CN108326289A - 一种金刚石的改性方法及纳米金属粉改性金刚石 - Google Patents

一种金刚石的改性方法及纳米金属粉改性金刚石 Download PDF

Info

Publication number
CN108326289A
CN108326289A CN201810358230.3A CN201810358230A CN108326289A CN 108326289 A CN108326289 A CN 108326289A CN 201810358230 A CN201810358230 A CN 201810358230A CN 108326289 A CN108326289 A CN 108326289A
Authority
CN
China
Prior art keywords
diamond
powder
nano metal
metal powder
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810358230.3A
Other languages
English (en)
Inventor
李广兵
杨炽洪
杨汉波
林金才
肖海斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan City Jin New Mstar Technology Ltd
Original Assignee
Foshan City Jin New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan City Jin New Mstar Technology Ltd filed Critical Foshan City Jin New Mstar Technology Ltd
Priority to CN201810358230.3A priority Critical patent/CN108326289A/zh
Publication of CN108326289A publication Critical patent/CN108326289A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种金刚石的改性方法,包括下述步骤:S1:混料:按比例称取纳米金属粉和金刚石,放入混料机进行混合,得到纳米金属粉‑金刚石混合物;S2:热处理:将纳米金属粉‑金刚石混合物放入真空烧结炉中加热烧结,得到表面处理的金刚石粉末;S3:清洗:使用清洗剂将表面处理的金刚石粉末进行清洗并烘干,烘干后得到纳米金属粉改性金刚石。本发明还涉及纳米金属粉改性金刚石。本发明的改性方法得到的纳米金属粉改性金刚石能够大幅度地提高与金属胎体材料的结合力;烧结温度的降低,有效地减少了金刚石在高温环境下的石墨化问题。

Description

一种金刚石的改性方法及纳米金属粉改性金刚石
技术领域
本发明属于金刚石表面金属改性的技术领域,特别涉及一种金刚石的改性方法及纳米金属粉改性金刚石。
背景技术
金刚石俗称“金刚钻”。也即钻石的原身,它是一种由碳元素组成的矿物,是碳元素的同素异形体。金刚石是自然界中天然存在的最坚硬的物质。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具等。
金刚石工具是指用金刚石的颗粒或粉末作为主要元素的一类产品,常用于建筑工程,陶瓷、石材加工等领域。目前,金刚石工具多用粉末冶金法生产,烧结温度一般高达900度,在常温常压下,金刚石为亚稳定态,其耐热性不高。另外,金刚石与大部分金属、陶瓷等材料界面之间性能差异较大,界面能较高,使金刚石与金属基的胎体材料之间润湿性不高,受到磨削冲击容易脱落,影响金刚石工具的使用寿命。因而,它的高效利用一直是人们关注的话题。
在金刚石表面形成一层过渡物质,提高其与胎体材料的润湿性,从而提高对金刚石把持力,是金刚石高效利用的一个方向。目前,常用的过渡物质即金属膜,即在金刚石表面包覆金属或合金。常用的制作金属膜的方法包括化学镀与电镀结合法、真空镀法、盐浴镀法、真空微蒸发镀、真空物理气相镀和物理化学气相镀等,但这些镀覆方法普遍存在着镀覆层与金刚石结合不牢固致使胎体对金刚石的把持力不够、金属层与金刚石热处理烧结中温度过高导致金刚石石墨化、成本较高等问题。
发明内容
(一)要解决的技术问题
为了解决上述问题,本发明的目的在于提供一种金刚石的改性方法及纳米金属粉改性金刚石,本改性方法得到的金刚石能够大幅度地提高与金属胎体材料的结合力;烧结温度的降低,有效地减少了金刚石在高温环境下的石墨化问题。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种金刚石的改性方法,包括下述步骤:
S1:混料:按比例称取纳米金属粉和金刚石,放入混料机进行混合,得到纳米金属粉-金刚石混合物;
S2:热处理:将纳米金属粉-金刚石混合物放入真空烧结炉中加热烧结,得到表面处理的金刚石粉末;
S3:清洗:使用清洗剂将表面处理的金刚石粉末进行清洗并烘干,烘干后得到纳米金属粉改性金刚石。
优选地,步骤S1中,纳米金属粉与金刚石的比例为1:1-10000。采用本比例范围的原因在于:纳米金属粉量太少时,与金刚石表面接触的纳米粉则太少;纳米金属粉量太多时,则许多未与金刚石接触的纳米金属粉会烧结,造成浪费。
优选地,所述纳米金属粉的尺寸为100-300nm,所述纳米金属粉为纳米钨粉、纳米钼粉,纳米铁粉,纳米铜粉、纳米镍粉或纳米合金粉,所述纳米合金粉为纳米不锈钢粉。此粒径范围的纳米金属粉熔点较低,可以在金刚石未损伤的条件下,与金刚石表面结合。如果金属纳米粉体尺寸太小,活性很高,与金刚石混合过程中极易氧化,不利于大规模混料。
优选地,步骤S1中,混合时间为30-60min,混合速度为0-200r/min,混合温度为0-100℃。混合速度太快易造成发热,太慢则效果不太好。混合温度太高易引起粉末自燃。
优选地,步骤S2包括下述步骤:
S21:将纳米金属粉-金刚石混合物放入真空烧结炉中,按一定的升温速率升温至烧结温度后恒温烧结;
S22:恒温烧结完成后,降温至常温,得到表面处理的金刚石粉末。
优选地,步骤S21中,烧结温度为200-800℃,升温速速率为0-200℃/h,保温时间为0-8h,真空烧结炉的真空度为3-10Pa。合理的保温时间能够使金属纳米粉末与金刚石充分反应,优选的真空度下,能够进一步降低金属纳米颗粒熔点,减少气体杂质对纳米金属粉改性金纳石的影响。
优选地,步骤S3中的清洗为超声波清洗,清洗时间至少为10min,烘干温度为0-80℃,烘干时间为0-60min。超声波清洗能够去除表面的浮粉及结合不牢的金属粉,特别是超声时间大于10分钟能够充分去除结合不牢的金属粉。
优选地,步骤S3中的清洗剂为纯净水或无水乙醇。
根据本发明的另一方面,一种纳米金属粉改性金刚石,包括金钢石和附着在金刚石表面的纳米金属烧结层,所述纳米金属烧结层具有凸起和孔洞。
优选地,所述孔洞的尺寸为200-300nm。
(三)有益效果
本发明具有以下有益效果:
本发明利用纳米金属粉末,与金刚石进行混合烧结,在金刚石表面形成金属碳化物。并在金刚石表面形成许多纳米级的突起和孔洞,这些突起和孔洞可大幅提高金刚石与金属胎体材料的结合力。
与普通金属粉相比,纳米粉末具有更大的比表面积,更高的表面活性,因此其熔化温度和反应温度比起普通金属粉大大降低。能够在更低的温度与金刚石发生反应,从而避免金刚石在高温环境下(高于800℃)碳化灼伤。
附图说明
图1是本发明金属纳米粉改性金刚石的扫描电子显微镜(SEM)照片
附图标记说明:
1:凸起;2:孔洞。
具体实施方式
下面通过具体实施例,结合附图,进一步阐述本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。
图1为本发明金属纳米粉改性金刚石的扫描电子显微镜(SEM)照片,测试的参数为:Mag=10.00KX,EHT=5.00kV,WD=8.0mm,Signal A=SE2。
实施例1
本发明一种金刚石的改性方法如下:
S1:混料:按比例1:1称取尺寸为100nm的纳米钨粉和金刚石,放入混料机进行混合,混合时间为60min,混合速率为20r/min,混合温度为100℃,得到纳米钨粉-金刚石混合物。若纳米钨粉-金刚石混合物无明显分层、金刚石表面变色且无明显的单独黑色粉末,证明已得到合格的纳米钨粉-金刚石混合物;
S2:热处理:
S21:将纳米钨粉-金刚石混合物放入真空度为3Pa的真空烧结炉中,按200℃/h的升温速率升温至烧结温度800℃,然后恒温烧结8h;
S22:恒温烧结完成后,自然降温至常温,得到表面处理的金刚石粉末。若表面处理的金刚石粉末外观呈黑色、无除金刚石外的黑色球形或絮状颗粒且粉末未分层,证明烧结已完成;
S3:清洗:使用清洗剂纯水将表面处理的金刚石粉末进行超声波清洗,清洗时间为10min,烘干温度为80℃,烘干时间为60min,烘干后得到纳米钨粉改性金刚石。当容器底部无水渍时,证明烘干已完成。
如图1所示,得到的纳米钨粉改性金刚石表面有凸起1和孔洞2。本实施例产品中孔洞的尺寸为200-300nm。
实施例2
本发明一种金刚石的改性方法如下:
S1:混料:按比例1:5000称取尺寸为200nm的纳米铁粉和金刚石,放入混料机进行混合,混合时间为45min,混合速率为120r/min,混合温度为80℃,得到纳米铁粉-金刚石混合物。若纳米铁粉-金刚石混合物无明显分层、金刚石表面变色且无明显的单独黑色粉末,证明已得到合格的纳米铁粉-金刚石混合物;
S2:热处理:
S21:将纳米钨粉-金刚石混合物放入真空度为6Pa的真空烧结炉中,按100℃/h的升温速率升温至烧结温度600℃,然后恒温烧结4h;
S22:恒温烧结完成后,自然降温至常温,得到表面处理的金刚石粉末。若表面处理的金刚石粉末外观呈黑色、无除金刚石外的黑色球形或絮状颗粒且粉末未分层,证明烧结已完成;
S3:清洗:使用清洗剂无水乙醇将表面处理的金刚石粉末进行超声波清洗,清洗时间为12min,烘干温度为60℃,烘干时间为10min,烘干后得到纳米铁粉改性金刚石。当容器底部无水渍时,证明烘干已完成。
如图1所示,得到的纳米铁粉改性金刚石表面有凸起1和孔洞2。本实施例产品中孔洞的尺寸为200-300nm。
实施例3
本发明一种金刚石的改性方法如下:
S1:混料:按比例1:10000称取尺寸为300nm的纳米不锈钢粉和金刚石,放入混料机进行混合,混合时间为30min,混合速率为200r/min,混合温度为40℃,得到纳米不锈钢粉-金刚石混合物。若纳米不锈钢粉-金刚石混合物无明显分层、金刚石表面变色且无明显的单独黑色粉末,证明已得到合格的纳米不锈钢粉-金刚石混合物;
S2:热处理:
S21:将纳米不锈钢粉-金刚石混合物放入真空度为10Pa的真空烧结炉中,按50℃/h的升温速率升温至烧结温度400℃,然后恒温烧结2h;
S22:恒温烧结完成后,自然降温至常温,得到表面处理的金刚石粉末。若表面处理的金刚石粉末外观呈黑色、无除金刚石外的黑色球形或絮状颗粒且粉末未分层,证明烧结已完成;
S3:清洗:使用清洗剂无水乙醇将表面处理的金刚石粉末进行超声波清洗,清洗时间为18min,烘干温度为30℃,烘干时间为30min,烘干后得到纳米不锈钢粉改性金刚石。当容器底部无水渍时,证明烘干已完成。
如图1所示,得到的纳米不锈钢粉改性金刚石表面有凸起1和孔洞2。本实施例产品中孔洞的尺寸为200-300nm。
需要说明的是:
1、凸起和孔洞形成的原因分析如下:
孔洞:纳米金属粉表面吸附的少量氧气或者少量被氧化的纳米金属氧化物,在热处理烧结过程中,氧气或少量被氧化的纳米金属氧化物与金刚石表面的碳原子发生反应,生产碳的氧化物,以气体的形式释放后,则留下孔洞,纳米金属粉则掉入孔洞中,以金属形态或以金属碳化物的形态存在;
凸起:在热处理烧结过程中,由于金刚石表面的碳原子发生氧化反应并以气体形式释放后,留下了孔洞,纳米金属粉就掉入了孔洞中。当大量的纳米金属粉掉入孔洞后,会慢慢堆叠并溢出孔洞,进而形成了大量的凸起。
2、本发明所采用的金属粉包括但不限于纳米钼粉,纳米铁粉,纳米铜粉、纳米不锈钢粉和纳米镍粉。
最后应说明的是:以上所述的各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种金刚石的改性方法,其特征在于:包括下述步骤:
S1:混料:按比例称取纳米金属粉和金刚石,放入混料机进行混合,得到纳米金属粉-金刚石混合物;
S2:热处理:将纳米金属粉-金刚石混合物放入真空烧结炉中加热烧结,得到表面处理的金刚石粉末;
S3:清洗:使用清洗剂将表面处理的金刚石粉末进行清洗并烘干,烘干后得到纳米金属粉改性金刚石。
2.根据权利要求1所述的金刚石的改性方法,其特征在于:步骤S1中,纳米金属粉与金刚石的比例为1:1-10000。
3.根据权利要求1或2所述的金刚石的改性方法,其特征在于:所述纳米金属粉的尺寸为100-300nm,所述纳米金属粉为纳米钨粉、纳米钼粉,纳米铁粉,纳米铜粉、纳米镍粉或纳米合金粉,所述纳米合金粉为纳米不锈钢粉。
4.根据权利要求1所述的金刚石的改性方法,其特征在于:步骤S1中,混合时间为30-60min,混合速度为0-200r/min,混合温度为0-100℃。
5.根据权利要求1所述的金刚石的改性方法,其特征在于:步骤S2包括下述步骤:
S21:将纳米金属粉-金刚石混合物放入真空烧结炉中,按一定的升温速率升温至烧结温度后恒温烧结;
S22:恒温烧结完成后,降温至常温,得到表面处理的金刚石粉末。
6.根据权利要求5所述的金刚石的改性方法,其特征在于:步骤S21中,烧结温度为200-800℃,升温速速率为0-200℃/h,保温时间为0-8h,真空烧结炉的真空度为3-10Pa。
7.根据权利要求1所述的金刚石的改性方法,其特征在于:步骤S3中的清洗为超声波清洗,清洗时间至少为10min,烘干温度为0-80℃,烘干时间为0-60min。
8.根据权利要求1所述的金刚石的改性方法,其特征在于:步骤S3中的清洗剂为纯净水或无水乙醇。
9.一种纳米金属粉改性金刚石,其特征在于:包括金钢石和附着在金刚石表面的纳米金属烧结层,所述纳米金属烧结层具有凸起和孔洞。
10.根据权利要求9所述的纳米金属粉改性金刚石,其特征在于:所述孔洞的尺寸为200-300nm。
CN201810358230.3A 2018-04-20 2018-04-20 一种金刚石的改性方法及纳米金属粉改性金刚石 Pending CN108326289A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810358230.3A CN108326289A (zh) 2018-04-20 2018-04-20 一种金刚石的改性方法及纳米金属粉改性金刚石

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810358230.3A CN108326289A (zh) 2018-04-20 2018-04-20 一种金刚石的改性方法及纳米金属粉改性金刚石

Publications (1)

Publication Number Publication Date
CN108326289A true CN108326289A (zh) 2018-07-27

Family

ID=62933859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810358230.3A Pending CN108326289A (zh) 2018-04-20 2018-04-20 一种金刚石的改性方法及纳米金属粉改性金刚石

Country Status (1)

Country Link
CN (1) CN108326289A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941535A (zh) * 2018-08-02 2018-12-07 泉州众志金刚石工具有限公司 在金刚石胎体中有机酸镍替代纳米镍的应用及替代方法
CN109023250A (zh) * 2018-08-23 2018-12-18 中南钻石有限公司 一种镀镍金刚石及其生产工艺
CN110964938A (zh) * 2019-12-30 2020-04-07 广东省材料与加工研究所 一种高熵合金耐磨复合材料、制备方法及应用
CN112620627A (zh) * 2020-12-20 2021-04-09 湖南富栊新材料股份有限公司 表面纳米化改性的金属粉末及其应用
CN114851095A (zh) * 2021-04-15 2022-08-05 泉州众志金刚石工具有限公司 一种金属磨轮用胎体粉末、金属磨轮材料及金属磨轮

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245730A (zh) * 2008-09-16 2011-11-16 戴蒙得创新股份有限公司 具有独特形貌的磨粒
CN102383014A (zh) * 2011-11-11 2012-03-21 华中科技大学 高温共混表面金属化制备金刚石-铜复合材料的方法
CN102407335A (zh) * 2011-12-02 2012-04-11 华南师范大学 一种高导热led封装材料及其制备方法
CN104128606A (zh) * 2014-08-20 2014-11-05 丹阳市德源精密工具有限公司 一种金刚石锯片的制备方法
CN104139182A (zh) * 2014-07-22 2014-11-12 燕山大学 一种超硬磨料表面制备镀层的方法
CN104707996A (zh) * 2013-12-11 2015-06-17 中国科学院宁波材料技术与工程研究所 一种金刚石复合体以及金刚石表面金属化方法
CN104988491A (zh) * 2015-07-15 2015-10-21 昆明理工大学 一种金刚石微粒表面镀钛的方法
CN106032555A (zh) * 2015-03-18 2016-10-19 中国科学院宁波材料技术与工程研究所 一种粒料及其制备方法
CN106381432A (zh) * 2016-08-31 2017-02-08 王宏兴 一种高导热金刚石/多金属复合材料制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN107649688A (zh) * 2017-08-21 2018-02-02 武汉速博酷新材料科技有限公司 一种易加工的金刚石导热复合材料及其制备方法和应用
CN107916356A (zh) * 2017-11-10 2018-04-17 郑州大学 一种高导热的金刚石/铜复合材料的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245730A (zh) * 2008-09-16 2011-11-16 戴蒙得创新股份有限公司 具有独特形貌的磨粒
CN102383014A (zh) * 2011-11-11 2012-03-21 华中科技大学 高温共混表面金属化制备金刚石-铜复合材料的方法
CN102407335A (zh) * 2011-12-02 2012-04-11 华南师范大学 一种高导热led封装材料及其制备方法
CN104707996A (zh) * 2013-12-11 2015-06-17 中国科学院宁波材料技术与工程研究所 一种金刚石复合体以及金刚石表面金属化方法
CN104139182A (zh) * 2014-07-22 2014-11-12 燕山大学 一种超硬磨料表面制备镀层的方法
CN104128606A (zh) * 2014-08-20 2014-11-05 丹阳市德源精密工具有限公司 一种金刚石锯片的制备方法
CN106032555A (zh) * 2015-03-18 2016-10-19 中国科学院宁波材料技术与工程研究所 一种粒料及其制备方法
CN104988491A (zh) * 2015-07-15 2015-10-21 昆明理工大学 一种金刚石微粒表面镀钛的方法
CN106381432A (zh) * 2016-08-31 2017-02-08 王宏兴 一种高导热金刚石/多金属复合材料制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN107649688A (zh) * 2017-08-21 2018-02-02 武汉速博酷新材料科技有限公司 一种易加工的金刚石导热复合材料及其制备方法和应用
CN107916356A (zh) * 2017-11-10 2018-04-17 郑州大学 一种高导热的金刚石/铜复合材料的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941535A (zh) * 2018-08-02 2018-12-07 泉州众志金刚石工具有限公司 在金刚石胎体中有机酸镍替代纳米镍的应用及替代方法
CN109023250A (zh) * 2018-08-23 2018-12-18 中南钻石有限公司 一种镀镍金刚石及其生产工艺
CN109023250B (zh) * 2018-08-23 2020-05-26 中南钻石有限公司 一种镀镍金刚石及其生产工艺
CN110964938A (zh) * 2019-12-30 2020-04-07 广东省材料与加工研究所 一种高熵合金耐磨复合材料、制备方法及应用
CN110964938B (zh) * 2019-12-30 2021-02-05 广东省材料与加工研究所 一种高熵合金耐磨复合材料、制备方法及应用
CN112620627A (zh) * 2020-12-20 2021-04-09 湖南富栊新材料股份有限公司 表面纳米化改性的金属粉末及其应用
CN114851095A (zh) * 2021-04-15 2022-08-05 泉州众志金刚石工具有限公司 一种金属磨轮用胎体粉末、金属磨轮材料及金属磨轮
CN114851095B (zh) * 2021-04-15 2024-05-28 泉州众志新材料科技有限公司 一种金属磨轮用胎体粉末、金属磨轮材料及金属磨轮

Similar Documents

Publication Publication Date Title
CN108326289A (zh) 一种金刚石的改性方法及纳米金属粉改性金刚石
CN100581687C (zh) 金属镍粉末的制造方法
CN104313380B (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN109970464B (zh) 一种多孔金属氧化物的制备方法
CN108080649A (zh) 一种低温碳氢双联还原制备超细铁粉的方法
CN109321768B (zh) 一种ZrO2-Y2O3颗粒增强钼合金及其制备方法、复合粉体及其制备方法
JP2005002395A (ja) 多孔質の球状ニッケル粉末とその製造方法
CN114107716A (zh) 一种电触头用铜基复合材料的制备方法
WO2023231744A1 (zh) 镶嵌颗粒增强的高熵合金基纳米超硬复合材料及其制备方法
JP2007246294A (ja) アルミニウム含有酸化亜鉛焼結体及びその製造方法
CN109524190A (zh) 一种稀土—铁—硅基磁制冷复合材料及其制备方法
WO2015124094A1 (zh) 高可靠高比容电解电容器用钽粉的制备方法
CN101229976A (zh) 一种高性能WC/MgO纳米复合材料的制备方法
CN116497293B (zh) 一种耐高温抗氧化钨镧合金丝及其制备方法
CN114591084B (zh) 一种快速低温制备致密TiC陶瓷的方法
CN109047788A (zh) 一种循环氧化还原的超细氧化钇掺杂钨复合纳米粉末制备方法
CN108975918A (zh) 一种高韧性高温结构材料MoSi2-Mo5Si3复合陶瓷的制备
CN108624771A (zh) 一种制备纳米氧化物颗粒增强金属复合材料的方法
CN107881357A (zh) 一种氧化锆基金属陶瓷材料的制备方法
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
CN114380606A (zh) 一种机加工高强度耐火材料制备工艺
CN109513933B (zh) 一种耐高温高表面电阻铁基软磁磁芯的制备方法
CN109019668B (zh) 一种热球磨氧化制备超细活性氧化锌粉末的方法
CN109957673B (zh) 一种铁精矿金属陶瓷及其制备方法
CN106782984A (zh) 一种耐腐蚀的新能源汽车磁力水泵用粉末冶金磁环及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727