.06和5.07处的质子。这些实验没有提供结论性信息来指认在GlcV中的质子。因此,该指认主要是通过分析异头质子的HSQC和HSQC-TOCSY相关性并且与从(2f)中所观察到的GlcV的化学位移相比实现的。此分析允许与在(2f)中观察到的那些非常类似的GlcV C-2(δH4.01/6c 74.8)、C-3(δH 4.29/δC 77.8)、C-4(δH4.04/δC 75.1)、C-5(δH 4.08/δC 78.2)、以及C-6(δH 4.24,4.58/δC 62.1)的试验性指认。
在δH 5.06处的异头质子与H-15和Rha H-2重叠,但是由于与在δC87.3处的碳观察到的HMBC相关性有可能将它指认为GlcII H-1。所观察到的这种相关性和化学位移与从(2f)中GlcII H-1的那些是非常类似的。清楚地观察到异头质子与在δH 4.38处的质子之间的COSY相关性并且允许通过HSQC将它指认为GlcII H-2(δC 80.1)。在δH 4.38处的质子的HSQC-TOCSY数据的分析指示它通过HSQC与连接到在δH 3.70处的质子的在δC 77.2处的碳相关,与(2f)相似。选择在δH 3.70处的此质子的一系列1-D TOCSY实验连同HSQC和HSQC-TOCSY数据允许GlcII C-6(δH4.14,4.29/δC 61.9)、C-5(δH 3.70/δC 77.2)、C-4(δH 4.05/δC69.6)、以及C-3(δH 4.35/δC 87.3)的指认。
在δH 5.40(δC 104.4)处的异头质子与GlcII C-3(δC 87.3)的HMBC相关性允许它为GlcIV H-1的指认。此异头质子显示了与δH 4.02的COSY相关性,其允许通过HSQC将它指认为GlcIV H-2(δC 74.8)。选择该异头质子的一系列1-D TOCSY实验连同HSQC和HSQC-TOCSY数据允许C-3(δH 4.24/δC 78.2)、C-4(δH 4.08/δC 71.4)、C-5(δH 4.08/δC 78.2)、以及C-6(δH4.22,4.58/δC 62.2)的指认。
在δH 5.60处的异头质子与GlcII C-2(δC 80.1)的HMBC相关性允许它为GlcIII H-1的指认。此异头质子显示了与在δH 4.11处的质子的COSY相关性,其允许通过HSQC将它指认为GlcIII H-2(δC 76.2)。HSQC-TOCSY数据对于异头和δH 3.95质子与(2f)的那些几乎相同。因此,HSQC-TOCSY、连同HSQC和COSY数据、以及与在(2f)中GlcIII的那些的化学位移的对比允许GlcIII C-3(δH 4.28/δC 77.8)、C-4(δH 4.14/δC 71.6)、C-5(δH 3.95/δC78.2)、以及C-6(δH 4.34,4.56/δC 62.9)的指认。
对于在C-19处的糖苷的1H和13C化学位移的汇总可见于表25中。
表25.(2g)C-19糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920002091
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
对于在C-13处的糖苷的1H和13C化学位移的汇总可见于表26中。(2g)是与对于莱苞迪苷O提出的结构相同(应用糖科学杂志2010,57,199-209)。
表26.(2g)C-13糖苷的1H和13C NMR(500和125MHz,吡啶-d5)的指认。a,b,c
Figure GDA0003476432920002101
a基于COSY、HSQC、HMBC、TOCSY和HSQC-TOCSY相关性进行的指认;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
实例16:来自甜叶菊植物叶子的莱鲍迪苷X(Reb X)的纯化
将两千克甜叶菊植物叶子在45℃下干燥至8.0%水份含量并且研磨至10-20mm颗粒。在这些叶子中不同的糖苷的含量如下:甜菊苷-2.55%、莱鲍迪苷A-7.78%、莱鲍迪苷B-0.01%、莱鲍迪苷C-1.04%、莱鲍迪苷D-0.21%、莱鲍迪苷F-0.14%、莱鲍迪苷X-0.10%、杜克苷A-0.05%、以及甜菊双糖苷-0.05%。将干燥的物质装载到一个连续的提取器中并且使用pH为6.5的40.0L水在40℃下进行提取160min。收集滤液并且使该滤液经受化学处理。将400g量的氧化钙添加到该滤液中以将pH调节至在8.5-9.0范围内,并且在缓慢搅拌的情况下将该混合物维持15min。然后,通过添加600g FeCl3来将pH调节至约3.0,并且在缓慢搅拌的情况下将该混合物维持15min。进一步添加少量氧化钙以将pH调节至8.5-9.0并且在缓慢搅拌的情况下将该混合物维持30min。通过在板框压滤机上使用棉布作为过滤材料过滤来去除沉淀物。使淡黄色滤液穿过用阳离子交换树脂安伯来特(Amberlite)FCP22(H+)填充的柱,并且然后穿过用阴离子交换树脂安伯来特FPA53(OH-)填充的柱。在两个柱中的流速被维持在SV=0.8小时-1。在完成之后,用RO水洗涤两个柱以回收留在这些柱中的甜菊醇糖苷并且将这些滤液合并。使含有120g总甜菊醇糖苷的合并的溶液部分穿过七个柱,其中每个柱被特定的大孔聚合物吸附剂YWD-03(中国沧州原味公司(Cangzhou Yuanwei,China))填充。具有其他柱的1/3的大小的第一个柱用作“捕集柱”。该SV是约1.0小时-1。在所有提取物穿过这些柱之后,依次用1体积的水、2体积的0.5%NaOH、1体积的水、2体积的0.5%HCl,以及最后用水洗涤该树脂,直到该pH是7.0为止。单独地洗涤“捕集柱”。在SV=1.0h-1下用52%乙醇进行吸附的甜菊醇糖苷的解吸。单独地进行第一个“捕集柱”的解吸并且该滤液并不与从其他柱获得的主要溶液混合。还单独地进行最后一个柱的解吸。在表27中示出了来自具有特定的大孔吸附剂的不同柱的提取物的量。
表27
总甜菊醇糖苷,%(TSG)
1(捕集器) 55.3
2 92.7
3 94.3
4 96.1
5 96.3
6 95.8
7 80.2
将来自第二至第六个柱的洗脱液合并并单独地处理。将合并的甜菊醇糖苷溶液与来自溶液总体积的0.3%的活性炭混合。在持续搅拌的情况下,将悬浮液在25℃维持30min。在一种压滤系统上进行碳的分离。对于附加脱色,使滤液穿过用阳离子交换树脂安伯来特FCP22(H+)填充的柱,然后穿过用阴离子交换树脂安伯来特FPA53 A30B(OH-)填充的柱。在两个柱中的流速是大约SV=0.5小时-1。使用一个真空蒸发器蒸馏乙醇。最终溶液中的固体含量是大约15%。使浓缩物以SV=0.5小时-1穿过用阳离子交换树脂安伯来特FCP22(H+)和阴离子交换树脂安伯来特FPA53(OH-)填充的柱。在所有溶液穿过这些柱之后,用RO水洗涤这两种树脂以回收留在这些柱中的甜菊醇糖苷。将所得的精制的提取物转移到纳米过滤装置,浓缩至大约52%固体含量并且喷雾干燥,以提供甜菊醇糖苷的一种高度纯化的混合物。产率是99.7g。该混合物含有甜菊苷-20.5%、莱鲍迪苷A-65.6%、莱鲍迪苷B-0.1%、莱鲍迪苷C-8.4%、莱鲍迪苷D-0.5%、莱鲍迪苷F-1.1%、莱鲍迪苷X-0.1%、杜克苷A 0.4%、以及甜菊双糖苷-0.4%。
来自最后一个柱的合并的洗出液含有约5.3g总甜菊醇糖苷,包括2.3g莱鲍迪苷D和约1.9g莱鲍迪苷X(35.8%莱鲍迪苷X/TSG比率)。如上文所讨论地,将其去离子化并脱水,并且然后浓缩至总固体的33.5%含量。
将该浓缩物与两体积的无水甲醇混合并且在强烈搅拌的情况下将其在20℃-22℃下维持24小时。
通过过滤分离所得的沉淀物并且用约两体积的无水甲醇洗涤。莱鲍迪苷X的产率是1.5g,它具有大约80%纯度。
为了进一步纯化,将该沉淀物悬浮于三体积的60%甲醇中并且在55℃下处理30min,然后冷却至20℃-22℃并且搅拌另外2小时。
通过过滤分离所得的沉淀物并且用约两体积的无水甲醇洗涤并且使其经受使用一种甲醇和水的混合物的类似处理。
莱鲍迪苷X的产率是1.2g,它具有97.3%纯度。莱苞迪苷X的结构被确定为:
Figure GDA0003476432920002131
表28.在C5D5Na-c中的莱鲍迪苷X的1H和13C NMR光谱数据
Figure GDA0003476432920002132
Figure GDA0003476432920002141
Figure GDA0003476432920002151
a基于COSY、HMQC和HMBC相关性的分配;b化学位移值是以δ(ppm)计的;c偶合常数是以Hz计的。
基于来自NMR光谱数据的结果,得出的结论是存在六个葡糖基单元。莱鲍迪苷X与莱鲍迪苷D的1H和13C NMR光谱的仔细比较表明,莱鲍迪苷X也是一种甜菊醇糖苷,其具有在C-13羟基附接的三个葡萄糖残基作为2,3-分支的葡萄糖三糖基(glucotriosyl)取代基和在C-19处呈的酯形式的另一个2,3-分支葡萄糖三糖基部分。
关键COSY和HMBC相关性表明在糖I的C-3位置处布置有第六个葡萄糖基部分。对于在δ5.31(d,J=8.0Hz)、5.45(d,J=7.5Hz)、5.46(d,J=7.1Hz)、5.48(d,J=7.7Hz)、5.81(d,J=7.2Hz)、以及6.39(d,J=8.2Hz)处的葡萄糖部分的六个异头质子观察到的大偶合常数表明对于甜菊醇糖苷报道的β取向。基于NMR和质谱研究的结果和与莱鲍迪苷A和莱鲍迪苷D的光谱值的比较,莱鲍迪苷X被指认为(13-[2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)氧基]对映贝壳杉-16-烯-19-羧酸-[2-O-β-D-吡喃葡萄糖基-3-O-β-D-吡喃葡萄糖基-β-D--吡喃葡萄糖基)酯。
实例17:莱苞迪苷N(2f)和莱苞迪苷O(2g)作为饮料中的蔗糖增强剂的评价
通过将所有成分溶解在净化水中制备溶液。对于柠檬酸缓冲剂,添加足够量的柠檬酸和柠檬酸钾以使pH至3.2。将最终产品填充在300ml玻璃瓶中并且储存在冰箱中并且次日品尝。用在表29和30中提供的成分制备产品液。
表29:在柠檬酸/柠檬酸钠缓冲溶液中与蔗糖对照
Figure GDA0003476432920002161
表30:在柠檬酸/柠檬酸钠缓冲溶液中的莱苞迪苷N(2f)和莱苞迪苷O(2g)
Figure GDA0003476432920002162
味道评价
将在柠檬酸/柠檬酸钠缓冲剂中的饮料在4℃下保持在冰箱中并且次日品尝。四个专家组成员评价这些饮料。将这些瓶子从冰箱中取出并且将约20ml的饮料倾倒入2盎司塑料杯中。专家组成员被指示不吞咽样品并且提供附加的杯以将样品吐入。在品尝之前以及在品尝不同的样品之间,给予矿泉水用于味觉的清洗。
为了评价30ppm的莱苞迪苷N和莱苞迪苷O的总甜度,为专家组成员提供1%、1.5%、以及2%蔗糖在柠檬酸/柠檬酸钠缓冲液中的溶液作为对照物。所有专家组成员确定30ppm的莱苞迪苷N和莱苞迪苷O溶液在柠檬酸/柠檬酸钠缓冲剂中的总甜度落入在1%与1.5%蔗糖对照物之间。因此,30ppm被确定为是对于这两种化合物的甜度识别阈值浓度。
莱苞迪苷N和莱苞迪苷O的甜度增强是通过添加30ppm到8%蔗糖在柠檬酸/柠檬酸钠缓冲剂(pH 3.2)中的一种溶液中评价的。然后相对于8%、9%、以及10%蔗糖在柠檬酸/柠檬酸钠缓冲溶液(pH 3.2)中的三种对照物评价新溶液的总甜度。
所有专家组成员确定含有30ppm的莱苞迪苷N和8%蔗糖在柠檬酸/柠檬酸钠缓冲剂中的饮料比10%蔗糖对照物,尤其是从约10.5%至约11%蔗糖更甜。因此,将以处于或低于其甜度识别阈值(30ppm)的量的莱苞迪苷N添加到一种含有8%蔗糖的饮料中导致了约2.5%-3.0%的甜度增强。
含有30ppm的莱苞迪苷O和8%蔗糖在柠檬酸/柠檬酸钠中的饮料的总甜度与10%蔗糖对照物类似。因此,将以处于或低于其甜度识别阈值(30ppm)的量的莱苞迪苷O添加到一种含有8%蔗糖的饮料中导致了约2.0%的甜度增强。

Claims (13)

1.一种消费品,所述消费品包含蔗糖和式(1)的化合物,其中
所述蔗糖以高于其甜度识别阈值的浓度存在;
所述式(1)的化合物以处于或低于其甜度识别阈值的浓度存在;
所述式(1)的化合物使所述消费品的甜度增强了至少2.0%的蔗糖等效值;并且
所述式(1)的化合物选自如下:
Figure FDF0000015044420000011
Figure FDF0000015044420000021
2.根据权利要求1所述的消费品,其中所述消费品选自由药物组合物、可食用凝胶组合物、牙科组合物、甜食、调味品、口香糖、谷物组合物、焙烤食品、乳制品产品、桌面甜味剂组合物以及饮料组成的组。
3.根据权利要求1或权利要求2所述的消费品,其中所述消费品是一种饮料。
4.根据权利要求3所述的消费品,其中所述饮料选自碳酸饮料、果汁、运动饮料、能量饮料、增强水饮料、近水饮料、椰子汁、茶类型饮料、咖啡饮料、可可饮料、含有乳组分的饮料、含有谷物提取物的饮料和冰沙。
5.根据权利要求3所述的消费品,其中所述饮料选自中值热量的饮料、低热量的饮料和零热量的饮料。
6.根据权利要求5所述的消费品,其中所述式(1)的化合物的浓度为30ppm。
7.根据权利要求4所述的消费品,其中所述果汁选自由果汁饮料和蔬菜汁组成的组。
8.根据权利要求4所述的消费品,其中所述碳酸饮料选自由可乐、柠檬-酸橙味起泡饮料、橙风味起泡饮料、葡萄风味起泡饮料、草莓风味起泡饮料、菠萝风味起泡饮料、姜汁酒以及沙士组成的组。
9.一种使包含在高于其甜度识别阈值的浓度的蔗糖的消费品的甜度增强的方法,所述方法包括向所述消费品添加在处于或低于其甜度识别阈值的浓度的式(1)的化合物,其中所述式(1)的化合物使所述消费品的甜度增强了至少2.0%的蔗糖等效值;并且
所述式(1)的化合物选自如下:
Figure FDF0000015044420000031
Figure FDF0000015044420000041
10.根据权利要求9所述的方法,其中所述消费品选自由药物组合物、可食用凝胶组合物、牙科组合物、甜食、调味品、口香糖、谷物组合物、焙烤食品、乳制品产品、桌面甜味剂组合物以及饮料组成的组。
11.根据权利要求9或10所述的方法,其中所述消费品是一种饮料。
12.根据权利要求11所述的方法,其中所述饮料选自中值热量的饮料、低热量的饮料和零热量的饮料。
13.根据权利要求9所述的方法,其中所述式(1)的化合物的浓度为30ppm。
CN201810051746.3A 2013-03-15 2014-03-18 甜菊醇糖苷、其组合物以及其纯化 Active CN108329365B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361788633P 2013-03-15 2013-03-15
US61/788,633 2013-03-15
US201361867832P 2013-08-20 2013-08-20
US61/867,832 2013-08-20
PCT/US2014/031129 WO2014146135A2 (en) 2013-03-15 2014-03-18 Steviol glycosides, their compositions and their purification
CN201480015726.0A CN105283464B (zh) 2013-03-15 2014-03-18 甜菊醇糖苷、其组合物以及其纯化

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480015726.0A Division CN105283464B (zh) 2013-03-15 2014-03-18 甜菊醇糖苷、其组合物以及其纯化

Publications (2)

Publication Number Publication Date
CN108329365A CN108329365A (zh) 2018-07-27
CN108329365B true CN108329365B (zh) 2022-04-05

Family

ID=51538621

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480015726.0A Active CN105283464B (zh) 2013-03-15 2014-03-18 甜菊醇糖苷、其组合物以及其纯化
CN201810051746.3A Active CN108329365B (zh) 2013-03-15 2014-03-18 甜菊醇糖苷、其组合物以及其纯化

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480015726.0A Active CN105283464B (zh) 2013-03-15 2014-03-18 甜菊醇糖苷、其组合物以及其纯化

Country Status (6)

Country Link
US (2) US10570164B2 (zh)
EP (2) EP2970354B1 (zh)
CN (2) CN105283464B (zh)
HK (1) HK1259194A1 (zh)
MX (3) MX358413B (zh)
WO (1) WO2014146135A2 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107436B2 (en) 2011-02-17 2015-08-18 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US10696706B2 (en) 2010-03-12 2020-06-30 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
US11690391B2 (en) 2011-02-17 2023-07-04 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US9771434B2 (en) 2011-06-23 2017-09-26 Purecircle Sdn Bhd Products from stevia rebaudiana
MX358413B (es) * 2013-03-15 2018-08-20 Coca Cola Co Glicosidos de esteviol, sus composiciones y su purificacion.
US10952458B2 (en) 2013-06-07 2021-03-23 Purecircle Usa Inc Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
MX2015016791A (es) 2013-06-07 2016-09-09 Purecircle Usa Inc Extracto de estevia que contiene glicosidos de esteviol seleccionados como modificador del perfil de sabor, salado y de dulzura.
MX2017002764A (es) 2014-09-02 2017-05-04 Purecircle Sdn Bhd Extractos de estevia.
BR112017005656A2 (pt) 2014-09-19 2018-07-31 Purecircle Sdn Bhd glicosídeos de esteviol de alta pureza
EP3201212B1 (en) 2014-10-03 2018-09-19 Conagen Inc. Non-caloric sweeteners and methods for synthesizing
AU2015353654B2 (en) * 2014-11-24 2020-01-23 The Coca-Cola Company Novel diterpene glycosides, compositions and purification methods
WO2016086108A1 (en) * 2014-11-25 2016-06-02 The Coca-Cola Company Novel diterpene glycosides, compositions and purification methods
EP3223631A4 (en) * 2014-11-26 2018-07-18 The Coca-Cola Company Novel diterpene glycoside, compositions and purification methods
US11584769B2 (en) * 2014-11-29 2023-02-21 The Coca-Cola Company Diterpene glycosides, compositions and purification methods
EP3232817A4 (en) 2014-12-17 2018-10-10 Cargill, Incorporated Steviol glycoside compounds, compositions for oral ingestion or use, and method for enhancing steviol glycoside solubility
BR112017021066B1 (pt) 2015-04-03 2022-02-08 Dsm Ip Assets B.V. Glicosídeos de esteviol, método para a produção de um glicosídeo de esteviol, composição, usos relacionados, gênero alimentício, alimento para animais e bebida
EP3297455A4 (en) * 2015-05-20 2019-02-20 Cargill, Incorporated GLYCOSIDZUSAMMENSETZUNGEN
EP4275516A3 (en) 2015-10-26 2024-01-24 PureCircle USA Inc. Steviol glycoside compositions
BR112018012251A2 (pt) 2015-12-15 2018-12-04 Purecircle Usa Inc composições de glicosídeo de esteviol
CN105693791B (zh) * 2016-03-24 2018-12-28 诸城市浩天药业有限公司 甜菊双糖苷晶型a、其制备方法、食品组合物及应用
AU2017241771B2 (en) * 2016-03-28 2023-02-02 The Coca-Cola Company Sweetness and taste improvement of steviol glycoside or mogroside sweeteners with flavonoids
ITUA20163230A1 (it) 2016-05-06 2017-11-06 Perfetti Van Melle Spa Gomma da masticare con stevia
WO2017218325A1 (en) 2016-06-15 2017-12-21 Codexis, Inc. Engineered beta-glucosidases and glucosylation methods
EP3497109A1 (en) 2016-08-09 2019-06-19 DSM IP Assets B.V. Crystallization of steviol glycosides
US10085472B2 (en) * 2016-08-29 2018-10-02 Pepsico, Inc. Compositions comprising rebaudioside J
CN109890221B (zh) * 2016-10-04 2023-04-14 可口可乐公司 含有对映-阿替斯烯核心的二萜糖苷、组合物和方法
WO2018075874A1 (en) * 2016-10-20 2018-04-26 The Coca-Cola Company Diterpene glycosides isolated from stevia, compositions and methods
CN110050068A (zh) * 2016-11-14 2019-07-23 谱赛科美国股份有限公司 甜菊衍生的分子,获得此类分子的方法及其用途
US20190352324A1 (en) * 2016-12-27 2019-11-21 Suntory Holdings Limited Novel steviol glycoside, method for producing same, and sweetener composition containing same
WO2018144679A2 (en) 2017-02-03 2018-08-09 Codexis, Inc. Engineered glycosyltransferases and steviol glycoside glucosylation methods
ES2942429T3 (es) * 2017-03-31 2023-06-01 Suntory Holdings Ltd Nuevo glucósido de esteviol y método de producción del mismo, y composición edulcorante que lo contiene
CN111372468A (zh) 2017-10-06 2020-07-03 嘉吉公司 甜菊醇糖苷溶解度增强剂
CN108159034B (zh) * 2018-02-12 2019-10-11 东南大学 异甜菊醇在制备治疗非酒精性脂肪性肝病药物中的应用
CN108617732A (zh) * 2018-04-25 2018-10-09 爱可道生物科技有限公司 一种含有朝鲜蓟复合型保健糕点及其制备方法
KR20210027270A (ko) * 2018-06-08 2021-03-10 퓨어써클 유에스에이 잉크. 고순도 스테비올 글리코사이드
US20200155589A1 (en) * 2018-06-15 2020-05-21 Gerald Haase Composition For Enchanced Recovery After Surgery (ERAS)
KR20210125474A (ko) * 2018-11-27 2021-10-18 퓨어써클 유에스에이 잉크. 고순도 스테비올 글리코사이드
KR20210129679A (ko) * 2019-02-15 2021-10-28 퓨어써클 유에스에이 잉크. 고순도 스테비올 글리코사이드
CN113784629A (zh) 2019-04-06 2021-12-10 嘉吉公司 用于制备植物提取物组合物的方法
AU2020271793A1 (en) 2019-04-06 2021-11-04 Cargill, Incorporated Sensory modifiers
US20220256902A1 (en) * 2019-07-31 2022-08-18 Suntory Holdings Limited Novel steviol glycoside, method for producing same, and sweetener composition containing same
US20220273008A1 (en) 2019-07-31 2022-09-01 Suntory Holdings Limited Plant body containing novel steviol glycoside
AU2020330801A1 (en) * 2019-08-09 2022-03-03 Suntory Holdings Limited Beverage having foam retentivity and method for improving foam retentivity of beverage
US20230329299A1 (en) * 2020-10-13 2023-10-19 Firmenich Sa Malonyl steviol glycosides and their comestible use
WO2023083163A1 (en) * 2021-11-12 2023-05-19 Epc Natural Products Co., Ltd. Sweetener and flavor composition comprising glycosylated high purity steviol glycosides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612942A (en) * 1984-03-08 1986-09-23 Stevia Company, Inc. Flavor enhancing and modifying materials
US20090162484A1 (en) * 2007-12-21 2009-06-25 The Concentrate Manufacturing Company Of Ireland Beverage having a non-sweetening amount of a potent natural sweetener
CN101528059A (zh) * 2006-10-24 2009-09-09 吉万奥丹股份有限公司 消费品
CN102573521A (zh) * 2009-09-04 2012-07-11 红点生物公司 包括莱鲍迪苷a或d的甜度增强剂
CN102762111A (zh) * 2009-12-28 2012-10-31 可口可乐公司 甜味增强剂,其组合物,及使用方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE427983B (sv) 1980-02-15 1983-05-30 Pripps Bryggerier Ab Dryckesprodukt
FI89761C (fi) 1986-10-16 1993-11-25 Sinebrychoff Ab Anvaendning av aeppelsyra foer framstaellning av motionsdryckpulver
US5464619A (en) 1994-06-03 1995-11-07 The Procter & Gamble Company Beverage compositions containing green tea solids, electrolytes and carbohydrates to provide improved cellular hydration and drinkability
FI111513B (fi) 1998-05-06 2003-08-15 Raisio Benecol Oy Uudet fytosteroli- ja fytostanolirasvahappoesterikoostumukset, niitä sisältävät tuotteet sekä menetelmät niiden valmistamiseksi
US6410758B2 (en) 1999-05-24 2002-06-25 Mcneil-Ppc, Inc. Preparation of sterol and stanol-esters
US7923437B2 (en) 2001-02-16 2011-04-12 Cargill, Incorporated Water soluble β-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
US6989171B2 (en) 2001-04-02 2006-01-24 Pacifichealth Laboratories, Inc. Sports drink composition for enhancing glucose uptake into the muscle and extending endurance during physical exercise
EP1325682A1 (en) 2001-12-11 2003-07-09 Societe Des Produits Nestle S.A. Food or pet food composition containing plant extracts for maintenance of bone health and prevention or treatment of bone diseases
EP1325681A1 (en) 2001-12-11 2003-07-09 Société des Produits Nestlé S.A. Composition for promotion of bone growth and maintenance of bone health
JP4428054B2 (ja) 2002-03-14 2010-03-10 不二製油株式会社 大豆サポニン含有物及びその製造法
US20030045473A1 (en) 2002-07-19 2003-03-06 Sarama Robert Joseph Compositions, kits, and methods for cardiovascular health
US20050220868A1 (en) 2004-03-31 2005-10-06 Marcor Development Corporation Policosanol composition and its use in treatment of hypercholesterolemia
US8318459B2 (en) * 2011-02-17 2012-11-27 Purecircle Usa Glucosyl stevia composition
TWI475963B (zh) * 2008-02-25 2015-03-11 Coca Cola Co 甜菊糖苷a衍生性產物以及製造彼的方法
ES2959686T3 (es) * 2008-10-03 2024-02-27 Morita Kagaku Kogyo Nuevos glucósidos de esteviol
US8299224B2 (en) * 2009-10-15 2012-10-30 Purecircle Sdn Bhd High-purity Rebaudioside D
NZ708078A (en) 2010-06-02 2017-01-27 Evolva Nutrition Inc Recombinant production of steviol glycosides
CN103159808B (zh) * 2011-12-09 2017-03-29 上海泓博智源医药股份有限公司 一种制备天然甜味剂的工艺方法
MX358413B (es) * 2013-03-15 2018-08-20 Coca Cola Co Glicosidos de esteviol, sus composiciones y su purificacion.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612942A (en) * 1984-03-08 1986-09-23 Stevia Company, Inc. Flavor enhancing and modifying materials
CN101528059A (zh) * 2006-10-24 2009-09-09 吉万奥丹股份有限公司 消费品
US20090162484A1 (en) * 2007-12-21 2009-06-25 The Concentrate Manufacturing Company Of Ireland Beverage having a non-sweetening amount of a potent natural sweetener
CN102573521A (zh) * 2009-09-04 2012-07-11 红点生物公司 包括莱鲍迪苷a或d的甜度增强剂
CN102762111A (zh) * 2009-12-28 2012-10-31 可口可乐公司 甜味增强剂,其组合物,及使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Characterization of Novel Steviol Glycosides from Leaves of Stevia rebaudiana Morita;Masaya Ohta等;《J.Appl.Glycosci.》;20101231;第57卷(第3期);第204页表4 *

Also Published As

Publication number Publication date
MX2023004415A (es) 2023-05-04
HK1259194A1 (zh) 2019-11-29
MX2015013282A (es) 2015-12-15
US20160039856A1 (en) 2016-02-11
CN105283464B (zh) 2018-02-13
US20200277322A1 (en) 2020-09-03
CN105283464A (zh) 2016-01-27
CN108329365A (zh) 2018-07-27
MX2018009874A (es) 2020-09-14
EP2970354A2 (en) 2016-01-20
EP2970354B1 (en) 2018-05-30
WO2014146135A2 (en) 2014-09-18
WO2014146135A3 (en) 2014-12-31
EP2970354A4 (en) 2016-10-19
US10570164B2 (en) 2020-02-25
MX358413B (es) 2018-08-20
EP3483171A1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
CN108329365B (zh) 甜菊醇糖苷、其组合物以及其纯化
CN106795523B (zh) 制备莱鲍迪苷i的方法以及用途
CN105722533B (zh) 用于提高莱鲍迪苷m溶解度的组合物和方法
RU2721853C2 (ru) Экстракты стевии
RU2728234C2 (ru) Композиции, содержащие ребаудиозид х
CN108289485B (zh) 甜菊醇糖苷共混物、组合物和方法
EP2986149B1 (en) Novel glucosyl steviol glycosides, their compositions and their purification
CN115211549A (zh) 掺入了莱苞迪苷n的甜味剂组合物和经甜化的组合物
EP3340806A1 (en) Stevia extracts
WO2017035527A1 (en) Stevia extracts
CA2968711C (en) Diterpene glycosides, compositions and purification methods
US20170275324A1 (en) Novel Diterpene Glycosides, Compositions and Purification Methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1259194

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant