CN108303442B - 一种隔膜闭孔温度测试方法 - Google Patents

一种隔膜闭孔温度测试方法 Download PDF

Info

Publication number
CN108303442B
CN108303442B CN201711363880.9A CN201711363880A CN108303442B CN 108303442 B CN108303442 B CN 108303442B CN 201711363880 A CN201711363880 A CN 201711363880A CN 108303442 B CN108303442 B CN 108303442B
Authority
CN
China
Prior art keywords
diaphragm
standard
layers
diaphragms
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711363880.9A
Other languages
English (en)
Other versions
CN108303442A (zh
Inventor
鲁扬
张峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201711363880.9A priority Critical patent/CN108303442B/zh
Publication of CN108303442A publication Critical patent/CN108303442A/zh
Application granted granted Critical
Publication of CN108303442B publication Critical patent/CN108303442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/12Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of critical point; of other phase change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Secondary Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种隔膜闭孔温度测试方法,包括:制备第一标准隔膜、第二标准隔膜、第三标准隔膜、标准绿胶贴、标准铜箔、标准铝塑膜,所述标准绿胶贴中间有预设直径的圆孔;在标准绿胶贴上分别贴1‑5层第一标准隔膜,得到第一目标隔膜;在标准绿胶贴上分别贴1‑5层第二标准隔膜,得到第二目标隔膜;在标准绿胶贴上分别贴1‑5层第三标准隔膜,得到第三目标隔膜;根据第一目标隔膜、第二目标隔膜、第三目标隔膜、标准铜箔、标准铝塑膜和预设的电池组装顺序组装得到对应的软包电池;采用电化学工作站分别测试软包电池的电池阻抗,将欧姆阻抗值与隔膜层数做线性拟合,计算隔膜离子电导率,获取隔膜离子电导率的突变点作为对应隔膜闭孔温度。

Description

一种隔膜闭孔温度测试方法
技术领域
本发明涉及隔膜闭孔温度测试技术领域,尤其涉及一种隔膜闭孔温度测试方法。
背景技术
锂离子电池具有比能量高、工作电压高、无记忆效应、循环寿命长、环境污染小等优点。随着锂离子电池的广泛应用,电池的安全性受到了越来越多的关注。目前,锂离子电池的安全性仍是阻碍其在电动汽车、储能等领域大规模应用的关键问题之一。在意外情况下,锂离子电池可发生起火、爆炸事故,造成极大人身伤害和财产损失。
电池主要由正极材料、负极材料、电解液和隔膜组成,其中隔膜是电池的重要组成部分,隔膜主要由微多孔薄膜或无纺纤维片构成,在电池中将电池正极和负极隔开,起防止两极短路的作用,具有电子绝缘性和离子导电性。在温度升高的情况下,隔膜具有微孔自闭的保护作用,能防止电池短路引起爆炸,因此,对于隔膜闭孔温度的研究对电池安全的提升至关重要。
传统测试隔膜闭孔温度的方法无论是装置创新还是方法创出,基本都是采用两电极将隔膜夹住,放入电解液后加热进行测试,将内阻升高时的温度判定为隔膜闭孔温度。这些测试方法都是加入电解液后再对隔膜进行加热测试,因隔膜闭孔温度在130℃-150℃左右,在加热到目标温度左右的过程中电解液会挥发和分解,电解液减少后也会造成电阻增加,会对测试结果产生较大影响。
发明内容
基于背景技术存在的技术问题,本发明提出了一种隔膜闭孔温度测试方法;
本发明提出的一种隔膜闭孔温度测试方法,包括:
S1、制备第一标准隔膜、第二标准隔膜和第三标准隔膜;
S2、制备标准绿胶贴、标准铜箔、标准铝塑膜,所述标准绿胶贴中间有预设直径的圆孔;
S3、在标准绿胶贴上分别贴1层、2层、3层、4层、5层第一标准隔膜,得到第一目标隔膜,记为A1、A2、A3、A4、A5;在标准绿胶贴上分别贴1层、2层、3层、4层、5层第二标准隔膜,得到第二目标隔膜,记为B1、B2、B3、B4、B5;在标准绿胶贴上分别贴1层、2层、3层、4层、5层第三标准隔膜,得到第三目标隔膜,记为C1、C2、C3、C4、C5
S4、根据A1、A2、A3、A4、A5、B1、B2、B3、B4、B5、C1、C2、C3、C4、C5、标准铜箔、标准铝塑膜和预设的电池组装顺序组装得到对应的软包电池;
S5、采用电化学工作站分别测试软包电池的电池阻抗,将欧姆阻抗值与隔膜层数做线性拟合,计算隔膜离子电导率,获取隔膜离子电导率的突变点作为对应隔膜闭孔温度。
优选地,步骤S1,具体包括:所述第一标准隔膜为经过120℃加热处理后的41mm×30mm的方形片;所述第二标准隔膜为经过130℃加热处理后的41mm×30mm的方形片;所述第三标准隔膜为经过140℃加热处理后的41mm×30mm的方形片。
优选地,步骤S2,具体包括:所述标准绿胶贴为50mm×32mm的方形片;所述标准铜箔为39mm×28mm的方形片;所述标准铝塑膜为60mm×80mm的方形片。
优选地,步骤S4,具体包括:软包电池自上而下依次为标准铝塑膜、标准铜箔、Xi、标准铜箔、标准铝塑膜,其中,X为A或B或C,1≤i≤5。
优选地,步骤S5,具体包括:
采用电化学工作站分别测试软包电池的阻抗;
将欧姆阻抗值与隔膜层数做线性拟合;
根据公式
Figure BDA0001512449970000031
和直线的斜率计算隔膜离子电导率,其中,R为阻抗,n为隔膜层数,l为隔膜厚度,S为隔膜面积,ρ为电阻率,κ为电导率,l为已知常数;
获取隔膜离子电导率的突变点作为对应隔膜闭孔温度。
优选地,步骤S5,在采用电化学工作站分别测试软包电池的电池阻抗之前,还包括:将软包电池垫上硅胶垫安装在预设夹具上并由夹具夹紧,所述预设夹具由上下两块方形金属板构成,金属板四角有螺丝固定
本发明可以避免测试过程中外电路以及测试接触电阻等对隔膜电阻的影响,使测试的离子电导率数据更准确可靠。分别测试这些隔膜的离子电导率,通过寻找离子电导率突变点对应的温度即为隔膜闭孔温度。本发明的测试方法已成功应用于隔膜闭孔温度的测试,整个测试方法简单可靠,数据准确率高,可实现各种隔膜闭孔温度的精确测量。
附图说明
图1为本发明提出的一种隔膜闭孔温度测试方法的流程示意图;
图2为阻抗与隔膜层数线性拟合图;
图3为隔膜扫描电镜形貌图;
图4为隔膜阻抗数据和离子电导率数据图。
具体实施方式
参照图1、图2、图3和图4,本发明提出的一种隔膜闭孔温度测试方法,包括:
步骤S1,制备第一标准隔膜、第二标准隔膜和第三标准隔膜,其中,所述第一标准隔膜为经过120℃加热处理后的41mm×30mm的方形片;所述第二标准隔膜为经过130℃加热处理后的41mm×30mm的方形片;所述第三标准隔膜为经过140℃加热处理后的41mm×30mm的方形片。
在具体方案中,提前将隔膜在不同温度下处理的方法,这样就可以避免加热过程中由电解液减少带来的影响。
步骤S2,制备标准绿胶贴、标准铜箔、标准铝塑膜,所述标准绿胶贴中间有预设直径的圆孔,其中,所述标准绿胶贴为50mm×32mm的方形片;所述标准铜箔为39mm×28mm的方形片;所述标准铝塑膜为60mm×80mm的方形片。
在具体方案中,使用打孔绿胶目的是为了将测试隔膜进行限域,这样就可以避免两电极安装过程中对齐度的问题。
步骤S3,在标准绿胶贴上分别贴1层、2层、3层、4层、5层第一标准隔膜,得到第一目标隔膜,记为A1、A2、A3、A4、A5;在标准绿胶贴上分别贴1层、2层、3层、4层、5层第二标准隔膜,得到第二目标隔膜,记为B1、B2、B3、B4、B5;在标准绿胶贴上分别贴1层、2层、3层、4层、5层第三标准隔膜,得到第三目标隔膜,记为C1、C2、C3、C4、C5
步骤S4,根据A1、A2、A3、A4、A5、B1、B2、B3、B4、B5、C1、C2、C3、C4、C5、标准铜箔、标准铝塑膜和预设的电池组装顺序组装得到对应的软包电池,具体包括:软包电池自上而下依次为标准铝塑膜、标准铜箔、Xi、标准铜箔、标准铝塑膜,其中,X为A或B或C,1≤i≤5。
在具体方案中,将这些隔膜、标准铜箔、标准铝塑膜以预设组装顺序组装成对应的软包电池。
步骤S5,采用电化学工作站分别测试软包电池的电池阻抗,将欧姆阻抗值与隔膜层数做线性拟合,计算隔膜离子电导率,获取隔膜离子电导率的突变点作为对应隔膜闭孔温度,具体包括:
采用电化学工作站分别测试软包电池的阻抗;
将欧姆阻抗值与隔膜层数做线性拟合;
根据公式
Figure BDA0001512449970000051
和直线的斜率计算隔膜离子电导率,其中,R为阻抗,n为隔膜层数,l为隔膜厚度,S为隔膜面积,ρ为电阻率,κ为电导率,l为已知常数;
获取隔膜离子电导率的突变点作为对应隔膜闭孔温度。
具体的,在采用电化学工作站分别测试软包电池的电池阻抗之前,还包括:将软包电池垫上硅胶垫安装在预设夹具上并由夹具夹紧,所述预设夹具由上下两块方形金属板构成,金属板四角有螺丝固定。
在具体方案中,因电池较薄,如果不安装夹具会造成接触不良,使接触电阻较大,这样会影响测试结果。采用测试不同层数隔膜电阻,将电阻与隔膜层数做线性拟合,通过直线斜率计算离子电导率,分别测试这些隔膜的离子电导率,通过寻找离子电导率突变点对应的温度即为隔膜闭孔温度。
实施例:
将12微米的PE基膜在不同温度下120℃、130℃、140℃进行加热处理,获得不同温度处理后的隔膜,然后用刀模将隔膜冲成41mm×30mm的方形片状若干。将绿胶贴在无尘纸上,用刀模将其冲成50mm×32mm的方形片状若干,用打孔器在其中间打出直径为12mm的圆孔;将绿胶从无尘纸上揭开,把不同温度处理后的隔膜贴在绿胶上,分别贴1层、2层、3层、4层、5层。将8微米厚的铜箔用刀模冲成39mm×28mm的方形片状若干;将86微米厚的铝塑膜用刀模冲成60mm×80mm的方形片状若干;按照自上而下依次为标准铝塑膜、标准铜箔、隔膜、标准铜箔、标准铝塑膜的顺序,将待测隔膜分别组装成含1层、2层、3层、4层、5层隔膜的软包电池。
将制备的软包电池安装特定夹具,此夹具由上下两块方形金属板(长×宽=10cm×8cm)构成,金属板四角有螺丝固定,将电池垫上硅胶垫,用夹具夹紧,四个螺丝拧紧。因电池较薄,如果不安装夹具会造成接触不良,使接触电阻较大,这样会影响短路电阻测试结果。然后采用电化学工作站测试制备的电池阻抗,将欧姆阻抗值与隔膜层数做线性拟合,根据公式
Figure BDA0001512449970000061
(其中n为隔膜层数,n=1,2,3,4,5,l,S分别为隔膜厚度和面积,ρ为电阻率,κ为电导率)通过直线的斜率计算隔膜离子电导率。
采用上述方法用电化学工作站分别测试获得新鲜隔膜、120℃、130℃、140℃的阻抗,与隔膜层数线性拟合结果如图2,通过公式计算隔膜离子电导率分别为0.1436S/m、0.1304S/m、0.0122S/m、0.0125S/m,数据总结在图4中,图4中,新鲜隔膜为未经过高温处理的隔膜,从结果可以看出,在130℃时,隔膜离子电导率降低一个数量级,在140℃时基本保持稳定,也就是说在130℃时隔膜开始闭孔,隔膜的闭孔温度在130℃左右。
为了证明隔膜在130℃已经闭孔,我们将隔膜进行了扫描电镜观察,如图3所示,通过扫描电镜图我们可以看到,在130℃左右,隔膜的孔已经大部分闭合,与本发明测试的结果吻合,也证实了本发明测试方法的可靠性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种隔膜闭孔温度测试方法,其特征在于,包括:
S1、制备第一标准隔膜、第二标准隔膜和第三标准隔膜;
S2、制备标准绿胶贴、标准铜箔、标准铝塑膜,所述标准绿胶贴中间有预设直径的圆孔;
S3、在标准绿胶贴上分别贴1层、2层、3层、4层、5层第一标准隔膜,得到第一目标隔膜,记为A1、A2、A3、A4、A5;在标准绿胶贴上分别贴1层、2层、3层、4层、5层第二标准隔膜,得到第二目标隔膜,记为B1、B2、B3、B4、B5;在标准绿胶贴上分别贴1层、2层、3层、4层、5层第三标准隔膜,得到第三目标隔膜,记为C1、C2、C3、C4、C5
S4、根据A1、A2、A3、A4、A5、B1、B2、B3、B4、B5、C1、C2、C3、C4、C5、标准铜箔、标准铝塑膜和预设的电池组装顺序组装得到对应的软包电池;
S5、采用电化学工作站分别测试软包电池的电池阻抗,将欧姆阻抗值与隔膜层数做线性拟合,计算隔膜离子电导率,获取隔膜离子电导率的突变点作为对应隔膜闭孔温度;
步骤S1,具体包括:所述第一标准隔膜为经过120℃加热处理后的41mm×30mm的方形片;所述第二标准隔膜为经过130℃加热处理后的41mm×30mm的方形片;所述第三标准隔膜为经过140℃加热处理后的41mm×30mm的方形片;
步骤S2,具体包括:所述标准绿胶贴为50mm×32mm的方形片;所述标准铜箔为39mm×28mm的方形片;所述标准铝塑膜为60mm×80mm的方形片;
步骤S4,具体包括:软包电池自上而下依次为标准铝塑膜、标准铜箔、Xi、标准铜箔、标准铝塑膜,其中,X为A或B或C,1≤i≤5;
步骤S5,具体包括:
采用电化学工作站分别测试软包电池的阻抗;
将欧姆阻抗值与隔膜层数做线性拟合;
根据公式
Figure FDA0002507588370000021
和直线的斜率计算隔膜离子电导率,其中,R为阻抗,n为隔膜层数,l为隔膜厚度,S为隔膜面积,ρ为电阻率,κ为电导率,l为已知常数;
获取隔膜离子电导率的突变点作为对应隔膜闭孔温度。
2.根据权利要求1所述的隔膜闭孔温度测试方法,其特征在于,步骤S5,在采用电化学工作站分别测试软包电池的电池阻抗之前,还包括:
将软包电池垫上硅胶垫安装在预设夹具上并由夹具夹紧,所述预设夹具由上下两块方形金属板构成,金属板四角有螺丝固定。
CN201711363880.9A 2017-12-18 2017-12-18 一种隔膜闭孔温度测试方法 Active CN108303442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711363880.9A CN108303442B (zh) 2017-12-18 2017-12-18 一种隔膜闭孔温度测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711363880.9A CN108303442B (zh) 2017-12-18 2017-12-18 一种隔膜闭孔温度测试方法

Publications (2)

Publication Number Publication Date
CN108303442A CN108303442A (zh) 2018-07-20
CN108303442B true CN108303442B (zh) 2020-08-14

Family

ID=62870182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711363880.9A Active CN108303442B (zh) 2017-12-18 2017-12-18 一种隔膜闭孔温度测试方法

Country Status (1)

Country Link
CN (1) CN108303442B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766283A (zh) * 2020-06-23 2020-10-13 合肥国轩高科动力能源有限公司 一种隔膜闭孔温度测试方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395092A (zh) * 2002-07-30 2003-02-05 天津大学 一维纳米线阵列材料温差电性能测试系统
CN101000952A (zh) * 2006-11-02 2007-07-18 许贵斌 一种锂离子电池用聚烯微多孔隔膜及其制造方法
CN101212035A (zh) * 2006-12-29 2008-07-02 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101209609A (zh) * 2006-12-30 2008-07-02 比亚迪股份有限公司 一种聚烯烃复合薄膜及其制备方法和用途
CN101221140A (zh) * 2008-01-22 2008-07-16 深圳市富易达电子科技有限公司 电池隔膜闭孔温度、破膜温度的测试装置及测试方法
CN101241982A (zh) * 2008-03-19 2008-08-13 深圳市富易达电子科技有限公司 锂离子电池用多孔隔膜的制备方法
CN101294273A (zh) * 2008-06-18 2008-10-29 上海太阳能电池研究与发展中心 一种钛酸锶钡薄膜材料的制备方法
CN101358942A (zh) * 2007-07-30 2009-02-04 深圳市比克电池有限公司 测量隔膜纸闭合温度的方法和装置
CN101393976A (zh) * 2007-09-19 2009-03-25 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101420018A (zh) * 2007-10-26 2009-04-29 比亚迪股份有限公司 一种锂离子二次电池隔膜及其制备方法
CN102272588A (zh) * 2008-12-22 2011-12-07 棉花集水社区合作研究中心有限公司 用于测量材料性质的设备及方法
CN102297877A (zh) * 2011-05-27 2011-12-28 上海大学 一种薄膜热电性能参数的测量装置和方法
CN202471632U (zh) * 2012-01-17 2012-10-03 江苏领航材料科技有限公司 电池隔膜闭孔温度和破膜温度的检测装置
CN102914560A (zh) * 2012-10-16 2013-02-06 上海大学 一种测量薄膜热电性能参数的装置和方法
CN103199209A (zh) * 2013-04-01 2013-07-10 中国海诚工程科技股份有限公司 具有优良闭孔性能的锂离子电池用无纺布陶瓷隔膜及工艺
CN104280418A (zh) * 2014-10-29 2015-01-14 华南理工大学 锂离子动力电池内部隔膜安全监测方法
CN204216114U (zh) * 2014-11-14 2015-03-18 新乡市中科科技有限公司 一种锂电池复合隔膜
CN104428921A (zh) * 2013-08-30 2015-03-18 东丽电池隔膜株式会社 电池用隔膜及其制造方法
CN204228291U (zh) * 2014-12-01 2015-03-25 东莞市迈科科技有限公司 一种隔膜闭孔温度的测量装置及系统
CN104714096A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种测试装置及电子导体中离子电导率的测试方法
CN105158566A (zh) * 2015-08-12 2015-12-16 深圳市星源材质科技股份有限公司 电池隔膜闭孔破膜温度和离子电导率测试装置及方法
CN105514321A (zh) * 2015-12-14 2016-04-20 苏州锂盾储能材料技术有限公司 一种锂离子电池高效能隔膜材料及其制备方法
CN105738404A (zh) * 2016-04-15 2016-07-06 合肥国轩高科动力能源有限公司 一种锂离子电池隔膜闭孔温度和破膜温度的测试方法及装置
CN206235424U (zh) * 2016-12-14 2017-06-09 合肥国轩高科动力能源有限公司 用于监测电池充放电鼓胀压力的测试装置
CN106896271A (zh) * 2017-03-10 2017-06-27 深圳中兴创新材料技术有限公司 一种用于电池隔膜电导率测试的装置和方法
CN107167463A (zh) * 2017-04-29 2017-09-15 合肥国轩高科动力能源有限公司 一种锂离子电池中涂胶隔膜材料的定性及均一性分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456638B2 (en) * 2005-04-19 2008-11-25 University Of South Florida MEMS based conductivity-temperature-depth sensor for harsh oceanic environment
US7714591B2 (en) * 2005-12-20 2010-05-11 Kulite Semiconductor Products, Inc. Apparatus and methods for linearizing piezoresistive wheatstone bridges
US8380446B2 (en) * 2010-06-14 2013-02-19 Schlumberger Technology Corporation System and method for determining the phase envelope of a gas condensate
CN105509922A (zh) * 2015-11-26 2016-04-20 东莞市振华新能源科技有限公司 一种电池隔膜闭孔温度的测试方法
CN206470196U (zh) * 2017-01-23 2017-09-05 合肥国轩高科动力能源有限公司 一种利用拉曼光谱测定锂离子电池材料的原位池

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395092A (zh) * 2002-07-30 2003-02-05 天津大学 一维纳米线阵列材料温差电性能测试系统
CN101000952A (zh) * 2006-11-02 2007-07-18 许贵斌 一种锂离子电池用聚烯微多孔隔膜及其制造方法
CN101212035A (zh) * 2006-12-29 2008-07-02 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101209609A (zh) * 2006-12-30 2008-07-02 比亚迪股份有限公司 一种聚烯烃复合薄膜及其制备方法和用途
CN101358942A (zh) * 2007-07-30 2009-02-04 深圳市比克电池有限公司 测量隔膜纸闭合温度的方法和装置
CN101393976A (zh) * 2007-09-19 2009-03-25 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101420018A (zh) * 2007-10-26 2009-04-29 比亚迪股份有限公司 一种锂离子二次电池隔膜及其制备方法
CN101221140A (zh) * 2008-01-22 2008-07-16 深圳市富易达电子科技有限公司 电池隔膜闭孔温度、破膜温度的测试装置及测试方法
CN101241982A (zh) * 2008-03-19 2008-08-13 深圳市富易达电子科技有限公司 锂离子电池用多孔隔膜的制备方法
CN101294273A (zh) * 2008-06-18 2008-10-29 上海太阳能电池研究与发展中心 一种钛酸锶钡薄膜材料的制备方法
CN102272588A (zh) * 2008-12-22 2011-12-07 棉花集水社区合作研究中心有限公司 用于测量材料性质的设备及方法
CN102297877A (zh) * 2011-05-27 2011-12-28 上海大学 一种薄膜热电性能参数的测量装置和方法
CN202471632U (zh) * 2012-01-17 2012-10-03 江苏领航材料科技有限公司 电池隔膜闭孔温度和破膜温度的检测装置
CN102914560A (zh) * 2012-10-16 2013-02-06 上海大学 一种测量薄膜热电性能参数的装置和方法
CN103199209A (zh) * 2013-04-01 2013-07-10 中国海诚工程科技股份有限公司 具有优良闭孔性能的锂离子电池用无纺布陶瓷隔膜及工艺
CN104428921A (zh) * 2013-08-30 2015-03-18 东丽电池隔膜株式会社 电池用隔膜及其制造方法
CN104714096A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种测试装置及电子导体中离子电导率的测试方法
CN104280418A (zh) * 2014-10-29 2015-01-14 华南理工大学 锂离子动力电池内部隔膜安全监测方法
CN204216114U (zh) * 2014-11-14 2015-03-18 新乡市中科科技有限公司 一种锂电池复合隔膜
CN204228291U (zh) * 2014-12-01 2015-03-25 东莞市迈科科技有限公司 一种隔膜闭孔温度的测量装置及系统
CN105158566A (zh) * 2015-08-12 2015-12-16 深圳市星源材质科技股份有限公司 电池隔膜闭孔破膜温度和离子电导率测试装置及方法
CN105514321A (zh) * 2015-12-14 2016-04-20 苏州锂盾储能材料技术有限公司 一种锂离子电池高效能隔膜材料及其制备方法
CN105738404A (zh) * 2016-04-15 2016-07-06 合肥国轩高科动力能源有限公司 一种锂离子电池隔膜闭孔温度和破膜温度的测试方法及装置
CN206235424U (zh) * 2016-12-14 2017-06-09 合肥国轩高科动力能源有限公司 用于监测电池充放电鼓胀压力的测试装置
CN106896271A (zh) * 2017-03-10 2017-06-27 深圳中兴创新材料技术有限公司 一种用于电池隔膜电导率测试的装置和方法
CN107167463A (zh) * 2017-04-29 2017-09-15 合肥国轩高科动力能源有限公司 一种锂离子电池中涂胶隔膜材料的定性及均一性分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Influence of Three Kinds of Diaphragm for the Performance of MH-Ni Battery;Hua-Jun T 等;《jiangxi metallurgy》;20031231;第23卷(第6期);第155-157页 *
具有热关断涂层的锂电池隔膜性能表征;白莉 等;《电化学》;20150531;第21卷(第5期);第459-464页 *

Also Published As

Publication number Publication date
CN108303442A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN108318822B (zh) 一种锂电池极片和隔膜电导率的测量方法及系统
CN106896271B (zh) 一种用于电池隔膜电导率测试的装置和方法
EP3547407A3 (en) Current collector, electrode plate including the same and electrochemical device
TWI484690B (zh) 集流體製備方法
CN202471632U (zh) 电池隔膜闭孔温度和破膜温度的检测装置
TWI606634B (zh) 集流體、電化學電池電極及電化學電池
CN205488409U (zh) 电池内短路测试装置
ATE421160T1 (de) Mehrschichtige elektrochemische energiespeichereinrichtung und verfahren zu ihrer herstellung
CN105445313A (zh) 一种电池隔膜的热稳定性检测方法
CN108303442B (zh) 一种隔膜闭孔温度测试方法
CN114976488A (zh) 隔膜及其制备方法、锂离子电池
CN105355921A (zh) 一种电化学电池及其制备方法
CN104485481A (zh) 锂离子电芯体以及带该电芯体的锂离子电池
CN103063923A (zh) 一种光伏组件封装用eva胶膜的体积电阻率测试方法
CN105301357A (zh) 一种简便的硫基固体电解质电导率测试方法
CN206270375U (zh) 一种加压扣式电池测试夹具
JP2006286397A (ja) 固体電解質膜構造体とその製造方法、イオン伝導度測定装置
CN209730033U (zh) 一种功能性复合隔膜
CN104714096B (zh) 一种测试装置及电子导体中离子电导率的测试方法
CN108562608B (zh) 一种多孔薄膜闭孔温度的测试计算方法
CN111766283A (zh) 一种隔膜闭孔温度测试方法
CN113945763A (zh) 一种极片的液相电阻的测试方法
CN111443243B (zh) 一种锂离子电池粘结剂电导率的检测方法
CN211122992U (zh) 一种电池电阻测量装置
Beck et al. Ultrasonic bonding of membrane electrode assemblies for low temperature proton exchange membrane fuel cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant